Distribution of structure of macrobenthic communities in coastal waters of Jiangmen, Guangdong
-
摘要:
根据2016年江门近岸海域4个航次的调查数据,对其大型底栖动物现存量和多样性分布特征进行了研究。调查共鉴定出大型底栖动物56种,其中软体动物21种,环节动物18种,节肢动物7种,棘皮动物3种,纽形动物和腔肠动物各2种,星虫动物、脊索动物和螠虫各1种。江门近岸海域各站位大型底栖动物栖息密度和生物量分别介于10~920个·m−2和0.2~267.7 g·m−2,栖息密度总体呈现湾外大于湾内的趋势;群落中以膜质伪才女虫 (Pseudopolydora kempi) 和中华内卷齿蚕 (Aglaophamus sinersis) 分布最广泛,其中中华内卷齿蚕为四季共同优势种。ABC曲线分析表明,该海域群落整体的稳定性一般,春、秋季大型底栖动物群落受到一定程度的干扰,稳定性较弱。相关性分析表明,水深、盐度、温度、磷酸盐、沉积物类型、捕食压力是影响群落结构时空差异的主要因素。
Abstract:Based on the data collected from four-season investigations in Jiangmen coastal waters of the South China Sea in 2016, we examined the ecological characteristics and biodiversity of the macrobenthic community. A total of 56 species were identified, including 21 Mollusks, 18 Annelids, 7 Arthropods, 3 Echinoderms, 2 Nemerteans, 2 Coelenterates, 1 Sipunculan, 1 Chordate and 1 Echiuran. The density and biomass values varied from 10 to 920 ind·m−2 and from 0.2 to 267.7 g·m−2, respectively. The spatial distribution of density was generally higher in the waters outside the bay than inside. In the macrobenthos community, Pseudopolydora kempi and Aglaophamus sinersis were most widely distributed, and A. sinersis was the common dominant species that appeared in four seasons. The evaluation results of abundance and biomass comparison curve show that the overall stability of the community in this area is general, while the macrobenthic community in spring and autumn is moderately disturbed with poor community stability. The correlation analysis shows that the tempo-spatial differences of the macrobenthic community are mainly affected by water depth, salinity, temperature, phosphate, sediment type, predation pressure and so on.
-
Keywords:
- Macrobenthos /
- Community structure /
- Biodiversity /
- Environmental factors /
- Jiangmen
-
黄鳝 (Monopteru albus),俗名鳝鱼,广泛分布于我国各湖泊、水库和稻田等淡水水域。其肉质鲜美,含有丰富的必需氨基酸和脂肪酸及其他特殊营养素,具有很高的药用和滋补功能,一直深受消费者青睐[1]。黄鳝是目前我国大力推广养殖的重要名特优水产品之一,2016年我国人工养殖黄鳝产量达到38.6万吨。从市场角度看,规格一致的鱼苗或成鱼有利于养殖品种的商品化,但在鱼类养殖过程中,总有部分鱼生长缓慢,这不仅浪费养殖空间,也导致饲料浪费,严重影响了养殖经济效益。黄鳝养殖在这方面尤为突出,即使是同一亲本所产、在相同环境中生长的黄鳝,这种生长差异依然存在且显著。影响鱼类生长的因素很多,如种质差异、营养水平、温度、密度、水质等[2],但目前对黄鳝生长差异产生的机制尚不清楚,亟待研究探讨。
近年来,转录组学被广泛应用于生物学研究,对于功能基因发掘、转录调控机制、分子标记开发和信号通路等各方面的研究具有重要作用[3]。目前,转录组学已广泛应用于鱼类发育[4]、进化[5]、免疫[6]和抗病机理[7]研究中。本文通过转录组测序发掘黄鳝生长差异基因及其调控通路,初步阐明造成黄鳝生长差异的基因调控机制,以期为促进黄鳝工业化养殖提供理论依据。
1. 材料与方法
1.1 实验材料
实验鳝苗取自江西农业大学水产基地,均为饲养在相同水箱中、同一亲本黄鳝当年产卵孵化的鳝苗;黄鳝养殖用的配合饲料大宗原料购买于南昌大佑农生物技术有限公司。养殖1年后,从同一水箱中取个体差异显著的健康黄鳝,个体较大的为实验组 (AEG),个体较小的为对照组 (ACG),具体数据见表1,取其肝脏液氮冷冻后放−80 ℃冰箱备用。
表 1 样品信息Table 1. Information of samples样品Sample 体质量Body mass/g 全长Total length/cm 实验组Treatment group AEG1 42.27 35.8 AEG2 44.10 36.5 AEG3 35.78 34.6 对照组Control group ACG1 6.30 19.8 ACG2 6.61 18.9 ACG3 6.12 20.2 1.2 实验方法
取50~100 mg肝脏组织,加入一定比例的TRIzol,在低温下迅速匀浆,室温放置5 min,使其充分裂解,经氯仿抽提、异丙醇沉淀、75%乙醇洗涤后,室温开盖晾约5 min,用适量RNase-free水溶解RNA后于−80 ℃保存备用。使用1%的琼脂糖凝胶电泳检测其完整性。
总RNA提取以后,使用美国纽英伦生物技术公司试剂盒 (#E7530) 进行cDNA建库。首先用带有Oligo (dT) 磁珠富集真核生物的mRNA加入fragmentation buffer将mRNA打断成短片段并用六碱基随机引物合成cDNA第一条链。然后加入缓冲液、DNA聚合酶Ⅰ、dNTP、RNase和缓冲溶液合成cDNA第二条链。使用快速PCR抽提试剂盒,尾端修复,纯化双链cDNA片段,并引入单碱基“A”使其与IIIumina测序接头链接。最后进行PCR扩增,通过琼脂糖凝胶电泳分离连接产物,PCR扩增富集目标片段。文库构建完成后,使用Agilent 2100 Bioanalyzer对文库进行检测以及使用ABI StepOnePlus Real-Time PCR System对文库浓度进行定量检测,合格后用IIIumina HiSeq TM 4000对cDNA文库进行测序。测序服务由北京博云华康基因科技有限公司提供。
1.3 数据分析与处理
转录组测序后原始数据Raw reads含有低质量的reads,经过筛选过滤得到高质量的Clean reads。使用HISAT程序将得到的Clean reads比对到参考基因组上。利用DEGseq差异分析软件包进行差异基因筛选,首先计算差异倍数 (Fold change,FC) log2值和P,只有同时符合log2绝对值大于2和P的绝对值小于0.001的基因才被确定为显著差异基因 (Differentially expressed gene, DEG),然后对差异基因进行KEGG通路和GO功能富集性分析。
1.4 荧光定量PCR验证
对于筛选到的7个与生长相关的差异表达基因进行qPCR验证。引物设计见表2,18 S作为内参基因。荧光定量PCR反应条件为95预变性90 s,95 ℃变性5 s,60 ℃退火15 s,72 ℃延伸20 s,共40个循环。每个样品重复3次,实验数据按照Livak的2−△△Ct方法处理。
表 2 荧光定量PCR引物信息Table 2. Information of primers used for qPCR基因Gene qPCR引物序列 (5'–3')Primer sequence of qPCR 退火温度Annealing temperature/℃ 片段大小Fragment size/bp col1α1 F:AGTTGTTTGCGGACCGAGAT 60.0 110 R:GCAATCTGGCATTTCCTCACA 59.2 nkx6.1 F:GGACAAAGATGGGAAACGAAA 56.7 96 R:GCCAGGTATTTGGTCTGTTCA 58.2 nnos F:CTATCAGTCTGGATGCCACAAC 58.8 115 R:CAGAGCCCAACAGAAACATTAG 57.3 plexina4 F:TGCTGAGAACCCTGAGTGGATA 60.6 159 R:TAGCATTTGCGGTTGTCTTCAT 58.9 pcgf1 F:CAGCCCTTACTCAACCTCAAA 57.9 167 R:GCATCTGGCACAGCATCTACG 61.7 igfbp1 F:CAGAGAGCCTTGGAAAAGATTG 57.3 171 R:CTTGCCGTTCCAGGAGTGT 59.9 h3.3 F:ATTTTGAGTTGCGGCGATTA 56.4 181 R:GTAACGATGGGGCTTCTTCAC 59.0 18S F:GTGGAGCGATTTGTCTGGTTA 57.8 162 R:CGGACATCTAAGGGCATCAC 57.7 2. 结果
2.1 测序结果
本实验共测6个样本,平均每个样本产出约41 000 000 Clean reads,约合6.0 Gb数据量 (表3)。用Q20 (单个碱基的测序错误率低于1%) 和Q30 (单个碱基的测序错误率低于0.1%) 对这些数据的质量进行检测,Q20 和Q30值分别为98.02%和94.75%以上,说明测序质量很好。将测序结果与参考基因组进行比对,匹配率在74.32%以上。将匹配到参考基因的Reads组装成基因,共得到19 149个基因。以长势差的ACG组为对照,使用RSEM计算基因与转录表达水平,分析发现差异表达基因有598个,其中有303个基因上调,295个下调。差异表达基因的火山图和统计图分别见图1-a和图1-b。
表 3 测序结果统计Table 3. Statistics of sequencing results样品Sample 过滤后ReadsFiltered Reads Q20/% Q30/% GC含量GC content/% 匹配率Matching ratio/% 对照组Control group ACG1 41201168 98.03 94.75 46.78 75.48 ACG2 41047704 98.04 94.77 46.61 75.48 ACG3 40926540 98.02 94.78 48.12 75.98 实验组Treatment group AEG1 41004324 98.09 94.96 46.87 74.32 AEG2 40984046 98.12 95.00 47.09 74.44 AEG3 40999366 98.07 94.88 47.33 75.21 2.2 差异表达基因的GO分类和KEGG通路富集分析
将598个差异表达基因进行GO分析 (图2),这些基因分属于生物过程、细胞组分和分子功能三大类下的42个分支。生物过程组中含有19个分支,其中单生物体过程、细胞过程和代谢过程占比最高分别为19.57%、19.23%和15.72%;细胞组分组中有15个分支,其中细胞、细胞部分和膜分占比最高,分别为11.87%、11.87%和10.87%;在分子功能分组中有8个分支,其中结合、催化活性和运输活性占比最高,分别为16.22%、13.38%和3.51%。
图 2 差异表达基因GO功能分类图1. 单生物体过程;2. 细胞过程;3. 代谢过程;4. 生物调节;5. 生物过程调节;6. 定位;7. 刺激应答;8. 发展过程;9. 多细胞生物体过程;10. 生物体细胞组成或起源;11. 信号传导;12. 正调节生物过程;13. 负调节生物过程;14;生长;15. 运动;16. 免疫系统过程;17. 行为;18多生物体过程;19. 节律过程;20. 细胞;21. 细胞部分;22. 膜;23. 膜部分;24. 细胞器;25. 复杂大分子;26. 细胞器部分;27. 细胞外区域;28. 细胞外区域部分;29. 膜封闭腔;30. 细胞连接;31. 细胞外模型;32. 超分子纤维;33. 突触;34. 突触部分;35. 结合;36. 催化活性;37. 运输活性;38. 分子功能调节;39. 信号传感活性;40. 结构分子活性;41. 分子传感活性;42. 核苷酸结合转录因子活性Figure 2. GO functional classification map of differentially expressed genes1. Single-organism process; 2. Cellular process; 3. Metabolic process; 4. Biological regulation; 5. Regulation of biological regulation; 6. Localization; 7. Response to stimulus; 8. Developmental process; 9. Multicellular organismal process; 10. Cell compent organization or biogenesis; 11. Signaling; 12. Positive regulation of biological process; 13. Negative regulation of biological process; 14. Gowth; 15. Locomotion; 16. Immune system process; 17. Behavior; 18. Multi-organism process; 19. Rhythmic process; 20. Cell; 21. Cell part; 22. Membrane; 23. Membrane part; 24. Organelle; 25. Macromolecular complex; 26. Organelle part; 27. Extracellular region; 28. Extracellular region part; 29. Membrane-enclosed lumen; 30. Cell junction; 31. Extracellular matrix; 32. Supramolecular fiber; 33. Synapse; 34. Synapse part; 35. Binding; 36. Catalytic activity; 37. Transporter activity; 38. Molecular function regulation; 39. Signal transducer activity; 40. Structural molecule activity; 41. Molecular transducer activity; 42. Nucleic acid binding transcription factor activity将差异表达基因序列与KEGG数据库中的数据进行BlastX比对注释,结果显示598个差异表达基因分布在262条KEGG通路中,其中显著富集的通路有38条 (P<0.05),在这38条通路中有11条代谢相关通路富集效果极显著 (P<0.01)。
2.3 生长相关的差异表达基因
GO功能注释分析发现,与生长相关的差异表达基因有7个,分别为Ⅰ型胶原α1 (collagen typeⅠalpha 1,col1α1)、转录因子nkx6.1 (NK6 homebox 1)、神经性一氧化氮合酶 (Neuronal nitric oxide synthase,nnos)、神经丛蛋白家族A4 (plexina4)、类胰岛素生长因子结合蛋白-1 (Insulin-like growth factors binding protein 1, igfbp1)、多梳环指蛋白1 (Polycomb group RING finger protein 1, pcgf1) 和组蛋白3.3 (histone 3.3,h3.3)。这7个基因中,除col1α1和nkx6.1基因显著下调外,其余5个基因明显上调。这7个基因分属不同的通路 (表4),这些通路分属于4种类型,其中col1α1、nkx6.1和h3.3基因所在通路属于人类疾病,nnos基因所在通路属于新陈代谢,plexina4基因所在通路属于环境信息加工,igfbp1和pcgf1基因所在通路属于细胞过程。这些通路中只有col1α1所在的利什曼病通路和nnos所在的精氨酸和脯氨酸代谢通路是显著富集的 (P<0.05),其他5个差异基因所在通路富集效果不显著 (P>0.05)。
表 4 生长相关差异表达基因Table 4. Growth-related differentially expressed genes基因名称Gene name 基因IDGene ID 差异倍数Fold change 所属通路Belonged pathway 通路IDPathway ID col1α1 109951101 −2.5 利什曼病 Ko05140 nkx6.1 109952563 −3.3 青少年成熟性糖尿病 Ko04950 nnos 109959109 4.0 精氨酸和脯氨酸代谢 Ko00330 plexina4 109959815 3.4 细胞黏附分子 Ko04514 igfbp1 109961253 2.3 p53信号通路 Ko04115 pcgf1 109972045 3.3 干细胞潜能调节通路 Ko04550 h3.3 109974907 2.2 癌症的转录失调 Ko05202 2.4 荧光定量PCR验证结果分析
荧光定量PCR结果表明 (图3),所选的7个差异表达基因与转录组测序结果表达趋势一致。col1α1和nkx6.1这两个基因表达量均为对照组高于实验组 (实验组为1,对照组分别为3.807和1.725),nnos、plexina4、igfbp1、pcgf1和h3.3这5个基因表达量则是实验组高于对照组 (实验组为1,对照组分别为0.497、0.511、0.012、0.872和0.168)。通过荧光定量PCR验证,表明转录组测序结果可靠。
3. 讨论
生长分化是鱼类生长过程中的普遍现象。有观点认为,摄食不足会导致生长分化的产生[8],但杨帆等[9]研究表明,饱食投喂且增加投喂频率并不能改善黄鳝的生长分化现象。为了解黄鳝生长分化的调节机制,本研究进行了转录组测序。本次测序共得到19 149个基因,其中差异表达基因有598个,303个基因上调,295个下调。对这些差异基因进行KEGG通路分析发现,富集的KEGG通路多数与代谢相关。本研究发现,差异表达基因显著富集的38条通路中有15条与代谢有关,其中与脂肪代谢相关的有8条。在前20条富集极显著的通路中,更是有11条与代谢相关,其中影响最显著的代谢通路为类固醇生物合成。
GO功能注释分析发现,与生长相关的差异表达基因有7个,分别为col1α1、nkx6.1、nnos、plexina4、igfbp1、pcgf1和h3.3。col1α1基因显著下调,说明在ACG组的黄鳝中col1α1表达水平显著高于AEG组。Ⅰ型胶原 (COL1) 是由α1和α2两条肽链组成的,col1α1基因的过度表达使α1和α2链的比例发生变化,当比例超过2∶1时会导致骨骼密度、骨骼结构和骨骼质量发生变化从而引起骨质疏松性骨折进而影响生物体正常发育[10]。转录因子nkx6.1基因最早在胰腺β细胞中发现,与胰腺的发育相关[11]。研究发现nkx6.1基因参与调控胰腺β细胞的二次分化,胰腺β细胞能够分泌胰岛素,nkx6.1基因的突变会导致胰腺β细胞无法形成,影响胰岛素的分泌。对鸡胚胎发育的研究发现,过量表达的nkx6.1基因在胚胎发育早期能够促进脊髓Olig2的表达,但在晚期反而会抑制Olig2的表达,这说明nkx6.1在不同时期功能会发生变化。本实验中,ACG组的nkx6.1表达量明显高于AEG组,说明ACG组黄鳝过量表达nkx6.1可能会抑制胰腺β细胞的二次分化,减少胰岛素的分泌,从而影响黄鳝的生长发育。nnos存在于神经元和神经纤维中,其主要的功能就是在细胞间传递信息,具有传递和调节的作用[12]。正常状态下nnos可以产生少量NO维持细胞的生理活动。NO参与多种生理活动调节,对于生长因子增殖、T细胞活化、神经发育和神经再生都有促进作用。除此之外,对美国红鱼 (Sciaenops ocellatus) 添加维生素C的实验表明,nnos基因可以像inos一样被诱导表达参与机体的免疫应答[13]。本实验中nnos表达差异倍数最大 (4倍),NO含量水平的降低会导致胰岛素抗体的出现,使胰岛素不能正常发挥作用,最终导致黄鳝生长发育受阻。plexina4是神经丛蛋白a家族 (a1—a4) 最晚被发现的一个,plexina4对于中枢神经和外周神经的修复和再生具有重要作用[14]。plexina4在脑信号蛋白3的信号传递中,起到重要的转导作用[15]。作为膜结合脑信号蛋白6A和6B的受体和信号转导因子,plexina4对于皮质脊髓束和海马组织中苔藓纤维的形成和发育至关重要[16]。有研究发现,在视觉神经和运动神经的发育信号通路中plexina4起到了指导作用,另外对于通路的维持和再生也具有重要作用[17]。本实验中,ACG组plexina4的表达量降低,有可能造成黄鳝神经系统发育不完全从而导致生长受阻。
类胰岛素生长因子结合蛋白 (Insulin-like growth factors binding protein, Igfbps) 负责保护Igf防止其降解并调节它的生物活性[18]。Igfbps家族目前已知含有6种,从Igfbp1至Igfbp6,对硬骨鱼类的研究发现,不同组织至少含有1种Igfbp而在鱼类血液中至少含有3种主要的Igfbps[19]。在鱼类胚胎发育的各个时期都能检测到igfbp1的表达,孵化后主要在肝脏中表达。无论是成鱼还是胚胎,低氧诱导都可以使igfbp1的表达量显著增加。Igfbp1的主要功能是运输类胰岛素生长因子1 (Igf1)。Igfbp1通过与Igf1结合,调控Igf1的生物学功能:例如,介导Igf与受体之间的亲和力;控制Igf1的运输与代谢;延长Igf1的半衰期;决定Igf1的细胞通透率;调节Igf1的作用位点等。除此之外,Igfbp1自身也具有其他不依赖Igf1的生物学功能,包括控制细胞增殖、抑制机体代谢、参与肿瘤抑制、诱导细胞凋亡和促进血糖升高等。相关研究还发现许多内分泌疾病 (甲亢、糖尿病和性腺发育障碍等) 与Igfbp1有着重要联系[20],虽然对其作用机制尚不了解,但研究发现类固醇激素 (胰岛素、促肾上腺激素和雌激素等) 对igfbp1的表达有调控作用。本实验中igfbp1在ACG组中表达量显著降低,这可能造成Igf1不能完全发挥其生物学功能,从而导致黄鳝发育受阻。Pcgf1是多梳蛋白家族的一种,属于多梳抑制复合体 (Polycomb repression complex, Pcr) Pcr1。Pcgf1在神经系统高度表达因此又称为神经系统多梳蛋白1 (Nervous system polycomb 1, Nspc1)。Pcgf1蛋白在哺乳动物中可以对细胞周期进行调控,对造血干细胞的增殖和分化具有重要作用[21]。Pcr1环指部分的亲水性表面具有E3泛素连接酶活性,它可以通过改变染色质的状态来抑制基因表达[22]。有研究表明pcgf1基因的敲除会使细胞增殖能力下降[23],本实验中ACG组的pcgf1表达量降低可能导致了造血干细胞的增殖下降,从而影响黄鳝的生长发育。组蛋白H3的变体H3.3是一种重要的母源因子,能在受精后替换精子中的鱼精蛋白,参与雄性原核的重编程[24]。母源H3.3会重新激活细胞核的多潜能基因oct4,敲除h3.3后关键的多潜能基因转录水平降低,体细胞核不能被完全重编程导致胚胎不能正常发育[25-26]。注入外源h3.3 mRNA可以弥补这种缺陷。h3.3被认为是转录活性的标志[27],h3.3能够促进基因的转录表达,维持基因组稳定,保证rDNA的转录,促进rDNA的表达,重编码供体细胞核使其成为具有全能性的胚胎[28]。本实验中,ACG组h3.3表达量的降低可能导致了一些关键生长基因 (例如igfbp1、nnos、plexina4和pcgf1等) 的转录表达降低,从而影响了黄鳝的生长发育。
本文通过对生长差异显著的黄鳝进行转录组测序分析,找到了7个与黄鳝生长相关的差异表达基因,这些基因与黄鳝的神经系统、代谢系统和内分泌系统等有密切关系。结合KEGG通路分析,发现col1α1所在的利什曼病通路和nnos所在的精氨酸和脯氨酸代谢通路富集显著,说明其对黄鳝生长具有重要影响,但具体调节机制还需要进一步研究。在7个生长相关的差异表达基因中h3.3与胚胎发育相关,它既能维持基因组稳定,又能保证DNA的正确转录,还能激活多潜能基因重新编程体细胞;由于h3.3具有调节基因转录表达的功能,所以这些差异表达基因的出现是否与h3.3基因 (ACG组) 的表达下调相关还需进一步研究。
-
表 1 江门近岸海域底栖动物种类组成与分布
Table 1 Composition and distribution of benthic species in Jiangmen coastal waters
种类
Species采样站位 Sampling site A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 环节动物门 Annelida 膜质伪才女虫 Pseudopolydora kempi + + + + + + + + + 中华内卷齿蚕 Aglaophamus sinersis + + + + + + + + 背蚓虫 Notomastus latericeus + + + + + + + 双齿围沙蚕 Perinereis aibuhitensis + + + + + + 不倒翁虫 Sternaspis scutata + + + + + + 小头虫 Capitella capitata + + + + 长吻沙蚕 Glycere chirori + + + + 持真节虫 Euclymene annandalei + + + + 梳鳃虫 Terebellides stroemii + + + + 白色吻沙蚕 Glycera alba + + + + 厚鳃蚕 Dasybranchus caducus + + 独齿围沙蚕 Perinereis cultriferea + + 角海蛹 Ophelina acuminate + + 弦毛内卷齿蚕 Aglaophamus lyrochaeto + 海毛虫 Chloeia flava + 背毛背蚓虫 Notomastus cf. aberans + 多齿围沙蚕 Perinereis nuntia + 异足索沙蚕 Lumbrineris heteropoda + 软体动物门 Mollusca 肋䗉螺 Umbonium coatatum + + + + + + + 棒锥螺 Turritella bacillum + + + + + + 小亮樱蛤 Nitidotellina minuta + + + + + 辐射荚蛏 Siliqua radiata + + + + 光滑河蓝蛤 Potamocorbula laevis + + 毛蚶 Scapharca subcrenata + 橄榄胡桃蛤 Nucula paulula + 线纹玉螺 Natica lineata + 大角贝 Dentalium vernedei + 小刀蛏 Cultellus attenustus + 斜纹甲克蛤 Jactellina obliquistriata + 红带织纹螺 Nassarius succinctus + + + 假奈拟塔螺 Turricula nelliae spurious + 钻螺 Terebellum terebellum + + + 白龙骨乐飞螺 Lophiotoma leucotropis + + 粗帝汶蛤 Timoclea scabra + + 日本镜蛤 Dosinia japonica + + 小荚蛏 Siliqua minima + + 波纹巴非蛤 Paphia undulata + 鳞杓拿蛤 Anomalodiscus squamosa + 文雅蛙螺 Bursa elegans + 西格织纹螺 Nassarius siquinjorensis + 节肢动物门 Arthropoda 裸盲蟹 Typhlocarcinus mudus + + + + + 钩虾 Elasmopus + + + 宽腿巴豆蟹 Pinnixa penultipedalis + + 小巧毛刺蟹 Pilumnus minutus + 日本鼓虾 Alpheus japonicus + 毛盲蟹 Typhlocarcinus villosus + 棘皮动物门 Echinodermata 光滑倍棘蛇尾 Amphioplus laevis + + + + + + 棘刺锚参 Protankyra bidentata + + 花蜒蛇尾 Ophionereis variegata + 纽形动物门 Nemertea 无沟纽虫 Baseodiscus + + + + + + 孔纽虫 Amphiporus + 腔肠动物门 Coelentera 纵条矶海葵 Haliplanella luciae + 东方角海葵 Cerianthus orientalis + 螠虫动物门 Echiura 短吻铲荚螠 Listriolobus brevirostris + + + + + + + 星虫动物门 Sipuncula 可口革囊星虫 Phascolosoma esculenta + + + + 脊索动物门 Chordata 凤鲚 Coilia mystus + 注: +. 调查中出现的种 Note: +. The species that appeared in this survey 表 2 江门近岸海域大型底栖动物各季节优势种组成
Table 2 Dominant species of macrobenthos in Jiangmen coastal waters
春季 Spring 夏季 Summer 秋季 Autumn 冬季 Winter 物种
Species优势度
指数
Y物种
Species优势度
指数
Y物种
Species优势度
指数
Y物种
Species优势度
指数
Y光滑倍棘蛇尾
Amphioplus laevis0.072 棒锥螺
Turritella bacillum0.054 膜质伪才女虫Pseudopolydora kempi 0.254 膜质伪才女虫Pseudopolydora kempi 0.053 背蚓虫
Notomastus latericeus Sars0.036 中华内卷齿蚕
Aglaophamus sinersis0.050 中华内卷齿蚕
Aglaophamus sinersis0.143 光滑河蓝蛤
Potamocorbula laevis0.046 无沟纽虫
Baseodiscus sp.0.033 膜质伪才女虫
Pseudopolydora kempi0.045 短吻铲荚螠
Listriolobus brevirostris0.029 小头虫
Capitella capitata0.034 中华内卷齿蚕
Aglaophamus sinersis0.029 短吻铲荚螠
Listriolobus brevirostris0.032 无沟纽虫
Baseodiscus sp.0.029 肋䗉螺
Umbonium coatatum0.026 中华内卷齿蚕
Aglaophamus sinersis0.028 表 3 江门近岸海域底栖动物栖息密度与 环境因子的生物-环境分析
Table 3 BIOENV analysis of macrobenthos density and environmental factors
环境因子组合
Environmental factor相关系数 ρ
Correlation coefficient ρ盐度 Salinity 0.246 水深 Water depth 0.183 透明 Transparency 0.155 溶解氧 Dissolved oxygen 0.134 温度 Temperature 0.120 磷酸盐 Phosphate 0.108 亚硝酸盐 Nitrite 0.053 酸碱度 pH 0.051 悬浮物 Suspended matter 0.025 最大相关性
Maximum correlation水深,温度,盐度,磷酸盐
0.363 -
[1] MOODLEY L, HEIP C H R, MIDDELBURG J J. Benthic activity in sediments of the northwestern Adriatic Sea: sediment oxygen consumption, macro-and meiofauna dynamics[J]. J Sea Res, 1998, 40(3/4): 1-280.
[2] DAUVIN J C, RUELLET T, DESROY N, et al. The ecological quality status of the Bay of Seine and the Seine estuary: use of biotic indices[J]. Mar Pollut Bull, 2007, 55(1/2/3/4/5/6): 241-257.
[3] DAUVIN J C, ANDRADE H, de-la-OSSA-CARRETERO J A, et al. Polychaete/amphipod ratios: an approach to validating simple benthic indicators[J]. Ecol Indicat, 2016, 63(3): 89-99.
[4] KÜRTEN B, AL-AIDAROOS A M, STRUCK U, et al. Influence of environmental gradients on C and N stable isotope ratios in coral reef biota of the Red Sea, Saudi Arabia[J]. J Sea Res, 2014, 85: 379-394. doi: 10.1016/j.seares.2013.07.008
[5] 覃超梅, 孙凯峰, 赵庄明, 等. 江门市近岸海域春季环境质量评价[J]. 环境污染与防治, 2016, 38(12): 65-71. [6] 晏磊, 谭永光, 杨炳忠, 等. 基于张网渔业休渔前后的黄茅海河口渔业资源群落比较[J]. 南方水产科学, 2016, 12(6): 1-8. doi: 10.3969/j.issn.2095-0780.2016.06.001 [7] 田丰歌, 郑琰晶, 肖瑜璋, 等. 广海湾康氏小公鱼的产卵期及其鱼卵数量变动[J]. 应用海洋学学报, 2017, 36(3): 395-402. doi: 10.3969/J.ISSN.2095-4972.2017.03.013 [8] 李敏, 王新星, 许友伟, 等. 上川岛至海陵岛海域中华白海豚种群特征初探[J]. 南方水产科学, 2017, 13(5): 1-7. doi: 10.3969/j.issn.2095-0780.2017.05.001 [9] 马玉, 陈浩昌, 蔡钰灿, 等. 珠江口大襟岛中华白海豚保护区水质评价及影响因素分析[J]. 环境化学, 2011, 30(9): 1674-1675. [10] 广东省海岛资源综合调查大队. 川山群岛海岛资源综合调查报告[M]. 广州: 广东科技出版社, 1994: 210-226. [11] 赵丽, 刘芳娜. 江门海洋经济发展的SWOT分析及策略选择[J]. 新经济, 2014(7): 59-62. [12] 胡培, 赵吉国. 江门市黑臭水体水质现状及污染特征分析[J]. 广东水利水电, 2017(5): 20-34. doi: 10.11905/j.issn.1008-0112.2017.05.005 [13] 黄梦瑶. 江门市海洋环境与海洋经济发展现状研究[D]. 广州: 中山大学, 2017: 18-23 [14] HUTTON M, VENTURINI N, GARCÍA-RODRÍGUEZ F, et al. Assessing the ecological quality status of a temperate urban estuary by means of benthic biotic indices[J]. Mar Pollut Bull, 2015, 91(2): 441-453. doi: 10.1016/j.marpolbul.2014.10.042
[15] FUKUMORI K, OI M, DOI H, et al. Bivalve tissue as a carbon and nitrogen isotope baseline indicator in coastal ecosystems[J]. Estuar Coast Shelf Sci, 2008, 79(1): 45-50. doi: 10.1016/j.ecss.2008.03.004
[16] 陈佳勃, 赵瑞辰, 王艳杰, 李法云. 基于大型底栖动物群落生物指数的清河水环境模糊综合评价[J]. 农业环境科学学报, 2018, 37(12): 2837-2845. doi: 10.11654/jaes.2018-1159 [17] 冯剑丰, 王秀明, 孟伟庆, 等. 天津近岸海域夏季大型底栖生物群落结构变化特征[J]. 生态学报, 2011, 31(20): 5875-5885. [18] 吴东浩, 汪军涛, 张咏, 等. 连云港主要河流大型底栖无脊椎动物水质生物评价[J]. 环境监测管理与技术, 2010, 22(1): 29-32. doi: 10.3969/j.issn.1006-2009.2010.01.008 [19] 谢志超, 孙典荣, 刘永, 等. 江门海域游泳动物群落组成及其多样性初步分析[J]. 南方水产科学, 2018, 14(5): 21-28. [20] 舒黎明, 陈丕茂, 黎小国, 等. 柘林湾及其邻近海域大型底栖动物的种类组成和季节变化特征[J]. 应用海洋学学报, 2015, 34(1): 124-132. doi: 10.3969/J.ISSN.2095-4972.2015.01.016 [21] 田胜艳, 于子山, 刘晓收, 等. 丰度/生物量比较曲线法监测大型底栖动物群落受污染扰动的研究[J]. 海洋通报, 2006, 25(1): 92-96. doi: 10.3969/j.issn.1001-6392.2006.01.013 [22] 彭松耀, 赖子尼, 麦永湛. 珠江口大型底栖动物数量与生物多样性的分布特征[J]. 海洋渔业, 2019, 41(3): 266-277. doi: 10.3969/j.issn.1004-2490.2019.03.002 [23] 李少文, 张莹, 李凡, 等. 调水调沙对黄河口海域大型底栖动物群落的影响[J]. 环境科学研究, 2015, 28(2): 259-266. [24] 袁一鸣, 秦玉涛, 刘材材, 等. 长江口海域夏季大型底栖动物群落结构分析[J]. 水产学报, 2015, 39(8): 1127-1121. [25] 梁淼, 姜倩, 李德鹏, 等. 曹妃甸近岸海域大型底栖动物群落特征[J]. 水产科学, 2019, 38(4): 479-491. [26] 黄宗国, 蔡如星. 海洋污损生物及其防除 (上册) [M]. 北京: 海洋出版社, 1984: 352-354. [27] 刘吉明, 佘君同. 光滑河蓝蛤生殖习性初步研究[J]. 水产科学, 2003, 22(5): 12-13. doi: 10.3969/j.issn.1003-1111.2003.05.004 [28] 王蔚颖, 王晨, 田伟, 等. 九龙江口南临海域大型底栖动物群落结构的研究[J]. 复旦学报 (自然科学版), 2014, 53(4): 520-528. [29] COOPER M J, UZARSKI D G, BURTON T M. Macroinvertebrate community composition in relation to anthropogenic disturbance, vegetation, and organic sediment depth in four Lake Michigan drowned river-mouth wetlands[J]. Wetlands, 2007, 27(4): 894-903. doi: 10.1672/0277-5212(2007)27[894:MCCIRT]2.0.CO;2
[30] 王银东, 熊邦喜, 陈才保, 等. 环境因子对底栖动物生命活动的影响[J]. 浙江海洋学院学报 (自然科学版), 2005, 24(3): 253-257. [31] GAUDÊNCIO M J, CABRAL H N. Trophic structure of macrobenthos in the Tagus estuary and adjacent coastal shelf[J]. Hydrobiologia, 2007, 587(1): 241-251. doi: 10.1007/s10750-007-0686-6
[32] YSEBAERT T, HERMAN P M, MEIRE P, et al. Large-scale spatial patterns in estuaries: estuarine macrobenthic communities in the Schelde estuary, NW Europe[J]. Estuar Coast Shelf Sci, 2003, 57(1/2): 335-355.
[33] 周红, 华尔, 张志南. 秋季莱州湾及邻近海域大型底栖动物群落结构的研究[J]. 中国海洋大学学报, 2010, 40(8): 80-87. [34] MAGNI P, de FALCO G, COMO S, et al. Distribution and ecological relevance of fine sediments in organic-enriched lagoons: the case study of the Cabras lagoon (Sardinia, Italy)[J]. Mar Pollut Bull, 2008, 56(3): 549-564. doi: 10.1016/j.marpolbul.2007.12.004
[35] 张军晓. 硇洲海域文昌鱼食性及其栖息地鱼类营养等级分析[D]. 湛江: 广东海洋大学, 2008: 36-39. [36] 李亚芳, 杜飞雁, 王亮根, 等. 粤西海陵湾养殖区邻近海域大型底栖动物生态学特征[J]. 海洋与湖沼, 2018, 49(6): 1294-1307. doi: 10.11693/hyhz20180300058 -
期刊类型引用(2)
1. 林彬彬,袁泉,田志新,潘显斌,周文宗,徐震. 基于SSA- LSTM模型的黄鳝池溶氧预测研究. 渔业现代化. 2023(01): 71-79 . 百度学术
2. 曹晓莉,李昭林,胡毅. 低鱼粉饲料中添加牛磺酸对黄鳝生长、消化率及肠道酶活性的影响. 南方水产科学. 2021(05): 64-70 . 本站查看
其他类型引用(2)