Status of shrimp peeling and pretreatment technology for facilitating peeling
-
摘要:
快速剥壳是虾深加工过程中的关键环节,也是制约虾类加工产业工业化发展的技术难题。文章探讨了虾体壳肉结合特点及虾类剥壳加工现状,并就传统预处理手段及高压处理、酶辅助、超声、微波高新前沿技术在虾壳快速剥离中的研究应用及可行性进行分析论述,展望未来虾类剥壳产业的发展趋势,为解决虾剥壳的瓶颈问题、提升虾机械加工产业的技术水平提供参考。
Abstract:Rapid peeling, a key technology in deep processing of shrimps, is also a harsh problem that has restricted the industrialization of shrimp processing industry. This paper reviews the status of shrimp peeling industry and the characteristics of tight connection in shell-meat, discusses the application and the potential utilization of traditional pre-treatment methods and novel high-tech as HP (High pressure), ultrasound, enzyme treatment and microwave in shrimps peeling. Furthermore, we propose the future trends of shrimp peeling industry, providesing references for solving the bottleneck problem of shrimp shelling and improving the technical level of shrimp processing industry.
-
Keywords:
- Shrimp /
- Peeling /
- Pretreatment /
- Shell-meat combination
-
杂交是指遗传组成不同的个体或群体间的交配,包括种内杂交和种间杂交[1-2]。杂交是鱼类育种中的常用方法之一,旨在获得成活率高、生长率快、抗病性强等优良养殖性状[3-5]。回交属于杂交方式的一种,通过轮回亲本的轮回效应,使得某些性状在杂交后代中得以加强,如生长快[6]、耐粗饲[7]、起捕率[8]等特性。而体型特征在鱼类回交中也被广泛关注,如闫学春等[9]利用传统测量方法表明回交鲫{[鲤 (Cyprinus carpio haematopterus)♀×鲫 (Carassius auratus gibelio)♂]×鲫♂}的体型特征偏向于鲫,而回交鲤[(鲤♀×鲫♂) ×鲤♂]更偏向于鲤;[白鲫 (Carassius cuvieri)♀×红鲫 (C. auratus red var.)♂]杂交F1♀与白鲫♂的回交子代具有与白鲫相似的较小头部和较高背的体型[10]。体斑特征在杂交子一代中也有所研究,如红妃七彩神仙鱼 (Symphysodon aequifasciatus Ruby red)♀与万宝路 七彩神仙鱼(S. aequifasciatus Marlboro)♂杂交F1表现出了亲本所没有的黑纱体斑和不明显的黑色纵条纹体斑[11];在石斑鱼中,如斜带石斑鱼 (Epinephelus coioides)♀×鞍带石斑鱼 (E. lanceolatus)♂杂交子代青龙斑的斜带体斑清晰连贯,棕点石斑鱼 (E. fuscoguttatus)♀×鞍带石斑鱼♂杂交子代虎龙斑出现了不同于亲本的大型环状体斑[12]。
鳜 (Siniperca chuatsi) 和斑鳜 (S. scherzeri) 是我国鳜鱼养殖的主要种类,鳜生长速度快,但易发生病害;斑鳜肉质鲜美、病害少,但生长速度慢[13-14]。目前,已采用杂交方式获得了新品种“秋浦杂交斑鳜” (斑鳜♀×鳜♂) 和“长珠杂交鳜” (鳜♀×斑鳜♂)[15-16]。鉴于杂交在鳜育种中取得了较明显的进展,在杂交鳜 (斑鳜♀×鳜♂) 基础上,继续开展了斑鳜 (♀)×杂交鳜 (♂) 回交试验。前期研究结果表明,该回交子代早期 (45日龄) 形态上偏向斑鳜,生长、日均摄食量和饵料系数偏杂交鳜[17]。
体型和体斑是鳜鱼杂交育种的重要性状[18]。杂交鳜生长性能明显优于斑鳜,但体型、体斑均介于斑鳜与鳜之间[19]。鱼类可量性状和框架分析能精确反映鱼体体型差异[20],主成分分析和判别分析是体型差异分析的主要方法[21-22]。本文利用多重比较和杂种指数比较了回交子代与亲本子代的体型特征,利用主成分分析和判别分析对回交子代与亲本子代进行主要形态学区分,并对回交子代体斑进行了初步统计分析,旨在为鳜鱼杂交育种与杂交后代鉴定提供基础资料。
1. 材料与方法
1.1 实验材料
实验材料为鳜鱼回交子代、斑鳜和杂交鳜,均取自安徽省池州市秋浦特种水产开发有限公司。“秋浦杂交斑鳜” (以下简称“杂交鳜”) 是由斑鳜♀×鳜♂杂交而得,回交子代由斑鳜♀×杂交鳜♂回交而得。3个群体均为同年8月龄鱼,平均体质量分别为回交子代166.75 g、斑鳜121.90 g、杂交鳜426.89 g,样本数量分别为回交子代92尾、斑鳜33尾、杂交鳜37尾。
1.2 形态参数测量和体斑观察
可数性状有背鳍条、胸鳍条、腹鳍条、臀鳍条。
可量性状[23]有头部隆角 (头后背前与鱼体长轴间夹角)、全长、体长、体高、体宽、头长、头高、吻长、眼径、尾柄长、尾柄高。使用游标卡尺测量,精确度为0.01 mm。
框架结构性状[24]包括A (1-2)、B (1-11)、C (2-3)、D (2-10)、E (2-11)、F (3-4)、G (3-9)、H (3-10)、I (3-11)、J (4-5)、K (4-8)、L (4-9)、M (4-10)、N (5-6)、O (5-7)、P (5-8)、Q (5-9)、R (6-7)、S (6-8)、T (7-8)、U (8-9)、V (9-10)、W (10-11,图1)。使用游标卡尺测量,精确度为0.01 mm。
图 1 鳜鱼框架结构性状示意图1. 吻前端;2. 隅骨后端;3. 腹鳍起点;4. 臀鳍起点;5. 臀鳍末端;6. 尾鳍腹部起点;7. 尾鳍背部起点;8. 背鳍末端;9. 背鳍棘末端;10. 背鳍起点;11. 后背部末端Figure 1. Diagram of frame structure of mandarin fish1. Anterior extremity of snout; 2. Posterior part of angulare; 3. Start of ventral fin; 4. Start of anal fin; 5. End of anal fin; 6. Abdomen start of caudal fin; 7. Back start of caudal fin; 8. End of dorsal fin; 9. End of spinous dorsal; 10. Start of dorsal fin; 11. End of back体斑观察为观察回交子代背部鞍状斑和体侧斑纹形状,统计不同体斑组合。
1.3 数据处理
1.3.1 多重比较
除头部隆角外,将可量性状转化为比例性状 (体高/体长、头高/头长、吻长/头长、眼径/头长、体宽/体长、头长/体长、尾柄长/体长、尾柄高/体高),框架结构性状除以体长进行校正[25]。使用IBM SPSS Satastics 24.0软件进行数据处理分析。
1.3.2 杂种指数
利用多重比较分析后得到的差异性状,按照如下公式计算杂种指数,再计算所有性状的平均杂种指数HI (Hybrid index)[26]:
HI=100×(Hi–Mi1)/(Mi2–Mi1)
式中Hi为杂交种平均值;Mi1为母本平均值;Mi2为父本平均值,45<HI<55属中间性状,HI<45为偏母本性状,HI>55为偏父本性状,HI>100或HI<0为超亲偏离性状。
1.3.3 主成分分析和判别分析
通过建立相关系数矩阵,获得主成分的特征值和贡献率,根据因子得分,绘制主成分散点图;通过筛选出的形态性状,拟合出3个群体的典型判别函数和分类判别函数[27]。
2. 结果
2.1 多重比较分析
对3个群体的4项可数性状、9项常规可量比例性状和23项框架比例性状进行单因素方差分析,得到群体间的差异结果。结果显示:1) 可数性状。回交子代鳍条数目与斑鳜、杂交鳜间无显著差异 (表1)。2) 常规可量性状。除眼径/头长外,回交子代与斑鳜、杂交鳜的其他常规可量比例性状都有显著性差异 (表2)。其中回交子代与亲本子代群体间在头部隆角、吻长/头长、尾柄高/体高上都存在显著性差异 (P<0.05);回交子代在头高/头长上与斑鳜间差异明显 (P<0.05),与杂交鳜间无显著差异 (P>0.05);回交子代在体高/体长、尾柄长/体长、体宽/体长与杂交鳜间差异显著 (P<0.05),与斑鳜间无显著差异 (P>0.05)。3) 框架比例性状中,回交子代和斑鳜、杂交鳜间均有明显差异的参数有C/体长、J/体长、V/体长 (P<0.05);回交子代的G/体长、H/体长、I/体长、K/体长、L/体长、M/体长、Q/体长与杂交鳜间差异明显 (P<0.05),与斑鳜间无显著差异 (P>0.05);回交子代的B/体长与斑鳜间有显著差异 (P<0.05),与杂交鳜间无明显差异 (P>0.05,表2)。
表 1 鳜回交子代与其亲本子代可数性状比较Table 1. Comparison of countable traits between backcross progenies and their parents性状
Trait回交子代
Backcross斑鳜
S. scherzeri杂交鳜
Hybrid背鳍 Dorsal fin XI-XIII,13~15 XI-XII,12~14 X-XII,13~15 胸鳍 Pectoral fin 1,12~15 1,12~15 1,12~15 腹鳍 Ventral fin I,5 I,5 I,5 臀鳍 Anal fin III,9~11 III,9~10 III,9~11 表 2 鳜回交子代与其亲本子代可量性状差异分析Table 2. Different analysis of quantitative traits between backcross progenies and their parents性状
Trait回交子代
Backcross斑鳜
S. scherzeri杂交鳜
Hybrid头部隆角 AH 27.90±2.250b 25.36±1.140c 29.37±1.100a 吻长/头长 LS/LH 0.288±0.037a 0.348±0.037b 0.237±0.029c 头长/体长 LH/LB 0.354±0.022ab 0.350±0.015b 0.364±0.021bc 头高/头长 HH/LH 0.653±0.057a 0.557±0.020b 0.665±0.108a 体高/体长 HB/LB 0.298±0.026b 0.283±0.013b 0.326±0.021a 体宽/体长 HB/LB 0.148±0.014a 0.152±0.014a 0.140±0.017b 尾柄长/体长 LCP/LB 0.149±0.020a 0.160±0.009a 0.136±0.022b 尾柄高/体高 HCP/HB 0.347±0.036a 0.372±0.027b 0.346±0.034b B (1-11)/体长 B/LB 0.276±0.010a 0.252±0.023b 0.269±0.010a C (2-3)/体长 C/LB 0.211±0.014a 0.157±0.014b 0.168±0.013b D (2-10)/体长 D/LB 0.307±0.013ab 0.286±0.024b 0.320±0.027a E (2-11)/体长 E/LB 0.222±0.008ab 0.213±0.020b 0.238±0.020a G (3-9)/体长 G/LB 0.403±0.019b 0.397±0.029b 0.441±0.024a H (3-10)/体长 H/LB 0.280±0.014b 0.270±0.025b 0.311±0.032a I (3-11)/体长 I/LB 0.269±0.014b 0.264±0.017b 0.291±0.024a J (4-5)/体长 J/LB 0.171±0.006a 0.154±0.020b 0.152±0.008b K (4-8)/体长 K/LB 0.252±0.011b 0.247±0.018b 0.275±0.011a L (4-9)/体长 L/LB 0.268±0.015b 0.259±0.019b 0.301±0.024a M (4-10)/体长 M/LB 0.404±0.022b 0.424±0.029b 0.464±0.025a Q (5-9)/体长 Q/LB 0.234±0.013b 0.238±0.014b 0.260±0.011a V (9-10)/体长 V/LB 0.375±0.021a 0.337±0.033b 0.345±0.014b 注:同行数据不同上标字母表示差异显著 (P<0.05) Note: Different superscript letters indicate significant difference (P<0.05). 2.2 回交子代的杂种指数
8项常规可量比例性状中,头部隆角值、体高/体长、头高/头长、头长/体长4项的HI<45,为偏母性状;体宽/体长、尾柄长/体长2项的HI>55,为偏父性状;吻长/头长1项45<HI<55,为中间性状;尾柄高/体高1项的HI>100,为超亲偏离性状。13项框架比例性状中,有H/体长、I/体长、K/体长、L/体长、M/体长、Q/体长6项的HI<55,为偏母性状;G/体长、B/体长2项HI>55,为偏父性状;C/体长、J/体长、V/体长3项45<HI<55,为中间性状;D/体长、E/体长2项的HI>100,为超亲偏离性状。综合杂种指数平均值为38.73。
2.3 主成分分析
将多重比较所得数据进行Pearson相关性分析,最终获得12个参数进行主成分分析和判别函数分析,分别为头部隆角 (X1)、体高/体长 (X2)、头高/头长 (X3)、吻长/头长 (X4) 体宽/体长 (X5)、头长/体长 (X6)、尾柄长/体长 (X7)、尾柄高/体高 (X8)、B/体长 (X9)C/体长 (X10)、J/体长 (X11)、V/体长 (X12)。主成分分析结果显示,前4项主成分的特征值大于1.0,累计贡献率达75.216% (表3)。
表 3 主成分总方差变异率分析Table 3. Analysis of variation rate of total variance of principal components成分
Component初始特征值 Initial eigenvalue 提取载荷平方和 Extraction load sum of squares 总计
Total方差百分比
Variance percentage/%累积
Cumulation/%总计
Total方差百分比
Variance percentage/%累积
Cumulation/%1 3.654 30.452 30.452 3.654 30.452 30.452 2 2.431 20.258 50.710 2.431 20.258 50.710 3 1.734 14.450 65.160 1.734 14.450 65.160 4 1.207 10.057 75.216 1.207 10.057 75.216 5 0.753 6.278 81.494 6 0.657 5.479 86.973 7 0.499 4.161 91.133 8 0.426 3.551 94.684 9 0.261 2.174 96.858 10 0.180 1.504 98.362 11 0.137 1.141 99.503 12 0.060 0.497 100.000 第一主成分主要解释头部隆角、体高/体长、头高/头长、尾柄高/体高、C/体长、V/体长6个性状的贡献率,主要反映头部隆角及高度、体背高低、尾柄高度等造成的形态差异;第二主成分主要解释吻长/头长、J/体长2个性状的贡献率,主要反映吻部长短和臀鳍起末间距造成的形态差异;第三主成分、第四主成分主要解释头长/体长、B/体长2个性状的贡献率,主要反映头部大小和吻部至头后背部间距造成的形态差异。
根据前3个主成分绘制出3个群体的三维空间分布图 (图2),可以将3个群体进行有效区分。
2.4 判别分析
通过逐步判别分析,筛选出具有极显著差异的8个生物学性状:头部隆角 (X1)、体高/体长 (X2)、头高/头长 (X3)、吻长/头长 (X4)、体宽/体长 (X5)、B/体长 (X9)、C/体长 (X10)、J/体长 (X11)。进而拟合出两个典型判别函数:
F1=0.151X1+0.216X2+0.355X3−0.323X4−0.330X5−0.377X9+0.751X10+0.391X11
F2=−0.399X1−0.533X2−0.241X3+0.732X4+0.441X5−0.525X9+0.166X10+0.364X11
两个判别函数的贡献率分别为55.3%和44.7%,将3个群体的8个性状带入典型判别函数中,绘制出二维平面上的分布图 (图3)。
同时,依据极显著差异的8个生物学性状,拟合出3个群体的分类判别函数:
回交群体:Y1=8.135X1+265.921X2+95.556X3+24.429X4+330.025X5+1 332.942X9+918.925X10+940.928X11
斑鳜群体:Y2=7.366X1+178.379X2+61.131X3+106.673X4+506.013X5+1 443.162X9+620.952X10+769.083X11
杂交鳜群体:Y3=8.792X1+335.719X2+94.744X3−35.487X4+269.032X5+1 615.562X9+694.262X10+654.415X11
用上述公式对现有群体的测量性状变量进行回代分析,比较计算出以上函数值及判别准确率,判别准确率平均为99.4%。
2.5 回交子代体斑特征
回交子代躯干有4类体斑:背部鞍状斑、体侧空心斑、地图斑、点状斑。回交子代全部个体都具有点状斑和地图斑,部分个体具有背部鞍状斑和体侧空心斑。与回交亲本斑鳜相比,总样本中,有41尾出现背部鞍状斑,但空心斑分布有差异,其中有空心斑个体30尾 (图4-a)、无空心斑个体11尾 (图4-b);其余51尾不具明显背部鞍状斑,其中有空心斑个体37尾 (图4-c)、无空心斑个体14尾 (图4-d)。
3. 讨论
3.1 回交子代体型特征
传统的形态学分析结合框架结构能更有效的反映形态差异,可为种质鉴定、物种分类及遗传变异提供大量的性状数据[28-29]。本研究中21项可量性状比值显著性差异分析结果显示,回交子代与斑鳜存在显著性差异的有8项 (P<0.05),与杂交鳜存在显著性差异的有13项 (P<0.05)。杂种指数可以对后代性状变异与亲本性状进行评价[30],回交子代偏母性状有10项,偏父性状为4项,中间性状有4项,超亲偏离性状为3项,平均杂种指数为38.73,综合表现为偏斑鳜。结合多重比较分析和杂种指数分析结果,表明回交子代在可量形态性状上偏斑鳜。
在一代杂交中,斑鳜 (♀)×鳜 (♂) 杂交子代与母本的显著性差异可量性状比值多于父本,聚类分析中杂交子代与父本鳜聚为一支[19];反交子代 (鳜♀×斑鳜♂) 可量性状比值的杂种指数显示出反交子代偏向母本鳜的趋势[18],正、反杂交子一代的体型特征均偏向鳜。本研究中,正杂交子代与斑鳜回交,回交子代体型特征偏斑鳜。这可能是由于斑鳜既作为轮回亲本,又作为杂交母本的缘故,回交子代中除了斑鳜遗传物质组成比例增加、产生轮回效应外,一定程度上也受母系效应影响[31-33]。轮回亲本效应可使得回交子代偏轮回亲本,如[团头鲂 (Megalobrama amblycephala)♀×翘嘴红鲌 (Culter alburnus)♂]♀×翘嘴红鲌♂回交子代的体高/体长值 (体型) 偏向于轮回亲本翘嘴红鲌[6],回交鲤和回交鲫的轮回亲本分别为鲫和鲤,两者在体型、体色、口须有无、口径大小等偏轮回亲本[9]。鳜鱼育种中,若要实现后代性状更接近于轮回亲本,可考虑进行二次回交。
本研究中对回交子代和亲本子代的12个参数进行主成分分析,发现头部隆角、体高/体长、头高/头长、尾柄高/体高、C/体长、V/体长6个性状对3个群体体型差异的贡献较大,前3个主成分的总方差积累贡献率达65.16%,能够明显区分3个群体。逐步判别分析筛选出的8个性状:头部隆角、体高/体长、头高/头长、吻长/头长、体宽/体长、B/体长、C/体长、J/体长,判别准确率为99.4%,说明头部隆角、体高/体长、头高/头长、C/体长是3个群体形态差异的关键性状。由此可见,回交子代与亲本子代可以通过头部隆角、体高/体长、头高/头长、C/体长等关键性状进行数值鉴定。
3.2 回交子代体斑特征
前人研究发现斑鳜体侧有明显、排列较规则的点状斑块和空心状斑块,背部有4块鞍状斑[19];杂交鳜头部至眼后无斜带,背鳍下方有黑色纵带,但不明显,体侧有空心斑,但不规则,介于鳜和斑鳜之间[18]。本研究中回交子代群体中有45.5%的个体表现出与斑鳜类似的背部鞍状斑,同时具有体侧空心斑、地图斑、点状斑3种斑纹,根据不同斑纹类型组合,回交子代体斑可分为4类:有背部鞍状斑有空心斑、有背部鞍状斑无空心斑、无背部鞍状斑有空心斑、无背部鞍状斑无空心斑。杂交鳜中来源于父本鳜的体斑特征呈弱化趋势,体现在头部至眼后的斜带消失,背鳍下方黑色纵带变淡,同时,来源于斑鳜的体斑特征呈增强趋势,体现在体侧出现了母本斑鳜的空心斑和点状斑,但无背部鞍状斑,杂交鳜的体斑特征介于双亲之间[34];回交子代中,躯干纵带完全消失,空心斑和点状斑继续保留,且出现背部鞍状斑,即体斑也表现有明显的轮回亲本效应。本研究中有1/3的回交子代同时出现背部鞍状斑和空心斑,与轮回亲本斑鳜更为相似。就体斑回交效应而言,可继续选择具有背部鞍状斑和规则空心斑的子代进行自交或与斑鳜再次回交,以期培育出特定体斑的新品系。
综上所述,回交子代体型特征偏向轮回亲本斑鳜,利用形态多元分析方法对回交子代和亲本子代进行形态鉴定,回交后代部分个体体斑与斑鳜相似,出现背部鞍状斑和规则空心斑,以上结果可为今后鳜鱼杂交育种和子代种质鉴定提供依据和参考。
-
图 1 Laitram Machinery A型自动虾剥壳机[11]
Figure 1. A-type automatic sheller from Laitram Machinery
-
[1] 刘书成, 郭明慧, 黄万有, 等. 超高压技术在虾类保鲜与加工中的应用[J]. 食品工业科技, 2015, 36(9): 376-383, 390. [2] MAO X, GUO N, SUN J, et al. Comprehensive utilization of shrimp waste based on biotechnological methods: a review[J]. J Clean Prod, 2017, 143: 814-823. doi: 10.1016/j.jclepro.2016.12.042
[3] DANG T T, GRINGER N, JESSEN F, et al. Enzyme-assisted peeling of cold water shrimps (Pandalus borealis)[J]. Innov Food Sci Emerg, 2018, 47: 127-135. doi: 10.1016/j.ifset.2018.02.006
[4] DANG T T, GRINGER N, JESSEN F, et al. Emerging and potential technologies for facilitating shrimp peeling: a review[J]. Innov Food Sci Emerg, 2018, 45: 228-240. doi: 10.1016/j.ifset.2017.10.017
[5] JABBOUR T, HOGNASON G. Method for shucking lobster, crab or shrimp: US7871314 B2[P]. 2011-02-18.
[6] 李旭光, 周刚, 谷孝鸿. 水生甲壳类蜕皮发生过程及其影响因素的研究与进展[J]. 动物学杂志, 2014, 49(2): 294-302. [7] 卢徐斌, 姜群, 闵悦, 等. 罗氏沼虾蜕皮周期的划分及蜕皮频率对生长的影响[J]. 淡水渔业, 2018, 48(6): 88-93. doi: 10.3969/j.issn.1000-6907.2018.06.014 [8] 朱小明, 李少菁. 甲壳动物幼体蜕皮的调控[J]. 水产学报, 2001, 25(4): 379-384. [9] 周凯敏, 江世贵, 黄建华, 等. 斑节对虾Chitinase-2基因的克隆及其在蜕皮和幼体发育过程中的表达分析[J]. 南方水产科学, 2017, 13(4): 59-68. doi: 10.3969/j.issn.2095-0780.2017.04.008 [10] 赵玉达, 张秀花, 王泽河, 等. 对虾机械式剥壳技术的探讨与研究[J]. 农机化研究, 2014, 36(7): 42-45. doi: 10.3969/j.issn.1003-188X.2014.07.010 [11] LAPEYRE J, LAPEYRE R, PROFUMO F, et al. The Lapeyre automatic shrimp peeling machine, model ‘A’, No. 572, 1979[Z]. Biloxi, Mississippi: American Society of Mechanical Engineers, 2004.
[12] 欧阳杰, 沈建, 郑晓伟, 等. 水产品加工装备研究应用现状与发展趋势[J]. 渔业现代化, 2017, 44(5): 73-78. doi: 10.3969/j.issn.1007-9580.2017.05.014 [13] BETTS E D. Shrimp peelssing machine and method: US4769871[P]. 1988-09-13.
[14] MICHAEL D, JON T K. Shrimp processing machine: US7867067B2[P]. 2011-01-11.
[15] 张秀花, 赵玉达, 王泽河, 等. 对虾剥壳机的设计[J]. 大连海洋大学学报, 2014, 29(2): 198-200. [16] 张泽明, 王泽河, 张秀花, 等. 一种连续式对虾剥壳装置的设计与试验研究[J]. 食品与机械, 2015, 31(3): 115-118. [17] 张秀花, 赵庆龙, 王泽河, 等. 可调五辊式对虾剥壳机剥壳参数优化试验[J]. 农业工程学报, 2016, 32(15): 247-254. doi: 10.11975/j.issn.1002-6819.2016.15.034 [18] 张秀花, 赵庆龙, 赵玉达, 等. 对虾对辊挤压式剥壳工艺参数及预处理条件优化[J]. 农业工程学报, 2014, 30(14): 308-314. doi: 10.3969/j.issn.1002-6819.2014.14.038 [19] 金金, 徐鹏云, 袁兴茂, 等. 对虾剥壳设备的设计与研究[J]. 农机化研究, 2014, 36(9): 134-137. doi: 10.3969/j.issn.1003-188X.2014.09.029 [20] 郑晓伟, 沈建. 南极磷虾捕捞初期适宜挤压脱壳工艺参数[J]. 农业工程学报, 2016, 32(2): 252-257. doi: 10.11975/j.issn.1002-6819.2016.02.036 [21] 郑晓伟, 沈建, 蔡淑君, 等. 南极磷虾等径滚轴挤压剥壳工艺优化[J]. 农业工程学报, 2013, 29(S1): 286-293. [22] 郑晓伟, 张军文, 周春生. 船舶摇摆和工艺参数对南极磷虾挤压脱壳效果的影响[J]. 农业工程学报, 2018, 34(1): 273-278. [23] 张军文, 郑晓伟, 欧阳杰, 等. 南极磷虾脱壳机工艺参数的试验研究[J]. 渔业现代化, 2018, 45(5): 57-62. doi: 10.3969/j.issn.1007-9580.2018.05.010 [24] 谌志新, 王志勇, 欧阳. 我国南极磷虾捕捞与加工装备科技发展研究[J]. 中国工程科学, 2019, 21(6): 48-52. [25] 李高尚, 陈燕婷, 宣仕芬, 等. 不同处理方式对虾蛄脱壳效率及肌肉品质的影响[J]. 核农学报, 2019, 33(8): 1551-1558. doi: 10.11869/j.issn.100-8551.2019.08.1551 [26] 甘晓玲, 和劲松, 朱瑞, 等. 热处理对凡纳滨对虾虾仁加工品质的影响[J]. 食品科学, 2012, 33(19): 29-34. [27] 刘书成, 张良, 吉宏武, 等. 高密度CO2与热处理对凡纳滨对虾肉品质的影响[J]. 水产学报, 2013, 37(10): 1542-1550. [28] 傅新鑫. 南美白对虾热加工特性及其预制产品保鲜的研究[D]. 大连: 大连工业大学, 2017:32-33. [29] XU N, SHI W, WANG X, et al. Effect of ice water pretreatment on the quality of Pacific white shrimps (Litopenaeus vannamei)[J]. Food Sci Nutr, 2019, 7(2): 645-655. doi: 10.1002/fsn3.901
[30] 汪兰, 何建军, 贾喜午, 等. 超高压处理对小龙虾脱壳及虾仁性质影响的研究[J]. 食品工业科技, 2016, 37(14): 138-141, 147. [31] 林婉玲, 杨贤庆, 侯彩玲, 等. 浸渍冻结对凡纳滨对虾冻藏过程中品质的影响[J]. 食品科学, 2014, 35(10): 223-229. doi: 10.7506/spkx1002-6630-201410042 [32] 贾莹, 胡志和, 王秀玲, 等. 超高压对虾蛄脱壳及加工性能的影响[J]. 食品科学, 2015, 36(23): 47-52. doi: 10.7506/spkx1002-6630-201523010 [33] 邹明辉, 李来好, 郝淑贤, 等. 凡纳滨对虾虾仁在冻藏过程中品质变化研究[J]. 南方水产, 2010, 6(4): 37-42. [34] PAN C, CHEN S, HAO S, et al. Effect of low-temperature preservation on quality changes in Pacific white shrimp, Litopenaeus vannamei: a review[J]. J Sci Food Agric, 2019, 99(14): 6121-6128. doi: 10.1002/jsfa.9905
[35] 刘金昉, 刘红英, 王慧青, 等. 低温盐水预处理对南美白对虾剥壳的影响研究[J]. 核农学报, 2014, 28(2): 252-258. doi: 10.11869/j.issn.100-8551.2014.02.0252 [36] 刘金昉, 申亮, 刘红英, 等. 冰盐预处理对南美白对虾剥壳的影响研究[J]. 食品工业科技, 2013, 34(22): 111-115. [37] KUNZ P. Method of chemical peeling of fruits and vegetables with an alknolamine: US3970762 A[P]. 1976-07-20.
[38] HSU K C, HWANG J S, CHI H Y, et al. Effect of different high pressure treatments on shucking, biochemical, physical and sensory characteristics of oysters to elaborate a traditional Taiwanese oyster omelette[J]. J Sci Food Agric, 2010, 90(3): 530-535.
[39] 李学鹏, 周凯, 王祺, 等. 牡蛎超高压脱壳效果的研究[J]. 食品工业科技, 2014, 35(15): 210-214. [40] SHAO Y, XIONG G, LING J, et al. Effect of ultra-high pressure treatment on shucking and meat properties of red swamp crayfish (Procambarus clarkia)[J]. LWT, 2018, 87: 234-240. doi: 10.1016/j.lwt.2017.07.062
[41] YI J J, XU Q, HU X S, et al. Shucking of bay scallop (Argopecten irradians) using high hydrostatic pressure and its effect on microbiological and physical quality of adductor muscle[J]. Inno Food Sci Emerg, 2013, 18: 57-64. doi: 10.1016/j.ifset.2013.02.010
[42] 巩雪, 常江. 超高压技术在贝类脱壳加工中的应用[J]. 食品工业科技, 2016, 37(15): 394-396. [43] 易俊洁, 董鹏, 丁国微, 等. 鲍鱼超高压脱壳工艺的优化及品质研究[J]. 高压物理学报, 2014, 28(2): 239-246. doi: 10.11858/gywlxb.2014.02.017 [44] BINDU J, GINSON J, KAMALAKANTH C K, et al. High pressure treatment of green mussel Perna viridis Linnaeus, 1758: effect on shucking and quality changes in meat during chill storage[J]. Ind J Fish, 2015, 62(2): 72-76.
[45] 李明月, 杜钰, 姚晓玲, 等. 超高压处理对蛋白质功能特性的影响[J]. 食品科技, 2018, 43(1): 50-54. [46] 周一鸣, 刘倩, 周小理, 等. 超高压对食品蛋白质结构性质影响的研究进展[J]. 食品工业, 2018, 39(7): 285-288. [47] 杨徽. 基于超高压技术的虾脱壳工艺与品质检测研究[D]. 杭州: 浙江大学, 2011: 35. [48] 陈少华, 胡志和, 吴子健, 等. 超高压技术对南美白对虾脱壳及加工性能的影响[J]. 食品科学, 2014, 35(22): 11-16. doi: 10.7506/spkx1002-6630-201422003 [49] 易俊洁, 丁国微, 胡小松, 等. 南美白对虾脱壳工艺比较及其对虾仁品质的影响[J]. 农业工程学报, 2012, 28(17): 287-292. doi: 10.3969/j.issn.1002-6819.2012.17.042 [50] 崔燕, 林旭东, 康孟利, 等. 超高压协同冷冻脱壳对南美白对虾品质的影响[J]. 现代食品科技, 2018, 34(10): 171-178. [51] 崔燕, 宣晓婷, 林旭东, 等. 超高压协同冷冻辅助脱壳对南美白对虾肌原纤维蛋白理化性质的影响[J]. 现代食品科技, 2019, 35(2): 38-45. [52] 叶韬, 陈志娜, 吴盈盈, 等. 超高压对鲜活小龙虾脱壳效率、肌原纤维蛋白和蒸煮特性的影响[J]. 食品与发酵工业, 2020, 46(1): 149-156. [53] 刘书成, 邓倩琳, 黄万有, 等. 超高压处理对凡纳滨对虾虾仁蛋白质和微观结构的影响[J]. 水产学报, 2017, 41(6): 877-887. [54] KAUR B P, KAUSHIK N, RAO P S, et al. Chilled storage of high pressure processed black tiger shrimp (Penaeus monodon)[J]. J Aquat Food Prod T, 2015, 24(3): 283-299. doi: 10.1080/10498850.2013.772271
[55] JANTAKOSON T, KIJROONGROJANA K, BENJAKUL S, et al. Effect of high pressure and heat treatments on black tiger shrimp (Penaeus monodon Fabricius) muscle protein[J]. Int Aquat Res, 2012, 4(1): 1-12. doi: 10.1186/2008-6970-4-1
[56] 杨巨鹏, 洪梦蓉, 雷叶斯, 等. 超高压处理对南美白对虾褐变的影响[J]. 食品安全质量检测学报, 2019, 10(3): 676-682. doi: 10.3969/j.issn.2095-0381.2019.03.021 [57] IBARZ A, PAGAN J, GARVIN A, et al. Enzymatic peeling and discoloration of Red Bartlett pears[J]. Int J Food Sci Tech, 2013, 48(3): 636-641. doi: 10.1111/ijfs.12009
[58] PAGAN A, CONDE J, PAGAN J, et al. Lemon peel degradation modeling in the enzymatic peeling process[J]. J Food Process Eng, 2011, 34(2): 383-397. doi: 10.1111/j.1745-4530.2009.00363.x
[59] SANCHEZBEL P, EGEA I, SERRANO M, et al. Obtaining and storage of ready-to-use segments from traditional orange obtained by enzymatic peeling[J]. Food Sci Technol Int, 2012, 18(1): 63-72. doi: 10.1177/1082013211414208
[60] SUUTARINEN M, MUSTRANTA A, AUTIO K, et al. The potential of enzymatic peeling of vegetables[J]. J Sci Food Agric, 2003, 83(15): 1556-1564. doi: 10.1002/jsfa.1579
[61] DANG T T, JESSEN F, MARTENS H J, et al. Proteomic and microscopic approaches in understanding mechanisms of shell-loosening of shrimp (Pandalus borealis) induced by high pressure and protease[J]. Food Chem, 2019, 289: 729-738. doi: 10.1016/j.foodchem.2019.03.059
[62] TAKEI R, HAYASHI M, UMENE S, et al. Texture and microstructure of enzyme-treated chicken breast meat for people with difficulties in mastication[J]. J Texture Stud, 2016, 47(3): 231-238. doi: 10.1111/jtxs.12178
[63] TAKEI R, HAYASHI M, UMENE S, et al. Changes in physical properties of enzyme-treated beef before and after mastication[J]. J Texture Stud, 2015, 46(1): 3-11. doi: 10.1111/jtxs.12103
[64] 吴菲菲, 巢玲, 李化强, 等. 超声技术在食品工业中的应用研究进展[J]. 食品安全质量检测学报, 2017, 8(7): 2670-2677. doi: 10.3969/j.issn.2095-0381.2017.07.045 [65] AWAD T S, MOHARRAM H A, SHALTOUT O E, et al. Applications of ultrasound in analysis, processing and quality control of food: a review[J]. Food Res Int, 2012, 48(2): 410-427. doi: 10.1016/j.foodres.2012.05.004
[66] GAO R P, YE F Y, LU Z Q, et al. A novel two-step ultrasound post-assisted lye peeling regime for tomatoes: reducing pollution while improving product yield and quality[J]. Ultrason Sonochem, 2018, 45: 267-278. doi: 10.1016/j.ultsonch.2018.03.021
[67] ROCK C, YANG W, GOODRICHSCHNEIDER R, et al. Conventional and alternative methods for tomato peeling[J]. Food Eng Rev, 2012, 4(1): 1-15. doi: 10.1007/s12393-011-9047-3
[68] 徐洋, 吕大强, 王舒婷, 等. 超声辅助酶法回收南极磷虾壳中蛋白质的研究[J]. 安徽农业科学, 2016, 44(14): 97-100. doi: 10.3969/j.issn.0517-6611.2016.14.033 [69] 孟秀梅, 李明华. 响应面法优化虾壳蛋白脱除工艺研究[J]. 食品工业, 2017, 38(10): 5-9. [70] 耿军凤, 张丽芬, 陈复生, 等. 超声波辅助酶技术在食品蛋白质中的应用研究[J]. 食品工业, 2019, 40(1): 237-242. [71] JIN J, MA H L, WANG K, et al. Effects of multi-frequency power ultrasound on the enzymolysis and structural characteristics of corn gluten meal[J]. Ultrason Sonochem, 2015, 24: 55-64. doi: 10.1016/j.ultsonch.2014.12.013
[72] DANG T T, GRINGER N, JESSEN F, et al. Facilitating shrimp (Pandalus borealis) peeling by power ultrasound and proteolytic enzyme[J]. Innov Food Sci Emerg, 2018, 47: 525-534. doi: 10.1016/j.ifset.2018.04.019
[73] LI Z X, LI X Y, LIN H, et al. Effect of power ultrasound on the immunoactivity and texture changes of shrimp (Penaeus vannamei)[J]. Czech J Food Sci, 2018, 29(5): 508-514.
[74] 周建伟, 孟倩, 高德, 等. 超声加工技术对牛肉及其制品品质影响的研究进展[J]. 现代食品科技, 2020, 36(1): 296-302. [75] 欧阳杰, 张军文, 谈佳玉, 等. 贝类开壳技术与装备研究现状及发展趋势[J]. 肉类研究, 2018, 32(5): 64-68. [76] AJAVAKOM A, SUPSVETSON S, SOMBOOT A, et al. Products from microwave and ultrasonic wave assisted acid hydrolysis of chitin[J]. Carbohyd Polym, 2012, 90(1): 73-77. doi: 10.1016/j.carbpol.2012.04.064
[77] ALISHAHI A, MIRVAGHEFI A, TEHRANI M R, et al. Enhancement and characterization of chitosan extraction from the wastes of shrimp packaging plants[J]. J Polym Environ, 2011, 19(3): 776-783. doi: 10.1007/s10924-011-0321-5
[78] ZHAO D, HUANG W C, GUO N, et al. Two-step separation of chitin from shrimp shells using citric acid and deep eutectic solvents with the assistance of microwave[J]. Polymers (Basel), 2019, 11(3): 409. doi: 10.3390/polym11030409
[79] 陈雪. 微波技术在食品加工与检测中应用[J]. 食品安全导刊, 2015(3): 75-76. [80] GEORGE D F, BILEK M M, MCKENZIE D R. Non-thermal effects in the microwave induced unfolding of proteins observed by chaperone binding[J]. Bioelectromagnetics, 2008, 29(4): 324-330. doi: 10.1002/bem.20382
[81] BORDAGARAY A, AMIGO J M. Modelling highly co-eluted peaks of analytes with high spectral similarity[J]. Trac-Trend Anal Chem, 2015, 68: 107-118. doi: 10.1016/j.trac.2015.02.010
-
期刊类型引用(3)
1. 马晨夕,赵金良,宋银都,赵亮亮. 不同营养水平对鳜幼鱼糖异生和糖原分解的影响. 水产科学. 2024(05): 707-716 . 百度学术
2. 王崇懿,王伦,刘建勇,傅学丽. 凡纳滨对虾(Litopenaeus vannamei)不同品系生长与耐高盐性状配合力及杂种优势分析. 海洋与湖沼. 2022(01): 161-167 . 百度学术
3. 张瑞祺,赵金良,郝月月,宋银都. 鳜颅部侧线系统的胚后发育. 南方水产科学. 2020(06): 57-66 . 本站查看
其他类型引用(3)