Research on catchable size and resource protection of Squaliobarbus curriculus in Xijiang River Fengkai section based on length-frequency data
-
摘要:
该研究于2014年在西江封开段进行了8个月的渔获物调查,采集了526尾赤眼鳟 (Squaliobarbus curriculus) 的体长、体质量等生物学信息,利用体长频率分布估算赤眼鳟生长、死亡参数,并分析渔业资源利用状况。结果显示,赤眼鳟体长-体质量的幂函数关系参数a=0.028 8,b=2.858 2。von Bertalanffy生长参数渐近体长Linf=74 cm,生长系数K=0.1,自然死亡系数M=0.19,总死亡系数Z=1.51,捕捞死亡系数F=1.32,开发率E=0.88。渔业资源量分析显示,2014年西江封开段赤眼鳟资源量为2 234 652尾、428.558 t。单位补充量渔获量 (Yield per recruit, YPR) 模型分析显示,当前赤眼鳟首次开捕体长为12.3 cm,F为1.32,YPR为1.89 g;当首次开捕体长调整为27.8 cm、F调整为0.45时,可获得YPR 7.76 g。当前赤眼鳟资源处于过度开发状态,建议将开捕体长设为27.8 cm,将捕捞强度降至0.45。
Abstract:We conducted an eight-month catch survey in 2014 and collected 526 individuals of Squaliobarbus curriculus. Based on their body length and mass, we estimated the biological stock characteristics (growth and mortality parameters) and assessed the stock size and status of S. curriculus. The length-mass relationship was fitted by a power function (a=0.028 8, b=2.858 2). The von Bertalanffy growth parameters were estimated: the asymptotic length Linf was 74 cm; the growth coefficient K was 0.1; the natural mortality coefficient M was 0.19; the total mortality coefficient Z was 1.51; the fishing mortality rate was as 1.32; the exploitation rate was 0.88. In 2014, the size of the stock in numbers and biomass were 2 234 652 individuals and 428.558 t, respectively. Results of the yield per recruit (YPR) modeling shows that the current length at first capture was 12.3 cm; the fishing mortality rate was 1.32; the current YPR was 1.89 g. When the length at first capture was 27.8 cm and the fishing mortality rate was 0.45, the YPR was 7.76. The current stocks of S. curriculus have been over-exploited. It is suggested that the length at first capture should be 27.8 cm, and the fishing mortality rate should be 0.45.
-
-
图 5 汤普森和贝尔模型的结果
a. 开捕体长=27.8 cm时,单位补充产量和生物量变化曲线,黑点表示当前捕捞压力下单位补充产量和生物量,黄色和红色虚线分别代表最大可持续产量 (Fmsy) 的F和原始生物量减少50%的F (F0.5);b. 不同捕捞强度和开捕体长对单位补充产量的影响,黑点代表着当前的捕捞状况,x轴表示F
Figure 5. Results of Thompson and Bell model
a. Curves of yield and biomass per recruit when the current length at first capture was 27.8 cm. The black dots represent yield and biomass per recruit under current fishing pressure. The yellow and red dashed lines represent fishing mortality for maximum sustainable yield (Fmsy) and fishing mortality associated with a 50 % reduction relative to the virgin biomass (F0.5); b. Exploration of impact of different exploitation rates and Lc values on the yield per recruit. The black dots represent the current fishing regime. The x-axis corresponds to the fishing mortality.
表 1 不同时期西江赤眼鳟生长参数比较
Table 1 Growth and mortality parameters of S. curriculus in different periods in Xijiang River
生长参数
Growth parameter年份 Year 1982[5] 2008[25] 2014
(本研究 This study)生长条件因子 (a) Growing conditions factor 1.080 9×10−2 0.90×10−2 2.88×10−2 幂指数系数 (b) Power factor 3.101 2 3.136 2.858 2 生长系数 (K) Growth coefficient 0.053 3 0.135 9 0.1 自然死亡系数 (M) Natural mortality coefficient 0.085 8 0.193 6 0.19 渐近体长 (Linf) Asymptotic length/cm 118.36 61.634 74 -
[1] 《中国河湖大典》编纂委员会. 中国河湖大典 珠江卷[M]: 北京: 中国水利水电出版社, 2013: 1-6. [2] 李捷, 李新辉, 贾晓平, 等. 西江鱼类群落多样性及其演变[J]. 中国水产科学, 2010, 17(2): 298-311. [3] 陈宜瑜. 中国动物志, 硬骨鱼纲, 鲤形目(中卷) [M]: 北京: 科学出版社, 1998: 104-106. [4] 谭细畅, 李跃飞, 王超, 等. 珠江江段赤眼鳟早期发育形态及其补充群体状况[J]. 华中农业大学学报, 2009, 28(5): 609-613. [5] 陆奎贤. 珠江水系渔业资源[M]. 广州: 广东科技出版社, 1990: 122-223. [6] 李捷, 李新辉, 谭细畅, 等. 广东肇庆西江珍稀鱼类省级自然保护区鱼类多样性[J]. 湖泊科学, 2009, 21(4): 556-562. [7] MILDENBERGER T K, TAYLOR M H, WOLFF M. TropFishR: an R package for fisheries analysis with length-frequency data[J]. Methods Ecol Evol, 2017, 8(11): 1520-1527. doi: 10.1111/2041-210X.12791
[8] COSTELLO C, OVANDO D, HILBORN R, et al. Status and solutions for the world's unassessed fisheries[J]. Science, 2012, 338(6106): 517-520. doi: 10.1126/science.1223389
[9] SKERN-MAURITZEN M, GEIR O, OLAV H N, et al. Ecosystem processes are rarely included in tactical fisheries management[J]. Fish Fish, 2016, 17(1): 165-175. doi: 10.1111/faf.12111
[10] 王雪辉, 邱永松, 杜飞雁. 南海北部金线鱼生长、死亡和最适开捕体长研究[J]. 中国海洋大学学报(自然科学版), 2004, 34(2): 224-230. [11] RICHARD K D, GAO C X, DAI X J, et al. Population dynamic parameters for Cyprinus carpio in Dianshan Lake[J]. Thalassas, 2018, 34: 279-288. doi: 10.1007/s41208-017-0062-x
[12] 耿平, 张魁, 陈作志, 等. 北部湾蓝圆鲹生物学特征及开发状态的年际变化[J]. 南方水产科学, 2018, 14(6): 1-9. [13] HERRÓN P, MILDENBERGER T K, DÍAZ J M, et al. Assessment of the stock status of small-scale and multi-gear fisheries resources in the tropical Eastern Pacific region[J]. Reg Stud Mar Sci, 2018, 24: 311-323. doi: 10.1016/j.rsma.2018.09.008
[14] DANIEL P. On the interrelationships between natural mortality, growth parameters, and mean environmental temperature in 175 fish stocks[J]. J Cons, 1980, 39(2): 175-192. doi: 10.1093/icesjms/39.2.175
[15] 王琨, 张崇良, 陈宁, 等. 基于Bootstrap的ELEFAN方法在评估方氏云鳚群体生长参数中的应用[J]. 中国水产科学, 2019, 26(3): 512-521. [16] 耿玉玲, 张崇良, 韩东燕, 等. 基于科学调查与渔业生产数据的山东近海口虾蛄生长参数估算[J]. 中国水产科学, 2019, 26(4): 756-764. [17] PAULY D. On improving operation and use of the elefan programs. Part 2, improving the estimation of L[J]. Fishbyte, 1986, 4(1): 18-20.
[18] TAYLOR M H, MILDENBERGER T K. Extending electronic length frequency analysis in R[J]. Fish Manag Ecol, 2017, 24(4): 330-338. doi: 10.1111/fme.12232
[19] THEN A Y, HOENIG J M, HALL N G, et al. Evaluating the predictive performance of empirical estimators of natural mortality rate using information on over 200 fish species[J]. ICES J Mar Sci, 2015, 72(1): 82-92. doi: 10.1093/icesjms/fsu136
[20] 詹秉义. 渔业资源评估[M]. 北京: 中国农业出版社, 1995: 121-166. [21] 刘群, 王艳君. 对渔业实际种群分析 (VPA) 中调谐方法的初步研究[J]. 南方水产, 2007, 3(1): 1-6. [22] 王迎宾, 刘群. 不同误差结构对运用股分析 (CA) 模型求算鱼类自然死亡率影响的初步研究[J]. 南方水产, 2006, 2(3): 7-15. [23] 高春霞, 麻秋云, 田思泉, 等. 浙江南部近海小黄鱼生长、死亡和单位补充量渔获量[J]. 中国水产科学, 2019, 26(5): 925-937. [24] XIANG Y, GUBIAN S, SUOMELA B, et al. Generalized simulated annealing for global optimization: the GenSA Package[J]. R J, 2013, 5(1): 13-29. doi: 10.32614/RJ-2013-002
[25] 朱书礼, 李新辉, 李跃飞,等. 西江广东肇庆段赤眼鳟的年龄鉴定及生长研究[J]. 南方水产科学, 2013, 9(2): 27-31. [26] NELSON G A. Fishmethods: fishery science methods and models in R[DB/OL].[2019-11-01]. https://CRAN.R-project.org/package=fishmethods.
[27] OGLE D, WHEELER P, DINNO A. FSA: simple fisheries stock assessment methods[DB/OL].[2019-11-01]. https://CRAN.R-project.org/package=FSA.
[28] KELL L T, MOSQUEIRA I, GROSJEAN P, et al. FLR: an open-source framework for the evaluation and development of management strategies[J]. ICES J Mar Sci, 2007, 64(4): 640-646. doi: 10.1093/icesjms/fsm012
[29] 吴斌, 方春林, 贺刚, 等. FiSAT II软件支持下的体长股分析法探讨[J]. 南方水产科学, 2013, 9(4): 94-98. [30] 张魁, 陈作志, 邱永松. 北部湾二长棘犁齿鲷生长、死亡和性成熟参数的年际变化[J]. 南方水产科学, 2016, 12(6): 9-16. [31] GAYANILO Jr F C, SPARRE P, PAULY D, et al. FAO-ICLARM stock assessment tools II (FiSAT II). Revised version. User's guide[Z]. FAO Computerized Information Series (Fisheries), 2005: 1-168.
[32] 陈新军. 渔业资源与渔场学[M]. 2版. 北京: 海洋出版社, 2014: 68-73. [33] 费鸿年, 张诗全. 水产资源学[M]. 北京: 中国科学技术出版社, 1990: 336-485. [34] BEVERTON R J H, HOLT S J. Chapter 10: a review of the lifespans and mortality rates of fish in nature and their relation to growth and other physiological characteristics[J]. Ciba Foundation Symposium-The Lifespan of Animals (Colloquia on Ageing), 2008, 1(5): 142-180.
[35] 珠江水系渔业资源调查编委会. 珠江水系渔业资源调查研究报告 第1分册 江河[R]. 1985: 21-441. [36] GRABOWSKI R, YONG C. Incorporating uncertainty into the estimation of the biological reference points F0.1 and Fmax for the maine green sea urchin (Strongylocentrotus droebachiensis) fishery[J]. Fish Res, 2004, 68(1): 367-371.
[37] 曹少鹏, 刘群. 把不确定性引入生物学参考点F0.1和Fmax的估计以评估东海带鱼渔业资源[J]. 南方水产, 2007, 3(2): 42-48. [38] 田辉伍, 岳兴建, 陈大庆, 等. 怒江东方墨头鱼资源量和死亡参数的估算[J]. 生态学杂志, 2012, 31(1): 235-240.