Anti-hepatic injury effect of enzymatic hydrolysate from soft tissue of Pinctada martensii
-
摘要:
为探究马氏珠母贝肉酶解产物 (Enzymatic hydrolysate from Pinctada martensii, EP)对酒精性肝损伤 (Alcoholic liver damage, ALD)的保护作用,该研究将EP超滤分级为截留分子量>10 kD (EP-Ⅰ)、3~10 kD (EP-Ⅱ)和<3 kD (EP-Ⅲ) 3个组分,检测其体外抗肝损伤活性及对ALD小鼠肝保护作用的影响。体外试验结果显示,EP-Ⅲ可显著激活体外乙醇脱氢酶 (ADH)活性 (P<0.01),3个超滤组分均具有一定的体外抗氧化能力且ep-ⅲ>EP-Ⅱ>EP-Ⅰ;动物试验结果显示,与模型对照组相比,各超滤组分均能够显著降低小鼠血清中谷丙转氨酶 (ALT)和谷草转氨酶 (AST)活力、小鼠肝脏指数及肝脏中丙二醛 (MDA)和甘油三酯 (TG)含量,同时显著增强小鼠肝脏中超氧化物歧化酶 (SOD)、乙醇脱氢酶 (ADH)和乙醛脱氢酶 (ALDH)活力,提高肝脏中的谷胱甘肽 (GSH)含量。综上,马氏珠母贝肉酶解超滤组分对急性ALD具有一定的辅助保护作用,其中EP-Ⅲ的保护作用效果最佳,其机制可能与加快机体乙醇代谢和减缓乙醇对机体造成的氧化损伤相关。
-
关键词:
- 马氏珠母贝肉酶解产物 /
- 酒精性肝损伤 /
- 体外抗肝损伤活性 /
- 乙醇代谢
Abstract:In order to analyze the anti-hepatic injury effect of enzymatic hydrolysate from Pinctada martensii (EP), we seperated EP by membrane ultrafiltration into three molecular size fractions [MW> 10 kD (EP-Ⅰ), MW=3–10 kD (EP-Ⅱ) and MW < 3 kD (EP-Ⅲ)], and then measured the effects of three ultrafiltration fractions on the anti-ALD in vitro and liver-protection on mice. The results of experiments in vitro show that EP-III could activate alcohol dehydrogenase (ADH) significantly (P<0.01), and="" three="" fractions="" demonstrated="" different="" antioxidant="" capacities="">EP-Ⅱ>EP-Ⅰ). The results of mice experiment show that compared with the alcohol model group, the activities of ALT and AST in serum, liver index, the levels of MDA and TG in liver decreased in each ultrafiltration fraction group significantly, while the activities of SOD, ADH and ALDH and the levels of GSH in liver increased significantly. Therefore, the ultrafiltration fractions of enzymatic hydrolysate from soft tissue of P. martensii showed good protective effect on alcoholic liver damage, and the effect of EP-Ⅲ with low molecular mass was the best. Its mechanism may be related to accelerating ethanol metabolism and slowing down the oxidative damage caused by ethanol.
-
梭鱼 (Liza haematocheila) 隶属于鲻形目、鲻科、梭鱼属,具有广温广盐性、生长速度快、病害较少、肉质鲜美等特点,是我国沿海和河口地区一种重要经济养殖鱼类[1-2],其传统养殖模式主要有土池养殖、海水小网箱等。近年来兴起的池塘内循环“跑道”养殖 (In-pond raceway aquaculture, IPAS) 模式 (以下简称“跑道”模式),是一种将传统池塘分为流水槽养鱼区和水净化处理区,在“跑道”中高密度圈养吃食性鱼类,将外塘作为净水区的设施养殖模式[3],具有生态循环、节约劳动成本、环境易于管控等优点[4-5]。已有研究认为梭鱼是一种适宜在海水池塘“跑道”中养殖的鱼类[6]。
养殖模式优化可以影响水产动物营养与品质[7],是促进水产养殖业绿色高质量发展和满足消费者对高品质水产品日益增长需求的重要途径。目前已有关于“跑道”养殖对淡水鱼类营养品质提升的研究报道[8-10],但市场和消费者对“跑道鱼”的整体认知度还不高,据调查显示,浙江省能够实现出售价格提升的“跑道”养殖主体不到10%,未能体现优品优价[5]。本文以传统土池和“跑道”养殖的梭鱼为研究对象,对比分析2种模式养成梭鱼的营养成分、质构特性和泥腥味物质等组成和含量差异,旨在为海水鱼“跑道”模式推广及养殖模式对鱼肉品质调控提供参考依据,促进“跑道”模式健康可持续发展。
1. 材料与方法
1.1 试验材料
试验梭鱼由浙江省温岭市城南绿贝水产养殖有限公司提供。该公司在4口海水池塘 (总面积0.067 km2) 共建有混凝土砖结构的“跑道”15条。本试验中检测的“跑道”梭鱼,初始放养密度为每条槽8 000尾 (40 尾·m−2,初始规格350 g·尾−1),流水槽推水速度为0.4~0.5 m·s−1,在投喂饲料期间将推水速度降低约50%;在投喂结束后1 h恢复推水速度,最大程度将残饵和鱼粪排出系统,并开启吸污装置进行清污。经4个月的养殖到10月之后,梭鱼长至商品规格时,随机抽样10尾鱼 [ 体长 (34.84±1.21) cm,体质量 (758.09±8.08) g],作为“跑道”养殖组样品。同时,从该基地的传统海水土池中 (放养密度为10尾·m−2)抽样规格相近的梭鱼10尾 [ 体长 (35.29±1.97) cm,体质量 (765.17±10.45) g],作为土池养殖对照组样品。
1.2 仪器与设备
本试验所用的主要仪器设备包括烘箱 (上海智诚)、马弗炉 (德国纳博热)、凯氏定氮仪 (海能K9840)、索氏抽提仪 (瑞士BUCHI B-811)、氨基酸自动分析仪 (日本日立L-8900) 、气相色谱仪 (美国Aglient 7890A)、质构仪 (瑞典泰沃TVT-300XP)、气相色谱-质谱联用仪/三重四级杆气质联用仪 (美国THERMO/TSQ 9000)。
1.3 检测方法
1.3.1 梭鱼背部肌肉营养组成测定指标与方法
水分用105 ℃恒质量法,参照《食品中水分的测定》(GB 5009.3—2016);粗蛋白质用凯氏定氮法,参照《食品中蛋白质的测定》(GB 5009.5—2016);粗脂肪用索氏抽提法,参照《食品中脂肪的测定》(GB 5009.6—2016);总灰分用灼烧法,参照《食品中灰分的测定》(GB 5009.4—2016)。鱼肉氨基酸组成和含量按照食品中氨基酸的测定 (GB 5009.124—2016);脂肪酸组成和相对含量按照《食品中脂肪酸的测定》(GB 5009.168—2016)。
1.3.2 鱼肉质构参数
梭鱼宰杀后,取鱼体左右背部肌肉切成长、宽、厚为2 cm×2 cm×1 cm的肉块,用于全质构 (TPA) 分析。采用TVT-300XP物性测试仪进行TPA模式测试,选择圆柱形测试探头,测试前速度为3 mm·s−1,测试速度为1 mm·s−1,测后速度为5 mm·s−1,鱼肉变形率为50%,间隔停留时间5 s,负重探头类型为Auto-5 g,每个样品测6次平行后取平均值[11]。
1.3.3 鱼肉土腥味检测
主要检测土臭素 (Geosmin, GSM) 和2-甲基异莰醇 (2-Methylisoborneol, 2-MIB) 2种物质。取梭鱼背部肌肉5 g,捣碎并研磨肌肉组织成鱼糜状态,添加5 g 氯化钙 (CaCl2) 和50 mL 200 g·L−1氯化钠 (NaCl) 溶液充分混匀。微波炉微波功率为560 W,蒸馏时间5 min;载气氮气将气化的异味物质带出,经由冷凝管冷凝后收集馏分。取5 mL微波蒸馏液注入吹扫捕集装置中进行富集;再使用气相色谱-质谱联用仪/三重四级杆气质联用仪 (THERMO/TSQ 9000) 检测[12]。
1.4 评价指标
梭鱼肌肉的氨基酸评分 (Amino acid score, AAS)、化学评分 (Chemical score, CS) 和必需氨基酸指数 (Essential amino acid index, EAAI) 分别按照联合国粮食与农业组织/世界卫生组织 (FAO/WHO) 建议的必需氨基酸评分标准模式和全鸡蛋蛋白质的必需氨基酸模式计算。计算公式为:
AAS=待测蛋白质中必需氨基酸质量分数 (mg·g−1)/ [ FAO/WHO评分模式同种必需氨基酸质量分数 (mg·g−1)];
CS=待测蛋白质中必需氨基酸质量分数 (mg·g−1)/鸡蛋蛋白质中同种氨基酸质量分数 (mg·g−1);
EAAI=[(100×A/AE)×(100×B/BE)×(100×C/CE)×···×(100×G/GE)]×1/n。式中A, B, C, ···, G为样品中各必需氨基酸质量分数 [% (干物质基础)];AE, BE, CE, ···, GE为全鸡蛋蛋白质相对应的必需氨基酸质量分数 [% (干物质基础)];n为比较的必需氨基酸个数。
支链氨基酸与芳香族氨基酸的比值 (F)=w(缬氨酸+亮氨酸+异亮氨酸)(mg·g−1)/w(苯丙氨酸+酪氨酸) (mg·g−1)。
1.5 统计方法
试验数据采用SPSS 16.0和Microsoft Excel 2010软件分析处理,取平均值±标准差。数据采用单因子方差分析,再用Tukey's检验均值的显著性,P<0.05表示显著性差异。
2. 结果与分析
2.1 常规营养组成
肌肉是鱼体的主要营养部位和食用部位,其营养成分组成和含量通常作为鱼体肌肉的品质评价。本试验发现“跑道”养殖模式对梭鱼鱼肉基本营养组成的影响主要表现为粗脂肪含量下降和粗灰分含量增加 (P<0.05),但对鱼肉的水分和粗蛋白含量无明显影响 (P>0.05,表1)。有研究报道1龄和2龄的梭鱼肌肉中水分质量分数介于75.71%~77.18%、粗蛋白质量分数介于18.21%~18.96%、粗脂肪质量分数介于2.95%~4.32%[13],与本试验结果较为接近。根据鱼肉的含脂量高低,可分为多脂鱼 (脂肪质量分数≥10%) 和少脂鱼 (脂肪质量分数≤5%),研究认为梭鱼属于一种介于多脂鱼和少脂鱼之间的中脂鱼[14]。“跑道”梭鱼肌肉脂肪的降低可能与鱼类在流水槽中具有较大的运动量而加速鱼体的脂肪氧化代谢,抑制内脏脂肪蓄积,并加速体蛋白合成有关[8-9,15]。相比于传统池塘养殖,在“跑道”高密度养殖的环境,鱼类也需要消耗更多的能量进行空间与摄食等竞争,肌肉中原有糖原被大量消耗,致使蓄存的脂肪被分解用于供能,从而表现为体脂含量降低。本试验也得到相似结果,通过高密度 (为外塘模式密度的4倍)、微流水的“跑道”养殖后,梭鱼从传统的“中脂鱼”变成了“低脂鱼”。
表 1 2种模式养成的梭鱼肌肉基本营养成分对比 (湿质量)Table 1. Proximate composition of L. haematocheila muscle between usual-pond and in-pond raceway systems (wet mass)% 基本营养成分
Proximate composition土池养殖组
Usual-pond system“跑道”养殖组
In-pond raceway system水分 Moisture 74.46±0.78 75.11±2.46 粗蛋白 Crude protein 19.75±0.61 20.05±0.42 粗脂肪 Crude lipid 6.14±0.76a 4.27±0.69b 粗灰分 Crude ash 1.10±0.01b 1.22±0.07a 注:同行数据上标不同小写字母表示差异显著 (P<0.05),表2、表4、表5同此 Note: Values with different superscripts letters in the same row are significantly different (P<0.05). The same case in Table 2, Table 4 and Table 5. 2.2 氨基酸组成与评价
氨基酸组成与含量是评价鱼肉蛋白质质量的重要指标。本试验结果显示,在鱼肉必需氨基酸组成方面,“跑道”养殖组梭鱼肌肉中赖氨酸和缬氨酸含量均显著高于土池养殖组 (P<0.05),其他必需氨基酸的含量未受不同养殖模式的影响 (P>0.05,表2)。在梭鱼肌肉非必需氨基酸组成上,“跑道”养殖组中的天冬氨酸和甘氨酸含量均显著高于土池养殖组 (P<0.05),而脯氨酸含量则显著低于土池养殖组 (P<0.05),其他非必需氨基酸组成无显著性差异 (P>0.05)。
表 2 2种模式养成梭鱼的肌肉氨基酸组成和含量的对比分析 (湿质量)Table 2. Proximate composition and contents of amino acids of L. haematocheila muscle between usual-pond and in-pond raceway systems (wet mass)% 氨基酸
Amino acids土池养殖组
Usual-pond system“跑道”养殖组
In-pond raceway system赖氨酸 Lys 1.77±0.07b 2.15±0.17a 精氨酸 Arg 1.11±0.04 1.18±0.18 蛋氨酸 Met 0.35±0.05 0.41±0.05 组氨酸 His 0.51±0.02 0.54±0.06 亮氨酸 Leu 1.56±0.08 1.66±0.10 异亮氨酸 Ile 0.83±0.07 0.92±0.05 苯丙氨酸 Phe 0.90±0.03 0.94±0.06 苏氨酸 Thr 0.85±0.03 0.90±0.06 缬氨酸 Val 0.88±0.05b 1.04±0.07a 谷氨酸 Glu* 2.71±0.10 2.53±0.18 甘氨酸 Gly* 0.99±0.02b 1.26±0.08a 丙氨酸 Ala* 3.04±0.09 2.95±0.22 天冬氨酸 Asp* 1.91±0.07b 2.28±0.17a 丝氨酸 Ser 0.97±0.03 0.86±0.05 脯氨酸 Pro 0.80±0.01a 0.67±0.02b 酪氨酸 Tyr 0.64±0.03 0.69±0.03 胱氨酸 Cys 0.15±0.01 0.15±0.02 必需氨基酸总量 ∑EAA 8.01±0.40 8.85±0.57 非必需氨基酸总量 ∑NEAA 11.77±0.39 12.25±0.83 呈味氨基酸总量 ∑FAA 8.66±0.27 9.01±0.64 必需氨基酸总量/总氨基酸含量 ∑EAA/∑TAA 0.41±0.01 0.42±0.01 必需氨基酸总量/非必需氨基酸总量 ∑EAA/∑NEAA 0.68±0.01b 0.73±0.01a 呈味氨基酸总量/非必需氨基酸总量 ∑FAA/∑NEAA 0.44±0.01 0.43±0.01 注:*. 呈味氨基酸 Note: *. Flavor amino acid 本试验中2种模式下梭鱼的必需氨基酸总量/氨基酸总量分别为0.41和0.42,高于FAO/WHO的推荐标准 (35.38%);必需氨基酸总量/非必需氨基酸总量分别为0.68和0.73,同样高于FAO/WHO标准 (60%),说明梭鱼鱼肉是一种氨基酸组成较为平衡的优质蛋白质,可以满足人体对食物氨基酸的摄入需求。“跑道”养殖组的必需氨基酸总量/非必需氨基酸总量显著高于土池养殖组 (P<0.05),在“跑道”和池塘养成的黄颡鱼 (Pelteobagrus fulvidraco) 对比研究中也有相同发现[9]。但不同养殖模式对梭鱼肌肉的必需氨基酸总量、非必需氨基酸总量以及呈味氨基酸 (谷氨酸、甘氨酸、丙氨酸和天冬氨酸) 总量均未产生显著影响 (P>0.05)。
根据AAS和CS评分,土池养殖组和“跑道”养殖组的梭鱼第一限制性氨基酸均为蛋氨酸+胱氨酸,第二限制性氨基酸均为缬氨酸,该结果与已有对梭鱼的研究结果一致[16] (表3)。黄斑篮子鱼 (Siganus orami)[17]、澳洲金鲈 (Macquaria ambigua)[18]等海水鱼的第一限制性氨基酸也是蛋氨酸+胱氨酸,这为梭鱼的人工配合饲料研发提供了参考。2种模式下养成的梭鱼,除蛋氨酸+胱氨酸以外,其他必需氨基酸的CS评分均高于鸡蛋蛋白的评分标准;所有氨基酸的AAS评分也都高于FAO/WHO氨基酸的评分标准。EAAI作为评价蛋白质营养价值的常用指标之一,反映了必需氨基酸的平衡性,EAAI<70表示蛋白质营养不充足,EAAI约80表示蛋白质营养价值良好,EAAI>90则表示蛋白质营养价值高[19]。本试验中土池养殖组和“跑道”养殖组梭鱼肌肉EAAI分别为80.06和91.19,说明梭鱼的蛋白质营养价值较高,其氨基酸平衡性较好;也表明“跑道”模式能够优化梭鱼的鱼肉氨基酸组成,提高氨基酸平衡性。同时,两组EAAI指数的F值 (2.12和2.22) 相近,表明梭鱼在2种养殖模式下养殖的氨基酸营养整体上相近。
表 3 2种模式养成的梭鱼肌肉必需氨基酸与联合国粮食与农业组织/世界卫生组织和全鸡蛋蛋白标准模式的比较Table 3. Comparison of essential amino acids of L. haematocheila muscle with FAO/WHO and egg protein standard modes from different aquaculture systems必需氨基酸
EAAs土池养殖组 Usual-pond system “跑道”养殖组 In-pond raceway system 联合国粮食与
农业组织/
世界卫生组织
FAO/WHO鸡蛋
蛋白
Egg
proteinw (氨基酸)
Amino acid/(mg·g−1)氨基酸评分
AAS化学评分
CSw (氨基酸)
Amino acid/(mg·g−1)氨基酸评分
AAS化学评分
CS赖氨酸 Lys 89.62 162.95 128.03 107.23 194.96 153.19 55 70 蛋氨酸+胱氨酸 Met+Cys 25.32 72.34 44.42 27.93 79.80 49.00 35 57 苏氨酸 Thr 43.04 107.60 91.57 44.89 112.23 95.51 40 47 亮氨酸 Leu 78.99 112.84 91.85 82.79 118.27 96.27 70 86 异亮氨酸 Ile 42.03 105.08 77.83 45.89 114.73 84.98 40 54 苯丙氨酸+酪氨酸 Phe+Tyr 77.97 129.95 83.84 81.30 135.50 87.42 60 93 缬氨酸 Val 44.56 89.12 67.52 51.87 103.74 78.59 50 66 必需氨基酸指数 EAAI 80.06 91.19 支链氨基酸与芳香族氨基酸比值 F 2.12 2.22 2.3 脂肪酸组成
鱼类肌肉脂肪酸组成与变化受栖息习性、食性、适应性和生长习性等综合影响[20],而脂肪酸的含量又影响鱼肉的多汁性与风味[21]。本试验共测定出23种具有统计意义的脂肪酸 (表4),其中饱和脂肪酸 (SFA) 8种、单不饱和脂肪酸 (MUFA) 8种、多不饱和脂肪酸 (PUFA) 7种;两组间存在显著差异的脂肪酸有8种,表明养殖模式也会对梭鱼的脂肪酸产生影响。土池养殖的梭鱼肌肉SFA、MUFA和PUFA分别占脂肪酸总量的32.83%、40.91%和26.22%;“跑道”养殖的梭鱼肌肉中这3类脂肪酸含量分别为25.83%、39.83%和34.35% (表4)。“跑道”养殖组梭鱼肌肉的SFA总量显著低于土池养殖组 (P<0.05),而PUFA总量和总不饱和脂肪酸 (∑UFA) 含量均显著高于土池养殖组 (P<0.05);类似结果在黄颡鱼[9]、金带篮子鱼 (S. rivulatus)[22]及大口黑鲈 (Micropterus salmoides)[23]中也有报道。但本试验的两组鱼肉单不饱和脂肪酸总量 (∑MUFA) 不存在显著差异 (P>0.05)。
表 4 2种模式养成的梭鱼肌肉脂肪酸组成和含量对比分析 (湿质量)Table 4. Fatty acid composition and contents of L. haematocheila muscle between usual-pond and in-pond raceway systems (wet mass)% 脂肪酸
Fatty acids土池养殖组
Usual-pond system“跑道”养殖组
In-pond raceway system月桂酸 C12:0 0.09±0.01a 0.07±0.01b 肉豆蔻酸 C14:0 4.06±0.07a 2.64±0.25b 肉豆蔻油酸 C14:1 n-5 0.19±0.02 0.17±0.04 十五烷酸 C15:0 0.35±0.04 0.26±0.05 棕榈酸 C16:0 21.25±0.08 20.21±0.71 十六碳烯酸 C16:1 n-7 13.63±0.32 14.75±1.78 十七碳酸 C17:0 0.21±0.04 − 十七碳一烯酸 C17:1 n-7 0.30±0.02 − 硬脂酸 C18:0 2.29±0.04 2.50±0.28 反十八烷烯酸 C18:1 n-9t 0.08±0.03 0.11±0.01 油酸 C18:1 n-9c 25.06±0.45 24.32±1.25 亚油酸 C18:2 n-6c 21.21±0.50b 26.98±0.63a 花生酸 C20:0 0.17±0.02 0.16±0.02 亚麻酸甲酯 C18:3 n-6 0.09±0.05b 0.22±0.02a 花生四烯酸 C20:1 0.79±0.02a 0.48±0.05b 亚麻酸 C18:3 n-3 − 2.36±0.20 二十一烷酸 C21:0 4.42±0.12 − 二十碳二烯酸 C20:2 0.35±0.01b 0.38±0.05a 芥酸 C22:1 n-9 0.67±0.03 − 花生四烯酸 C20:4 n-6 1.03±0.11 0.84±0.28 二十碳五烯酸 (EPA) C20:5 n-3 2.20±0.18a 1.17±0.10b 二十四碳一烯酸甲酯 C24:1 n-9 0.20±0.02 − 二十二碳六烯酸 (DHA) C22:6 n-3 1.34±0.13b 2.39±0.49a 总饱和脂肪酸 ∑SFA 32.83±0.36a 25.83±0.58b 总不饱和脂肪酸 ∑UFA 67.17±0.36b 74.18±0.58a 单不饱和脂肪酸 ∑MUFA 40.91±0.56 39.83±1.14 多不饱和脂肪酸 ∑PUFA 26.22±0.57b 34.35±1.39a 二十二碳六烯酸+二十碳五烯酸 EPA+DHA 3.54±0.30 3.57±0.64 二十二碳六烯酸 (DHA) 和二十碳五烯酸 (EPA) 属于n-3长链高不饱和脂肪酸,是鱼类肌肉营养和鱼油价值评价的重要指标[24]。已有研究报道“跑道”模式养成的青鱼 (Mylopharyngodon piceus) 肌肉中DHA和EPA均显著高于传统池塘养成的试验鱼[8],推测循环流水槽养殖有助于青鱼的育肥,并具有促进鱼肉中DHA和EPA富集的可能性。本试验观察到2种模式养成的梭鱼的EPA和DHA含量虽存在显著差异 (P<0.05),但两者的总量并无统计学差异 (P>0.05)。
2.4 质构指标
全质构分析已被广泛应用于水产品的肉质评价,通过质构仪模拟食物咀嚼过程,把质地感官知觉与力学性能、几何特性相结合,以系统指标的数据来揭示人牙齿在咀嚼过程中时间和力的变化规律,从而客观评价鱼肉的品质特性[25]。本试验观察到“跑道”养殖模式中梭鱼的肌肉质构指标产生了明显变化,“跑道”模式组鱼肉的硬度、胶黏性、咀嚼性等指标均显著提高 (P<0.05),凝聚力、黏附性和回复性等指标也显著高于土池养殖组 (P<0.05, 表5)。其中硬度和咀嚼性与蛋白质含量呈显著正相关,与水分、脂肪呈负相关,影响鱼肉的机械强度。已有研究表明鱼类运动量的增加使得肌肉细胞间的结合力增强,肌纤维直径变得小而紧密,肌纤维密度增加,肌原纤维蛋白含量更高[26];流水环境下,高密度养殖梭鱼在“跑道”内泳动量大幅增加,推测是“跑道”组梭鱼肌肉硬度和胶黏性显著提升的原因之一。对“跑道”养成的大口黑鲈质构分析也发现相似的结果[27]。咀嚼性反映的是鱼肉从可咀嚼状态到可吞咽状态所需的能量,本试验观察到“跑道”梭鱼的该指标提升522%,是增幅最大的质构参数;咀嚼性数值越高,则口感上对应的“咬劲”越好,热处理后不易变烂,口感更好,更受消费者欢迎[27-28]。
表 5 2种模式养成的梭鱼肌肉质构参数对比Table 5. Muscle texture parameters of L. haematocheila muscle between usual-pond system and in-pond raceway aquaculture systems质构指标
Texture parameter土池养殖组
Usual-pond system“跑道”养殖组
In-pond raceway system硬度 Hardness 742.53±82.25b 1 508.14±100.89a 弹性 Springiness 0.31±0.05b 1.71±0.37a 凝聚力 Cohesiveness 0.29±0.07b 0.34±0.04a 胶黏性 Gumminess 213.26±55.26b 657.32±89.25a 咀嚼性 Chewiness 68.04±25.60b 355.81±80.93a 黏附性 Adhesiveness 1.47±0.05a 0.49±0.06b 回复性 Resilience 0.11±0.02b 0.29±0.10a 2.5 土腥味物质
有研究指出,养殖水产动物出现的土腥味物质并不是其自身产生的,而是因富营养化水体中的蓝藻和放线菌等微生物通过分解有机质,释放出大量的次生代谢产物 (主要为2-甲基异茨醇和土臭素),这些异味化合物被鱼体鳃、皮肤吸收,或随着摄食藻类进入鱼体内蓄积而成[29];养殖池塘的底质也会影响养殖水产品的土腥味蓄积[30]。有研究认为2-甲基异茨醇和土臭素在鱼肉中的嗅觉阈值分别为0.6和0.9 μg·kg−1[31]。本试验在土池养殖组的梭鱼肌肉中检测出了土臭素 (0.22 μg·kg−1),2-甲基异茨醇则未检出;而“跑道”养殖组的鱼肉中这2种物质均未检出。研究发现土塘养殖的罗非鱼 (Oreochromis mossambicus) 鱼肉中土臭素的含量最高,铺设地膜的养殖塘里的鱼肉中次之,在咸淡水鱼虾混养的水泥池塘中的鱼肉土腥味最低[12]。而对团头鲂 (Megalobrama amblycephala) 和鲫 (Carassius auratus) 的试验表明,通过调控水质和水流速度等方式,可以有效去除鱼肉土腥味[32]。本试验的“跑道”为混凝土砖结构,流水槽底部铺设了瓷砖,推测底质和水流速的差异是造成土池养殖梭鱼具有轻微土腥味的原因。
3. 结论
综上所述,与传统土池养殖模式相比,通过池塘循环水“跑道”模式养成的梭鱼具有鱼肉脂肪较低、氨基酸组成更均衡、不饱和脂肪酸总量较高等特点,并且鱼肉口感更加紧实、有弹性且无土腥味,整体上提升了梭鱼的营养品质,更符合市场和消费者对优质水产品的需求。本研究为通过改变养殖模式实现梭鱼养殖业优品优价发展提供了理论依据,也为“跑道”养殖模式的可持续健康发展提供了参考。
-
表 1 马氏珠母贝肉酶解产物及其超滤组分中蛋白质和小分子肽含量
Table 1 Content of protein and small molecule peptide in EP and its ultrafiltration components
$\overline {\mathit{\boldsymbol{X}}}{\bf \pm {{SD}}} $ 组别
Group蛋白质质量分数
Protein mass fraction/(g·kg−1)小分子肽质量分数
Small molecular peptide mass fraction/(g·kg−1)小分子肽占比
Proportion of small molecular peptides/%马氏珠母贝肉酶解产物组 EP group 616.65±50.15 451.14±15.39 73.38±4.11 EP-Ⅰ组 EP-Ⅰ group 575.67±36.22 91.91±17.89** 16.08±3.75** EP-Ⅱ组 EP-Ⅱ group 554.42±39.59 155.33±26.00** 28.13±5.09** EP-Ⅲ组 EP-Ⅲ group 490.29±24.35* 431.74±16.74 88.22±5.90** 注:与马氏珠母贝肉酶解产物组相比,*. P<0.05,**. P<0.01;表2同此 Note: Compared with the enzymatic hydrolysate of P. martensii; *. P < 0.05; **. P < 0.01. The same case in Table 2. 表 2 马氏珠母贝肉酶解产物及其超滤组分的氨基酸组成
Table 2 Amino acid composition of EP and its ultrafiltration components
g·kg−1 氨基酸种类
Amino acid species马氏珠母贝肉酶解产物
EP groupEP-Ⅰ组
EP-Ⅰ groupEP-Ⅱ组
EP-Ⅱ groupEP-Ⅲ组
EP-Ⅲ group天冬氨酸 Asp 49.10±0.35 31.80±0.41** 35.10±0.61** 46.10±0.61** 苏氨酸 Thr* 22.30±0.65 13.50±0.74** 21.10±0.45 19.10±0.66** 丝氨酸 Ser 18.10±0.28 11.20±0.31** 11.80±0.74** 10.40±0.54** 谷氨酸 Glu 55.20±0.71 58.90±0.11** 58.70±0.40** 72.20±0.34** 脯氨酸 Pro# 20.10±0.55 17.30±0.58 ** 17.90±0.27** 14.10±0.17** 甘氨酸 Gly# 35.30±0.82 29.00±0.34** 32.10±0.45** 36.00±0.45 丙氨酸 Ala# 30.00±0.41 26.20±0.62** 31.00±0.69 31.40±0.92 胱氨酸 Cys 0.70±0.04 0.50±0.07 0.60±0.16 1.50±0.10** 缬氨酸 Val*# 24.60±0.92 21.20±0.69* 25.20±0.24 24.70±0.75 蛋氨酸 Met* 11.60±0.54 12.80±0.20** 10.10±0.44** 10.00±0.45** 异亮氨酸 Ile*# 20.60±0.61 21.80±0.65 21.80±0.25 21.50±0.83 亮氨酸 Leu*# 31.10±0.44 28.50±0.74** 33.40±0.54** 36.50±0.38** 酪氨酸 Tyr 5.10±0.17 6.90±0.13** 9.10±0.18** 7.80±0.21** 苯丙氨酸 Phe*# 17.00±0.96 14.60±0.51** 18.90±0.17** 19.70±0.66** 赖氨酸 Lys* 37.40±0.83 23.20±0.45** 26.00±0.98** 32.60±0.88** 组氨酸 His 6.80±0.59 8.30±0.27* 8.90±0.25* 7.70±0.20 精氨酸 Arg 28.00±0.59 13.60±0.54** 20.10±0.88** 15.20±0.34** 氨基酸总和 Total amino acid, TAA 413.00±4.53 339.30±3.51 381.80±3.82 406.50±1.80 必需氨基酸 Essential amino acid, EAA 164.60±2.86 135.60±1.17 156.50±1.68 164.10±0.78 疏水性氨基酸 Hydrophobic amino acid, HAA 178.70±1.51 158.60±1.73 180.30±1.23 183.90±1.74 注:*. 必需氨基酸;#. 疏水性氨基酸 Note: *. Essential amino acid; #. Hydrophobic amino acid 表 3 马氏珠母贝肉酶解产物超滤组分的体外抗氧化能力
Table 3 Antioxidant capacity of EP ultrafiltration components in vitro
$\overline {\mathit{\boldsymbol{X}}}{\bf \pm {{SD}}} $ 组别
Group2,2-联氮-二(3-乙基-苯并噻唑-6-磺酸)
二铵盐自由基清除率
ABTS free radical scavenging activity/%2,2-联苯基-1-苦基肼基自由基清除率
DPPH free radical scavenging activity/%还原力A700 nm
Reducing power维生素C组 VC group 89.60±0.23 89.39±0.82 1.878±0.083 EP-Ⅰ组 EP-Ⅰ group 86.68±0.44** 84.54±1.47* 1.568±0.060** EP-Ⅱ组 EP-Ⅱ group 87.46±0.18** 85.13±2.57* 1.811±0.050 EP-Ⅲ组 EP-Ⅲ group 88.14±0.25** 86.34±1.21 1.811±0.046 注:与维生素C组相比,*. P < 0.05;**. P < 0.01 Note: Compared with VC group, *. P < 0.05; **. P < 0.01 表 4 马氏珠母贝肉酶解产物超滤组分对酒精性肝损伤小鼠体质量及其肝脏指数的影响
Table 4 Effects of EP ultrafiltration components on body mass and liver index of ALD mice
$\overline {\mathit{\boldsymbol{X}}}{\bf \pm {{SD}}} $ 组别
Group初次灌胃体质量
Body mass of primary gastric perfusion/g末次灌胃体质量
Body mass of last gastric perfusion/g肝脏指数
Liver index/(mg·g−1)空白对照组 Blank control group 23.63±1.05 25.31±0.71 3.55±0.21## 酒精模型组 Alcohol model group 24.37±0.83 26.35±0.87 4.40±0.26** 阳性对照组 Positive control group 23.35±1.40 25.40±1.29 3.97±0.37*# EP-Ⅰ组 EP-Ⅰ group 24.75±0.97 26.23±0.80 4.20±0.38** EP-Ⅱ组 EP-Ⅱ group 24.31±0.73 26.47±1.44 3.90±0.32## EP-Ⅲ组 EP-Ⅲ group 23.75±0.76 26.57±1.59 3.78±0.15## 注:与空白对照组相比,*. P<0.05,**. P<0.01;与酒精模型组相比,#. P<0.05,##. P<0.01;图2、图3、表5同此 Note: Compared with blank control group, *. P<0.05, **. P< 0.01; compared with alcohol model group, #. P < 0.05, ##. P<0.01. The same case in Figure 2–3 and Table 5. 表 5 马氏珠母贝肉酶解产物超滤组分对酒精性肝损伤小鼠肝脏中超氧化物歧化酶、谷胱甘肽、丙二醛和甘油三酯的影响
Table 5 Effects of EP ultrafiltration components on SOD, GSH, MDA and TG in liver of ALD mice
$\overline {\mathit{\boldsymbol{X}}}{\bf \pm {{SD}}} $ 组别
Group超氧化物歧化酶活力
SOD activity/(U·mg−1)谷胱甘肽
GSH/(nmol·mL−1)丙二醛
MDA/(nmol·mg−1)甘油三酯
TG/(nmol·mL−1)空白对照组 Blank control group 15.88±0.45## 2.64±0.27## 1.10±0.28## 0.02±0.01## 酒精模型组 Alcohol model group 14.75±0.40** 1.58±0.13** 1.90±0.60** 0.07±0.02** 阳性对照组 Positive control group 15.24±0.38 1.92±0.28** 1.19±0.24## 0.02±0.02## EP-Ⅰ组 EP-Ⅰ group 15.13±0.28** 2.07±0.29**## 1.44±0.28## 0.05±0.03** EP-Ⅱ组 EP-Ⅱ group 15.20±0.61** 2.14±0.38**## 1.22±0.35## 0.03±0.03## EP-Ⅲ组 EP-Ⅲ group 15.58±0.61## 2.25±0.45## 1.04±0.17## 0.03±0.01## -
[1] 章超桦, 吴红棉. 马氏珠母贝肉的营养成分及其游离氨基酸组成[J]. 水产学报, 2000, 24(2): 180-184. [2] 于志鹏, 武思佳, 赵文竹, 等. 海洋贝类蛋白源生物活性肽及肽组学的研究进展[J]. 食品工业科技, 2015, 36(22): 384-388. [3] 吴燕燕, 尚军, 李来好, 等. 合浦珠母贝肉短肽的分离及其抗氧化活性研究[J]. 食品工业科技, 2013, 33(7): 123-126. [4] 吴燕燕, 宫晓静, 李来好, 等. 风味蛋白酶水解合浦珠母贝肉制备抗菌肽人工神经网络法优化工艺[J]. 食品科学, 2011, 32(20): 63-68. [5] 章超桦, 刘亚, 杨萍, 等. 马氏珠母贝肉酶解蛋白抗疲劳功能的初步研究[J]. 中国海洋药物, 2006(4): 46-47. doi: 10.3969/j.issn.1002-3461.2006.04.011 [6] 曹文红, 吴红棉, 章超桦, 等. 马氏珠母贝肉酶解产物ACE抑制活性的研究[J]. 食品与发酵工业, 2008, 34(8): 60-64. [7] 韩丽娜, 秦小明, 林华娟, 等. 马氏珠母贝肉的醒酒作用机理初探[J]. 食品科技, 2010, 35(10): 180-183. [8] WU S, YANG C, XU N, et al. The protective effects of helix b surface peptide on experimental acute liver injury induced by carbon tetrachloride[J]. Digest Dis Sci, 2017, 62(6): 1537-1549. doi: 10.1007/s10620-017-4553-7
[9] MING C W, PEI L Z, CHANG X J, et al. Preliminary characterization, antioxidant activity in vitro and hepatoprotective effect on acute alcohol-induced liver injury in mice of polysaccharides from the peduncles of Hovenia dulcis[J]. Food Chem Toxicol, 2012, 50(9): 2964-2970. doi: 10.1016/j.fct.2012.06.034
[10] YAN S L, YANG H T, LEE H L, et al. Protective effects of maslinic acid against alcohol-induced acute liver injury in mice[J]. Food Chem Toxicol, 2014, 74(6): 1537-1549.
[11] BRANDON W E, SCHRUM L W, SCHMIDT C M, et al. Rodent models of alcoholic liver disease: of mice and men[J]. Alcohol, 2012, 46(8): 715-725. doi: 10.1016/j.alcohol.2012.08.004
[12] CRABB D W, GALLI A, FISCHER M, et al. Molecular mechanisms of alcoholic fatty liver: role of peroxisome proliferator-activated receptor alpha[J]. Alcohol, 2004, 34(1): 35-38. doi: 10.1016/j.alcohol.2004.07.005
[13] HETAL A K, SAMIR P. Management of alcoholic hepatitis: current concepts[J]. World J Hepatol, 2012, 4(12): 335-341. doi: 10.4254/wjh.v4.i12.335
[14] 胡滨, 李康林, 吴桥, 等. 猪血蛋白酶解物对小鼠急性酒精性肝损伤的保护作用[J]. 食品科学, 2018, 39(11): 185-190. doi: 10.7506/spkx1002-6630-201811029 [15] 刘鹏. 低分子量促乙醇代谢玉米肽制备与蛋白成分对活性贡献关系研究[D]. 广州: 华南理工大学, 2015: 17. [16] CAI X X, YAN A N, FU N Y, et al. In vitro antioxidant activities of enzymatic hydrolysate from Schizochytrium sp. and its hepatoprotective effects on acute alcohol-induced liver injury in vivo[J]. Mar Drugs, 2017, 15(4): 115-124. doi: 10.3390/md15040115
[17] UDENIGWE C C, ALUKO R E. Chemometric analysis of the amino acid requirements of antioxidant food protein hydrolysates[J]. Int J Mol Sci, 2011, 12(12): 3148-3161.
[18] 郭辉, 何慧, 韩樱, 等. 玉米肽对小鼠酒后肝脏乙醇脱氢酶活力的影响及醒酒机理[J]. 食品科学, 2011, 32(11): 265-269. [19] SARMADI B H, ISMAIL A. Antioxidative peptides from food proteins: a review[J]. Peptides, 2010, 31(10): 1949-1956.
[20] GIMÉNEZ B, ALEMÁN A, MONTERO P, et al. Antioxidant and functional properties of gelatin hydrolysates obtained from skin of sole and squid[J]. Food Chem, 2009, 114(3): 976-983. doi: 10.1016/j.foodchem.2008.10.050
[21] GUO C Y, JIANG T L, HUI H E, et al. Ultrafiltration preparation of potent bioactive corn peptide as alcohol metabolism stimulator in vivo and study on its mechanism of action[J]. J Food Biochem, 2013, 37(2): 161-167. doi: 10.1111/j.1745-4514.2011.00613.x
[22] 翟硕, 张海悦, 田田. 黑豆多肽的制备及其对乙醇脱氢酶活性的影响研究[J]. 食品安全质量检测学报, 2016, 7(12): 4864-4869. [23] 蒲月华, 邓旗, 杨萍, 等. 珍珠贝多肽体外抗氧化活性的研究[J]. 食品科技, 2016(11): 124-128. [24] 吴静, 胡晓, 杨贤庆, 等. 鸢乌贼酶解产物的抗氧化稳定性与功能特性[J]. 南方水产科学, 2016, 12(5): 105-111. doi: 10.3969/j.issn.2095-0780.2016.05.013 [25] 彭文锋, 钟政永. ADA与ALT、AST、GGT联合检测在肝脏疾病诊断中的意义[J]. 当代医学, 2011, 17(9): 4-6. doi: 10.3969/j.issn.1009-4393.2011.9.003 [26] 王佳佳, 赵莎莎, 杨最素, 等. 文蛤寡肽对小鼠急性肝损伤的保护作用[J]. 食品科学, 2017, 38(13): 190-195. doi: 10.7506/spkx1002-6630-201713031 [27] JE J Y, CHA J Y, CHO Y S, et al. Hepatoprotective effect of peptic hydrolysate from salmon pectoral fin protein byproducts on ethanol-induced oxidative stress in Sprague-Dawley rats[J]. Food Res Int, 2013, 51(2): 648-653. doi: 10.1016/j.foodres.2013.01.045
[28] 刘奇奇, 温久福, 区又君, 等. 急性操作胁迫对四指马鲅幼鱼肝脏组织结构和氧化应激的影响[J]. 南方水产科学, 2017, 13(5): 103-109. doi: 10.3969/j.issn.2095-0780.2017.05.014 [29] SCHEMITT E G, HARTMANN R M, COLARES J R, et al. Protective action of glutamine in rats with severe acute liver failure[J]. World J Hepatol, 2019, 11(3): 27-40.
[30] KOCH O R, PANI G, BORRELLO S, et al. Oxidative stress and antioxidant defenses in ethanol-induced cell injury[J]. Mol Aspects Med, 2004, 25(1/2): 191-198.
[31] LU J, LYU Y B, LI M T, et al. Alleviating acute alcoholic liver injury in mice with Bacillus subtilis co-expressing alcohol dehydrogenase and acetaldehyde dehydrogenase[J]. J Funct Foods, 2018, 49: 342-350. doi: 10.1016/j.jff.2018.09.006
[32] XIAO C Q, ZHOU F B, ZHAO M M, et al. Chicken breast muscle hydrolysates ameliorate acute alcohol-induced liver injury in mice through alcohol dehydrogenase (ADH) activation and oxidative stress reduction[J]. Food Funct, 2018, 9(2): 1-42.
-
期刊类型引用(6)
1. 李敏,胡高宇,滕爽爽,黄晓林,张翔,肖国强. 养殖与野生■营养成分和挥发性物质比较. 水产科学. 2024(01): 51-60 . 百度学术
2. 谢宇翔,郁二蒙,江林源,梁军能,黎一键,文露婷,李攀,敖秋桅. 陆基圆池模式下脆肉罗非鱼和普通罗非鱼生长性能、生理生化指标和肌肉质构比较分析. 饲料研究. 2024(23): 68-72 . 百度学术
3. 泮淼军,王明阳,王龙斌,王润泽,张海恩,李卫东,董双林,田相利. 海水池塘跑道养殖系统中鱼类肠道及养殖环境的细菌群落研究. 中国海洋大学学报(自然科学版). 2023(05): 47-60 . 百度学术
4. 刘雨婷,黄世玉,李榴佳,赵天章,李慧英,苏子峰,龙晓文. 池塘与稻田养殖鲤鱼生物学指数和肌肉营养价值的比较. 中国农学通报. 2022(04): 159-164 . 百度学术
5. 李敏,蔡景波,张翔,黄晓林,肖国强,滕爽爽. 2种养殖模式梭鱼肌肉营养组成及挥发性风味成分比较. 浙江海洋大学学报(自然科学版). 2022(02): 119-126+148 . 百度学术
6. 蒋起宏,陈刘浦,胡金春,叶霆,线婷,朱士臣,相兴伟,马文君,周凡. 传统池塘和“跑道”养殖黄金鲫的营养组成分析与评价. 水产科技情报. 2021(06): 327-334 . 百度学术
其他类型引用(3)