超声波辅助过氧化氢法降解坛紫菜多糖及其抗氧化活性的研究

黄海潮, 王锦旭, 潘创, 杨贤庆, 戚勃, 李来好, 赵永强

黄海潮, 王锦旭, 潘创, 杨贤庆, 戚勃, 李来好, 赵永强. 超声波辅助过氧化氢法降解坛紫菜多糖及其抗氧化活性的研究[J]. 南方水产科学, 2020, 16(1): 110-119. DOI: 10.12131/20190220
引用本文: 黄海潮, 王锦旭, 潘创, 杨贤庆, 戚勃, 李来好, 赵永强. 超声波辅助过氧化氢法降解坛紫菜多糖及其抗氧化活性的研究[J]. 南方水产科学, 2020, 16(1): 110-119. DOI: 10.12131/20190220
HUANG Haichao, WANG Jinxu, PAN Chuang, YANG Xianqing, QI Bo, LI Laihao, ZHAO Yongqiang. Degradation of Porphyra haitanensis polysaccharide by ultrasonic assisted hydrogen peroxide method and its antioxidant activity analysis[J]. South China Fisheries Science, 2020, 16(1): 110-119. DOI: 10.12131/20190220
Citation: HUANG Haichao, WANG Jinxu, PAN Chuang, YANG Xianqing, QI Bo, LI Laihao, ZHAO Yongqiang. Degradation of Porphyra haitanensis polysaccharide by ultrasonic assisted hydrogen peroxide method and its antioxidant activity analysis[J]. South China Fisheries Science, 2020, 16(1): 110-119. DOI: 10.12131/20190220

超声波辅助过氧化氢法降解坛紫菜多糖及其抗氧化活性的研究

基金项目: 现代农业产业技术体系建设专项资金 (CARS-50);广东省促进经济发展专项资金 (现代渔业发展用途) 项目 (粤农2019B14);农业部财政重大专项 (NFZX2013);国家重点研发计划项目 (2018YFD0901006);农业农村部水产品加工重点实验室开放基金 (NYJG201905;NYJG201906)
详细信息
    作者简介:

    黄海潮 (1995—),女,硕士研究生,从事海洋藻类功能因子生物活性研究。E-mail: 1798721042@qq.com

    通讯作者:

    杨贤庆 (1963—),男,研究员,从事水产品加工及综合利用研究。E-mail: yxqgd@163.com

  • 中图分类号: S 985.4+2; O 629.12

Degradation of Porphyra haitanensis polysaccharide by ultrasonic assisted hydrogen peroxide method and its antioxidant activity analysis

  • 摘要: 该试验比较了超声波法、过氧化氢法、超声波辅助过氧化氢法降解坛紫菜 (Porphyra haitanensis) 多糖的效果,最后以1,1-二苯基-2-三硝基苯肼 (1,1-diphenyl-2-picrylhydrazyl,DPPH) 自由基清除率为指标,通过单因素和正交试验优化了超声波辅助过氧化氢法降解坛紫菜多糖的工艺。对比了降解前后多糖的抗氧化活性,并分析了其与分子量、结构特征及理化性质等的相关性。结果表明,在过氧化氢体积分数10%、温度65 ℃、超声波辅助2.5 h条件下,该多糖降解前后DPPH自由基清除率的半抑制浓度 (Half maximal inhibitory concentration, IC50) 由9.37 mg·mL−1降为1.71 mg·mL−1;凝胶渗透色谱结果显示分子量由大于670 kD降为235 835 D;傅里叶红外光谱表明多糖特征吸收峰依旧存在;高效液相色谱分析发现单糖组成大致相同,糖醛酸质量分数有所降低;理化性质显示硫酸基质量分数增高,3,6-内醚半乳糖质量分数明显降低。因而超声波辅助过氧化氢法可较好地降解坛紫菜多糖,并可改善理化性质及结构特征进而增强抗氧化活性,为低分子量多糖的制备及构效关系分析提供依据。
    Abstract: We have compared the degradation effects of ultrasonic method, hydrogen peroxide method and ultrasound-assisted hydrogen peroxide method on Porphyra haitanensis polysaccharide, and finally optimized ultrasonic assisted hydrogen peroxide degradation of polysaccharides by single factor and orthogonal test, using DPPH scavenging rate as the index. Meanwhile, we compared the antioxidant activity of polysaccharides and analyzed its correlation with molecular mass, structural characteristics and physicochemical properties. The results show that the IC50 (Half maximal inhibitory concentration) of DPPH scavenging reduced from 9.37 mg·mL−1 to 1.71 mg·mL−1 under the conditions of 10% hydrogen peroxide, 65 ℃ and 2.5 h. Gel permeation chromatography shows that the molecular mass of polysaccharide decreased from more than 670 kD to 235 835 D before and after degradation. FT-IR shows that the absorption peaks of the polysaccharide did not change. The monosaccharide composition was almost the same with PMP column derivatization according to HPLC analysis, while the content of uronic acid decreased. Moreover, the Sulfate-group content increased but the 3,6-endogalactose content decreased obviously. Therefore, the ultrasonic assisted hydrogen peroxide method can degrade P. haitanensis polysaccharides and improve the antioxidant activity. The results provide references for the preparation of low molecular mass polysaccharides and analysis of structure-activity relationship.
  • 神经肽是从神经系统和内分泌系统产生和释放,参与调节生物个体的生理活动,维持生物体内环境稳态的一类重要信号因子,是NEI系统中最重要的调节因子之一,在脊椎和无脊椎动物中均有免疫调节功能。其中FMRFamide (Phe-Met-Arg-Pheamide) 是一种酰胺化四肽,是类 FMRF酰胺肽 (FMRFarmide-related peptides, Farps或FMRFamide-like peptide, FLPs) 家族的成员。其在神经系统中合成并释放,能通过神经元直接传递信号,并作为神经递质、神经调质和神经激素发挥作用[1],是无脊椎动物中含量最丰富的一类神经肽[2]。此外,该神经肽也能通过内分泌系统调节摄食和运动行为[3]。近年来,FMRFamide的生理功能受到普遍关注,如Marciniak等[4]研究发现其具有特异性的心脏活性,能有效调节甲虫内脏肌肉的内源性收缩活性。Kim等[5]研究皱纹盘鲍 (Haliotis discus hannai) 发现,FMRFamide神经肽对海洋腹足类动物生殖调节有重要促进作用。FMRFamide也被发现能够通过抑制有丝分裂来保护细胞免受凋亡[6]。而作为无脊椎动物中特有的神经肽,一些研究也表明其可能参与了海洋无脊椎动物的免疫应答。如Li等[7]通过对太平洋牡蛎 (Crassostrea gigas) 炎症刺激后的FMRFanide多肽治疗,发现FMRFamide多肽不仅由神经内分泌系统合成,而且还在血细胞中合成加工,首次证实了该多肽存在于血细胞中。Guan等[8]对加利福尼亚海兔 (Aplysia california) 的研究发现FMRFamide可以通过激活P38丝裂原激活蛋白 (MAP) 激酶来调节突触的可塑性和调节免疫效应物。

    瘤背石磺 (Onchidium reevesii) 隶属于软体动物门、石磺科,又名土鸡、海赖子、涂龟、土海参等[9-10],常栖息在滩涂上的石缝中、植被的根部和阴暗潮湿的角落,主要分布于我国东部沿海地区[11-12]。瘤背石磺的中枢神经系统 (Central nervous system, CNS) 是一个简单的环状结构,体积大且易获得[13]。瘤背石磺不仅是研究无脊椎动物神经系统功能的模式种,而且由于其生活在潮间带,有良好的应激耐受机制,能适应波动的生存环境、各种重金属离子和病原体[14],对于研究无脊椎动物应对外界环境变化和病原入侵的免疫反应机制也有显著优势。为此,本研究在实验室瘤背石磺高通量转录组测序的基础上克隆得到了OrFMRFamide基因的全长,分析该基因的分子特征及其mRNA和多肽在组织中的分布,研究其在炎症刺激后的反应,从而为探究FMRFamide基因在瘤背石磺免疫机制中的作用提供了理论依据,也为进一步理解生活在潮间带的两栖类动物对恶劣环境的适应机理奠定基础。

    2020年6月初在江苏省盐城市沿海滩涂采集成体鲜活瘤背石磺,带回实验室后暂养于70 cm×120 cm×50 cm的塑料养殖箱内,养殖箱底部覆盖5~10 cm厚的海泥,种植滩涂采集的植被,放上瓦片,放养滩涂捕捉的螃蟹在泥中打洞,为石磺提供休息躲避的巢穴,尽可能地模拟自然生态环境,消除实验外干扰。每天早晚定时投喂玉米粉和喷洒海水保持土壤湿润,定期检查瘤背石磺生长状况,以确保其较高的成活率。暂养1周后,取5只体态均匀、健康有活力的瘤背石磺 [ 体长 (43.55±1.32) mm,体质量 (15.73±0.78) g],用超纯水清洗表面的泥沙,取血细胞、神经节、肝胰腺、肌肉、性腺、皮肤和腹足等组织用液氮速冻后放入–80 ℃冰箱备用,用于组织cDNA模板的制备。

    实验所用器皿均经180 ℃高温杀菌处理3 h或使用DEPC处理过后进行高压灭菌。实验开始前将所有器材预冷备用,全程在冰上操作,取–80 ℃保存的瘤背石磺各组织,按照Trizol (Invitrogen, 美国) 说明书提取各组织的总RNA。配制质量浓度为10 mg·mL−1的琼脂糖凝胶,135 V、电泳15 min检测RNA提取质量,在核酸检测仪上标定提取RNA的浓度和纯度。将神经节RNA按照PrimeScript II 1st Strand cDNA Synthesis Kit (TaKaRa) 说明书合成cDNA第一链,作为后续实验的RACE (Rapid-amplification of cDNA ends) 模板。将提取所得的各组织RNA按照PrimeScript™ RT reagent Kit with gDNA Eraser (TaKaRa) 试剂盒说明书进行反转录,将获得的cDNA于–20 ℃保存备用。

    根据笔者实验室测得的转录组数据库 (未发表) 筛选得到目的基因的部分基因片段,使用Primer Premier 5.0软件设计2对引物,进行PCR扩增反应,反应产物用10 mg·mL−1的琼脂糖凝胶电泳检测,使用D2000 Ladder作为Maker,产物条带单一且清晰,送至苏州金唯智生物科技有限公司测序,测序结果在NCBI上BLAST比对,确认为FMRFamide基因片段,然后按照SMARTER® RACE5'/3'Kit及3'Full RACE Core Set With PrimerScriptTM RTase试剂盒的说明书在Primer Premier 5.0软件上设计5'和3' RACE特异性引物,通过RACE技术得到产物,产物经过1.0%琼脂糖凝胶电泳检测合格后送往苏州金唯智生物科技有限公司测序,将所得到的全部测序结果通过Sequebcher 5.0软件拼接得到OrFMRFamide基因的序列全长。

    把拼接得到的基因序列全长在NCBI上用ORF Finder (https://www.ncbi.nlm.nih.gov/orffinder/) 在线工具对OrFMRFamide基因开放阅读框 (Open reading frame, ORF) 及编码氨基酸进行预测,得到预测的编码氨基酸后在NCBI上用在线工具BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi) 进行同源性比较,使用NetNGlyc 1.0 Server (http://www.cbs.dtu.dk/services/NetNGlyc/) 在线工具确定糖基化位点,理化性质用ProtParam (http://web.expasy.org/protparam/) 在线工具分析,使用NetPhos 2.0 Server (http://www.cbs.dtu.dk/services/NetPhos–2.0/) 在线工具查找磷酸化位点,使用Signal 5.0 (http://www.cbs.dtu.dk/services/SignalP/) 在线工具查找信号肽。用MEGA-X软件基于比邻法,以1 000次Bootstraps构建瘤背石磺与其他物种FMRFamide基因的系统进化树。

    通过在线工具Genscrip (https://www.genscript.com/tools/real–time–pcr–taqman–primer–design–tool) 根据OrFMRFamide基因全长序列设计荧光定量引物 (表1),以18S作为内参基因,以上述验证过的瘤背石磺各组织cDNA为模板,使用 ChamQ Universal SYBR qPCR Master Mix (Vazyme,美国) 试剂盒在CFX-96 (Bio-Rad,美国) 进行荧光定量反应,每个样品和内参都设置3个平行对照,以Rnase-free双蒸水 (ddH2O) 为阴性对照,实时荧光定量PCR数据用2–ΔΔCT法进行分析。

    表  1  实验中所用引物序列
    Table  1.  Primers used in this experiment
    引物
    Primer
    引物序列 (5'–3')
    Primer sequence
    用途
    Function
    OrFMRFamide-F1 CTTAGGAGTGGGAACAGC 验证目的片段
    OrFMRFamide-R1 CGGCTGGAGATTTGATTG
    OrFMRFamide-F2 CGGACCAGTACGACCAAC
    OrFMRFamide-R2 GTTCAGTCCGCCCTAATG
    OrFMRFamide-3'RACE-inter ACTGGTTTGGGTAGCA 3'RACE 特异性引物
    OrFMRFamide-3'RACE-outer ATGGCAACAATGTCTTTCG
    OrFMRFamide-5'RACE-inter GAGCAGAAGATGGCGT 5'RACE 特异性引物
    OrFMRFamide-5'RACE-outer TCCTCGCTTTGCCTCA
    OrFMRFamide-RT-F AGCTGGAGGACACACTGAGGCA Real-time RT-PCR
    OrFMRFamide-RT-R TGCCACATCGCCCTCATCGG
    18S-F TCCGCAGGAGTTGCTTCGAT
    18S-R ATTAAGCCGCAGGCTCCACT
    下载: 导出CSV 
    | 显示表格

    免疫组织化学取养殖箱暂养未经处理的5只瘤背石磺进行实验。采集未经处理的新鲜的神经节、肝胰腺、性腺、腹足、肌肉和皮肤,用4%的多聚甲醛固定6 h,转移至20%的蔗糖溶液固定过夜,然后转移至40%的蔗糖溶液固定到组织沉底,使用冰冻切片机 (莱卡CM1950) 切片后贴在黏附载玻片上,按照一步法免疫组化试剂盒 (凯基) 说明书完成免疫组化实验,用显微镜观察拍照。

    在养殖箱中暂养7 d后随机选取100只瘤背石磺,平均分为2组,暂养在2个养殖箱中,分别给每只瘤背石磺注射100 μL磷酸盐缓冲溶液 (Phosphate buffered saline, PBS) 和100 μL脂多糖 (LPS, 0.5 mg·mL–1,溶于PBS),经处理的瘤背石磺分别放回养殖箱暂养,分别在注射后第0、第6、第12、第24、第48小时取样,每次随机抽取9只石磺,将3只的血细胞、神经节、肝胰腺、肌肉、性腺、皮肤和腹足合并为1个样本,每个时间点采集3个平行样本。血细胞的采集是使用1 mL注射器从瘤背石磺腹部抽取血液,在800 ×g、4 ℃条件下离心10 min,获得血细胞后将其溶解在trizol中,用液氮速冻,于–80 ℃保存。其他组织取样后放入液氮速冻,于–80 ℃保存。用trizol法提取各组织RNA,用HiScript Q RT SuperMix for qPCR (+gDNA wiper, Vazyme,美国) 试剂盒进行反转录,得到的cDNA于–20 ℃备用。

    按照上述方法,以各组织各个时期刺激前后的cDNA为模板,18S为内参,进行实时荧光定量RT-PCR扩增实验,数据使用2–ΔΔCT法进行分析。

    使用SPSS 26.0软件对荧光定量的数据进行处理,单因素方差分析结果以“平均值±标准差 ($ \overline X \pm {\rm{SD}} $)”表示。P<0.05为差异显著,P<0.01为差异极显著。

    根据瘤背石磺转录组测序结果获得的OrFMRFamide基因片段,通过3'和5'-RACE扩增得到该基因全长序列为2 618 bp,开放阅读框 (Open reading frame, ORF)为882 bp,基因序列末端加尾信号AATAA与Poly (A) 之间有17个碱基 (图1)。ProtParam推测编码1个含有293个氨基酸的蛋白,分子量为33847.88 kD,理论等电点 (pI) 为9.25,不稳定指数为57.00,预测为不稳定蛋白,溶脂指数为55.67,平均疏水指数为–0.890。Server预测该蛋白不存在糖基位点。NetPhos 2.0 Server预测该蛋白含有12个磷酸化位点 [ 丝氨酸 (Ser):4;苏氨酸 (Thr):2;酪氨酸 (Tyr):6]。信号肽软件预测该基因有1个N端信号肽 (1~24)。

    图  1  FMRFamide基因的氨基酸序列及cDNA全长
    浅灰色阴影部分是该基因编码信号肽部分,起始密码子和终止密码子用方框标出,深灰色阴影是磷酸化位点,末端加尾信号AATAAA用下划线标出,poly (A) 用斜体表示
    Figure  1.  Amino acid sequence and full length cDNA of FMRFamide gene
    The light grey shaded portion is the signal peptide portion of the gene; the start and stop codons are boxed; the dark grey shaded portion is the phosphorylation site; the end plus tail signal AATAAA is underlined, and poly (A) is in italics.

    将预测得到的OrFMRFamide基因的氨基酸序列放到NCBI上进行BLAST比对,发现其与其他物种的FMRFamide基因有较高的同源性,下载这些物种的氨基酸序列,使用MEGA-X软件构建进化树 (图2)。结果显示,瘤背石磺和静水椎实螺 (Lymnaea stagnalis) 聚为一支,再与加利福尼亚海兔、棕蜗牛 (Cornu aspersum) 等腹足纲软体动物聚为一大支,与双壳纲海洋贝类聚为一大支,与环节动物和节肢动物各聚为一支。瘤背石磺与静水椎实螺进化关系最为接近。

    图  2  利用MEGA-X软件基于NJ法构建的FMRFamide系统进化树
    Figure  2.  NJ phylogenetic tree of FMRFamide by MEGA-X

    荧光定量RT-PCR结果显示,OrFMRFamide基因在神经节中的表达量极显著高于在其他组织的(P<0.01),此外,该基因也在血细胞、肝胰腺、皮肤、性腺组织中表达,几乎不在肌肉和腹足中表达 (图3)。以性腺的表达量为参照,血细胞、神经节、肝胰腺和皮肤的表达量分别约为性腺的2.33、1 025.47、36.96和6.86倍。

    图  3  OrFMRFamide在各组织的相对表达量
    **. 极显著性差异 (P<0.01)
    Figure  3.  mRNA relative expression of OrFMRFamide in different tissues
    **. Very significant at 0.01 level (P<0.01)

    利用免疫组织化学的方法分析瘤背石磺FMRFamide神经肽在神经节、肝胰腺、肌肉、性腺、皮肤和腹足中的分布情况 (图4),结果显示OrFMRFamide基因在不同组织中的表达模式和FMRFamide神经肽的分布水平相一致,在神经节中大量表达,在性腺、皮肤和肝胰腺中微量表达,在腹足和肌肉中几乎不表达。

    图  4  免疫组化结果
    a. 神经节;b. 腹足;c. 肝胰腺;d. 肌肉;e. 皮肤;f. 性腺;箭头表示FMRFamide多肽
    Figure  4.  Immunohistochemistry results
    a. Ganglia; b. Pleopod; c. Hepatopancreas; d. Muscle; e. Skin; f. Gonad; arrows represent FMRFamide polypeptides.

    基于瘤背石磺OrFMRFamide基因在不同组织中的相对表达量,研究该基因在LPS刺激后48 h内的表达变化 (图5)。LPS组肝胰腺中OrFMRFamide基因的表达量在注射后第12小时达最高值,与PBS组差异显著 (P<0.05),皮肤中OrFMRFamide基因的表达量随时间变化差异不大,但LPS组整体的表达量显著高于PBS对照组 (P<0.05),神经节中该基因的表达量在第12 小时达最高值,整体表达水平显著高于PBS对照组 (P<0.05),血细胞中该基因的相对表达量在第12小时达最高值,性腺中的表达量随时间变化的差异不显著,且LPS组和PBS组差异也不显著 (P>0.05)。

    图  5  OrFMRFamide基因在炎症刺激后在不同组织中的相对表达量
    图中不同字母表示差异显著 (P<0.05)
    Figure  5.  Relative expression of OrFMRFamide gene in different tissues after inflammatory stimulation
    Different letters in the figure indicate significant difference (P<0.05).

    本研究克隆了瘤背石磺FMRFamide基因,系统进化树显示其与静水椎实螺、棕蜗牛聚为一支,说明其与软体动物门腹足纲贝类的亲缘关系非常近,与软体动物双壳纲贝类明显区分开来。

    神经节、肝胰腺和血细胞属于NEI (神经节、肝胰腺、血细胞) 系统,有报道指出NEI系统在应激和感染过程中能维持机体内环境稳定,有效清除病原体,调节机体平衡,减少对宿主的伤害[15]。FMRFamide作为软体动物神经系统中的重要组成部分[16],实时荧光定量结果显示OrFMRFamide在神经节、血细胞和肝胰腺组织中均有较高的表达,在神经节中表达量最高,可能因为其参与神经系统中神经递质的合成和释放及神经内分泌系统的可塑性调节。杨金龙等[17]在研究厚壳贻贝 (Mytilus coruscus) 早期幼虫发育时也发现,FMRFamide大量存在于神经系统中。在其他软体动物如双壳纲[7,18]、腹足纲[19]、头足纲[20]中,FMRFamide多肽也被报道主要存在于神经系统、消化系统和血细胞中。FMRFamide在瘤背石磺NEI系统中的高表达说明该基因可能对瘤背石磺的稳态起重要作用,推测FMRFamide可能在神经节、肝胰腺和血细胞中合成和加工,然后通过自分泌/旁分泌信号通路释放到血细胞中来调节机体。荧光定量结果显示瘤背石磺FMRFamide还存在于皮肤中,高凤娟等[21]和Allan等[22]对花背蟾蜍 (Bufo raddei) 和北美木蛙 (Rana sylvatica) 的研究表明,两栖类动物皮肤具有先天免疫功能,说明瘤背石磺作为无贝壳的两栖型贝类,为适应潮间带恶劣的生存环境,FMRFamide多肽可能参与了其先天免疫。FMRFamide应用免疫组化学进一步证实了OrFMRFamide在不同组织中的分布和FMRFamide多肽的分布一致,这与Terrnina等[23]对猫肝吸虫 (Opisthorchis felineus) 和Allan等[22]对星虫 (Themiste lageniformis) 中FMRFamide的定位结果相似。

    炎症刺激实验结果显示,瘤背石磺神经节、肝胰腺和血细胞中FMRFamide基因相对表达量变化趋势为先上升后降低,在注射脂多糖12 h后的表达量达最大值,说明FMRFamide可能参与了免疫防御反应。在无脊椎动物中,血细胞被认为是宿主在免疫防御反应中起重要作用的免疫相关细胞[24],更有研究表明免疫细胞可以通过自分泌信号途径重新合成神经肽来调节肌体免疫反应[25-27]。Wang等[28]用寄生虫感染光滑双脐螺 (Biomphalaria glabrata),发现FMRFamide相对表达量高于对照组,FMRFamide表达量上升以抵抗寄生虫感染,这和本研究结果一致,可以推测FMRFamide多肽能保护机体免受侵害,响应免疫刺激,在维持机体稳态中发挥重要作用。炎症刺激后瘤背石磺性腺中FMRFamide相对表达量变化不显著,Hada等[29]研究发现FMRFamide还能影响根结线虫 (Meloidogyne graminicola) 的繁殖因子,Kerbl等[30]的研究也证实FMRFamide能作用于生殖腺,影响动物的交配行为,推测瘤背石磺性腺中的FMRFamide可能对瘤背石磺的繁殖有影响,但不参与维持自身稳态。

  • 图  1   多糖质量浓度、过氧化氢体积分数、温度、时间对1,1-二苯基-2-三硝基苯肼清除率的影响

    a—e字母相同表示不同条件下差异不显著 (P>0.05),不同则表示差异显著 (P<0.05)

    Figure  1.   Effect of polysaccharide concentration, hydrogen peroxide volume fraction, temperature and time on DPPH scavenging rate

    a–e indicate insignificant difference under different conditions (P>0.05), while different letters indicate significant difference (P<0.05).

    图  2   坛紫菜多糖和降解后多糖、维生素C对1,1-二苯基-2-三硝基苯肼自由基的清除效果的影响

    Figure  2.   Effects of PP, LPP and Vc on DPPH scavenging rate

    图  3   坛紫菜多糖和降解后多糖的凝胶渗透色谱图

    Figure  3.   GPC chromatography of PP and LPP

    图  4   坛紫菜多糖和降解后多糖的红外光谱图

    Figure  4.   FT-IR of PP and LPP

    图  5   标准单糖及坛紫菜多糖和降解后多糖的液相色谱图

    左起依次为古洛糖醛酸、甘露糖醛酸、甘露糖、核糖、鼠李糖、氨基葡萄糖、葡萄糖醛酸、半乳糖醛酸、葡萄糖、氨基半乳糖、半乳糖、木糖、阿拉伯糖、L-岩藻糖

    Figure  5.   HPLC of standard monosaccharides, PP and LPP

    Mixture of standard monosaccharides, including guluronic acid, mannituronic acid, mannose, ribose, rhamnose, glucosamine, glucuronic acid, galacturonic acid, glucose, galactosamine, galactose, xylose, arabinose, L-fucose (from left to right)

    表  1   单因素试验因素及水平表

    Table  1   Single factor design for the experiment

    因素
    Factor
    水平
    Level
    多糖质量浓度
    Concentration of polysaccharide/(mg·mL−1)
    2.5、5.0、7.5、10.0、12.5
    过氧化氢体积比 Volume ratio/(mL·mL−1) 4%、6%、8%、10%、12%
    反应温度 Reaction temperature/℃ 35、45、55、65、75
    反应时间 Reaction time/h 0.5、1.0、1.5、2.0、2.5
    下载: 导出CSV

    表  2   正交试验因素及水平表

    Table  2   Factors and levels used in orthogonal experiment

    水平 Level123
    因素
    Factor
    (A) 多糖浓度
    Concentration of polysaccharide/(mg·mL−1)
    2.5 5.0 7.5
    (B) 反应温度
    Reaction temperature/℃
    55 65 75
    (C) 过氧化氢体积比
    Volume ratio/(mL·mL−1)
    6% 8% 10%
    (D) 反应时间
    Reaction time/h
    1.5 2.0 2.5
    下载: 导出CSV

    表  3   3种降解方法的抗氧化作用和降解能力

    Table  3   Antioxidant activity and degradation capacity of the three degradation methods

    降解方法
    Degradation method
    对DPPH清除率
    DPPH scavenging rate/%
    得率
    Yield/%
    GPC保留时间
    Retention time/min
    分子量Mp
    Molecular mass/D
    超声波法 Ultrasonic method 28.21±0.63b 86.08±4.13a 14.93 >670 000
    过氧化氢法 Hydrogen peroxide method 30.05±0.36b 75.92±2.37b 14.97 602 661
    超声波辅助过氧化氢法
    Ultrasonic assisted hydrogen peroxide method
    48.56±1.51a 65.04±2.56c 15.20 402 065
    注:同列不同上标字母表示组间差异性显著 (P<0.05),表 6同此 Note: Different superscript letters in the same column indicated significant difference between groups (P<0.05); the same case in Tables 6
    下载: 导出CSV

    表  4   正交试验设计及结果

    Table  4   Orthogonal array design and results

    序号
    No.
    因素
    Factor
    DPPH清除率
    DPPH scavenging rate/%
    ABCD
    1 1 1 1 1 39.45±1.20
    2 1 2 2 2 56.27±0.09
    3 1 3 3 3 55.54±0.09
    4 2 1 2 3 47.25±0.77
    5 2 2 3 1 47.10±0.56
    6 2 3 1 2 57.18±0.69
    7 3 1 3 2 39.20±1.41
    8 3 2 1 3 55.35±0.77
    9 3 3 2 1 53.90±0.98
    K1 50.420 41.967 50.663 46.817
    K2 50.513 52.907 52.473 50.886
    K3 49.483 55.542 47.280 52.713
    R 1.030 13.575 5.193 5.896
    下载: 导出CSV

    表  5   方差分析结果

    Table  5   Results of variance analysis

    因素
    Factor
    Ⅲ型平方和
    SS
    自由度
    df
    均方
    MS
    F显著性
    Significance
    A 3.577 2 1.945 2.715 *
    B 129.682 2 310.934 433.895 **
    C 25.342 2 41.698 58.188 **
    D 48.491 2 54.665 76.282 **
    误差 Error 6.45 9
    注:*. 显著性相关 (P<0.05);**. 极显著性相关 (P<0.01) Note: *. significant at 0.05 level (P<0.05); **. very significant at 0.01 level (P<0.01)
    下载: 导出CSV

    表  6   不同降解程度坛紫菜多糖的理化性质

    Table  6   Physicochemical properties of polysaccharides in P. haitanensis at different degradation levels

    样品
    Sample
    蛋白质
    Protein/%
    硫酸基
    Sulfate-group/%
    3,6-内醚半乳糖
    3,6-anhydrogalactose/%
    相对黏度
    Relative viscosity
    分子量Mp
    Molecular mass/D
    降解前多糖 PP 6.96±0.36a 11.25±0.89c 12.41±0.59a 5.86±0.31a >670 000
    降解1.5 h多糖 LPP1 5.73±0.34b 12.24±1.11c 9.72±0.67b 4.82±0.15b 399 894
    降解2.0 h多糖 LPP2 4.03±0.24c 14.32±0.96b 8.78±0.59b 3.67±0.09c 237 113
    降解2.5 h多糖 LPP3 3.23±0.89c 17.51±0.28a 6.82±0.09c 3.56±0.13c 235 835
    下载: 导出CSV
  • [1] 杨少玲, 戚勃, 杨贤庆, 等. 中国不同海域养殖坛紫菜营养成分差异分析[J]. 南方水产科学, 2019, 15(6): 75-80. doi: 10.12131/20190066
    [2]

    CHEN Y Y, XUE Y T. Optimization of microwave assisted extraction, chemical characterization and antitumor activities of polysaccharides from Porphyra haitanensis[J]. Carbohyd Polym, 2019, 206: 179-186. doi: 10.1016/j.carbpol.2018.10.093

    [3]

    LIU Q M, XU S S, LI L, et al. In vitro and in vivo immunomodulatory activity of sulfated polysaccharide from Porphyra haitanensis[J]. Carbohyd Polym, 2017, 165: 189-196. doi: 10.1016/j.carbpol.2017.02.032

    [4]

    XU S Y, HUANG X S, CHEONG K L. Recent advances in marine algae polysaccharides: isolation, structure, and activities[J]. Mar Drugs, 2017, 15(12): 388. doi: 10.3390/md15120388

    [5]

    ZHANG Z S, WANG X M, SU H L, et al. Effect of sulfated galactan from Porphyra haitanensis on H2O2-induced premature senescence in WI-38 cells[J]. Int J Biol Macromol, 2018, 106: 1235-1239. doi: 10.1016/j.ijbiomac.2017.08.123

    [6] 韩莎莎, 黄臻颖, 沈照鹏, 等. 酶法降解坛紫菜多糖及其产物分析[J]. 食品科学, 2015, 36(21): 145-149. doi: 10.7506/spkx1002-6630-201521028
    [7] 高玉杰, 吕海涛. 酸法降解浒苔多糖及其清除羟自由基活性研究[J]. 食品科学, 2013, 34(16): 62-66. doi: 10.7506/spkx1002-6630-201316013
    [8]

    ZHOU C S, YU X J, ZHANG Y Z, et al. Ultrasonic degradation, purification and analysis of structure and antioxidant activity of polysaccharide from Porphyra yezoensis Udea[J]. Carbohyd Polym, 2012, 87(3): 2046-2051. doi: 10.1016/j.carbpol.2011.10.026

    [9]

    ZHAO T T, ZHANG Q B, QI H M, et al. Degradation of porphyran from Porphyra haitanensis and the antioxidant activities of the degraded porphyrans with different molecular weight[J]. Int J Biol Macromol, 2006, 38(1): 45-50. doi: 10.1016/j.ijbiomac.2005.12.018

    [10]

    GONG G P, ZHAO J X, WEI M, et al. Structural characterization and antioxidant activities of the degradation products from Porphyra haitanensis polysaccharides[J]. Process Biochem, 2018, 74: 185-193. doi: 10.1016/j.procbio.2018.05.022

    [11] 史大华, 刘玮炜, 刘永江, 等. 低分子量海带岩藻多糖的制备及其抗肿瘤活性研究[J]. 时珍国医国药, 2012, 23(1): 53-55. doi: 10.3969/j.issn.1008-0805.2012.01.024
    [12] 马夏军, 岑颖洲, 邱玉明, 等. 超声波辅助过氧化氢氧化降解制备相对低分子质量异枝麒麟菜硫酸多糖[J]. 中国海洋药物, 2005, 24(4): 10-13. doi: 10.3969/j.issn.1002-3461.2005.04.003
    [13] 万真真, 高文宏, 曾新安. 超声波协同过氧化氢氧化法制备低分子质量大豆多糖[J]. 食品与发酵工业, 2012, 38(10): 81-85.
    [14] 王小慧, 戚勃, 杨贤庆, 等. 响应面法优化末水坛紫菜蛋白酶解工艺及其酶解液抗氧化活性研究[J]. 南方水产科学, 2019, 15(2): 95-103.
    [15] 马军, 侯萍, 陈燕, 等. 几种海藻多糖抗氧化活性及体外抗脂质过氧化作用的研究[J]. 南方水产科学, 2017, 13(6): 97-104. doi: 10.3969/j.issn.2095-0780.2017.06.012
    [16]

    SUN L Q, WANG L, LI J, et al. Characterization and antioxidant activities of degraded polysaccharides from two marine chrysophyta[J]. Food Chem, 2014, 160: 1-7. doi: 10.1016/j.foodchem.2014.03.067

    [17] 徐雅琴, 刘菲, 郭莹莹, 等. 黑穗醋栗果实超声波降解多糖的结构及抗糖基化活性[J]. 农业工程学报, 2017, 33(5): 295-300. doi: 10.11975/j.issn.1002-6819.2017.05.042
    [18] 程斌. 海带硫酸多糖的提取纯化降解及活性研究[D]. 曲阜: 曲阜师范大学, 2009: 19-31.
    [19] 何喜珍, 牛延宁, 金明飞, 等. 不同分子量大豆多糖的表征和抗氧化研究[J]. 大豆科学, 2016, 35(5): 805-809.
    [20]

    WANG X, GAO A, JIAO Y, et al. Antitumor effect and molecular mechanism of antioxidant polysaccharides from Salvia miltiorrhiza Bunge in human colorectal carcinoma LoVo cells[J]. Int J Biol Macromol, 2018, 108: 625-634. doi: 10.1016/j.ijbiomac.2017.12.006

    [21] 李瑞杰, 胡晓, 李来好, 等. 罗非鱼皮酶解物钙离子结合能力及其结合物的抗氧化活性[J]. 南方水产科学, 2019, 15(6): 106-111. doi: 10.12131/20190102
    [22] 姜美云, 唐硕, 王婷, 等. 果胶多糖水热法降解及其产物体外抗氧化性评价[J]. 食品科学, 2019, 40(12): 253-259.
    [23]

    WANG Z M, CHEUNG Y C, LEUNG P H, et al. Ultrasonic treatment for improved solution properties of a high-molecular weight exopolysaccharide produced by a medicinal fungus[J]. Bioresource Technol, 2010, 101(14): 5517-5522. doi: 10.1016/j.biortech.2010.01.134

    [24]

    ZHANG Z S, WANG X M, ZHAO M X, et al. Free-radical degradation by Fe2+/Vc/H2O2 and antioxidant activity of polysaccharide from Tremella fuciformis[J]. Carbohyd Polym, 2014, 112: 578-582. doi: 10.1016/j.carbpol.2014.06.030

    [25] 孙涛, 熊小英, 魏颖隽, 等. 黄原胶降解及其抗氧化性能研究[J]. 天然产物研究与开发, 2012, 24(1): 102-104. doi: 10.3969/j.issn.1001-6880.2012.01.023
    [26]

    SARAVANA P S, CHO Y N, PATIL M P, et al. Hydrothermal degradation of seaweed polysaccharide: characterization and biological activities[J]. Food Chem, 2018, 268: 179-187. doi: 10.1016/j.foodchem.2018.06.077

    [27]

    LI J, LI B, GENG P, et al. Ultrasonic degradation kinetics and rheological profiles of a food polysaccharide (Konjac glucomannan) in water[J]. Food Hydrocolloid, 2017, 70: 14-19. doi: 10.1016/j.foodhyd.2017.03.022

    [28] 支梓鉴. 超声-芬顿联用技术制备低分子量酸性寡糖[D]. 杭州: 浙江大学, 2017: 37-52.
    [29]

    LI J H, LI S, ZHI Z J, et al. Depolymerization of fucosylated chondroitin sulfate with a modified fenton-system and anticoagulant activity of the resulting fragments[J]. Mar Drugs, 2016, 14(9): 170. doi: 10.3390/md14090170

    [30]

    ZHI Z J, CHEN J L, LI S, et al. Fast preparation of RG-I enriched ultra-low molecular weight pectin by an ultrasound accelerated Fenton process[J]. Sci Rep-UK, 2017, 7(1): 541. doi: 10.1038/s41598-017-00572-3

    [31] 王凌, 孙利芹, 赵小惠. 一种微藻多糖的理化性质及抗氧化和保湿活性[J]. 精细化工, 2012, 29(1): 20-24.
    [32]

    GOMEZ B, GULLON B, YANEZ R, et al. Prebiotic potential of pectins and pectic oligosaccharides derived from lemon peel wastes and sugar beet pulp: a comparative evaluation[J]. J Funct Foods, 2016, 20: 108-121. doi: 10.1016/j.jff.2015.10.029

    [33] 王凌, 孙利芹. 绿色巴夫藻多糖及降解产品的抗氧化和保湿性能[J]. 食品科学, 2012, 33(21): 87-90.
    [34]

    HUANG M, MIAO M, JIANG B, et al. Polysaccharides modification through green technology: role of ultrasonication towards improving physicochemical properties of (1-3)(1-6)-a-d-glucans[J]. Food Hydrocolloid, 2015, 50: 166-173. doi: 10.1016/j.foodhyd.2015.04.016

    [35] 张海芸. 超声波法辅助定向降解阿拉伯半乳聚糖的研究[J]. 林产化学与工业, 2018, 38(4): 65-72.
    [36]

    MA F M, WU J W, PU L, et al. Effect of solution plasma process with hydrogen peroxide on the degradation of water-soluble polysaccharide from Auricularia auricula. II: solution conformation and antioxidant activities in vitro[J]. Carbohyd Polym, 2018, 198: 575-580. doi: 10.1016/j.carbpol.2018.06.113

  • 期刊类型引用(1)

    1. 王伟杰,万荣,孔祥洪. 水下集鱼灯在近海水体中的光场分布数值模拟. 水产学报. 2023(12): 192-203 . 百度学术

    其他类型引用(1)

图(5)  /  表(6)
计量
  • 文章访问数:  5190
  • HTML全文浏览量:  2583
  • PDF下载量:  94
  • 被引次数: 2
出版历程
  • 收稿日期:  2019-10-28
  • 修回日期:  2019-11-27
  • 网络出版日期:  2019-12-05
  • 刊出日期:  2020-02-04

目录

/

返回文章
返回