Variation of DOC, nutrients and chlorophyll a contents in shrimp ponds of Minjiang River Estuary
-
摘要:
为揭示河口区陆基养虾塘可溶性有机碳 (DOC)、营养盐、叶绿素a时空动态变化及其生态化学计量特征,在福建省闽江河口鳝鱼滩选择3个陆基养虾塘作为研究对象,于2018年5—10月原位测定养虾塘水温、pH、盐度、溶解氧指标,并采集不同深度水样,实验室测定DOC、可溶性无机氮 (DIN)、磷酸盐 (PO4 3−-P)、叶绿素a浓度,探讨其主要影响因素。结果表明,养虾塘水体中DOC、DIN、PO4 3−-P和叶绿素a质量浓度分别介于5.73~16.79 mg·L−1、0.04~1.80 mg·L−1、0.03~0.16 mg·L−1和15.02~443.08 μg·L−1,均存在明显的时空变化特征;养虾塘水体DOC、营养盐、叶绿素a浓度受到养殖水体水环境参数、人为活动、养殖生物的共同影响;养虾塘水体碳 (C)、氮 (N)、磷 (P) 营养元素组成与植物、土壤之间具有相似性,并且表现为碳盈余和氮限制。在养殖过程中,加强对养虾塘水体营养盐和叶绿素a的动态变化监测,通过人为方式调节养虾塘水体C、N、P比率,对于防止养虾塘水体富营养化,促进养虾塘生态系统绿色可持续生产具有重要作用。
Abstract:In order to reveal the spatiotemporal dynamic changes of DOC, nutrients, chlorophyll a and their eco-chemical metrological characteristics of land-based shrimp ponds in the Minjiang River Estuary, Fujian Province, from May to October 2018, we have analyzed the water temperature, pH, salinity, dissolved oxygen. The soluble organic carbon (DOC), soluble inorganic nitrogen (DIN), PO4 3−-P and chlorophyll a mass concentration were 5.73−16.79 mg·L−1, 0.04−1.80 mg·L−1, 0.03−0.16 mg·L−1 and 15.02−443.08 μg·L−1, respectively, all with obvious characteristics of spatio-temporal changes. The concentrations of DOC, nutrients and chlorophyll a were affected by the water environment parameters, human activities and cultured organisms. The water nutrient composition of carbon, nitrogen and phosphorus was similar with that of plants and soil, showing carbon surplus and nitrogen limitation. In summary, In the process of aquaculture, it is very important to strengthen the monitoring of the dynamic changes of nutrients and chlorophyll a in shrimp ponds, and artificially adjust the ratio of carbon, nitrogen and phosphorus, so as to prevent eutrophication of shrimp pond and promote the green and sustainable production of ecosystem of shrimp ponds.
-
Keywords:
- Agriculture shrimp ponds /
- DOC /
- Nutrients /
- Chlorophyll a /
- Minjiang River Estuary
-
方斑东风螺 (Babylonia areolata),隶属于软体动物门、腹足纲、新腹足目、蛾螺科、东风螺属,是一种经济价值较高的浅海底栖贝类,主要分布于东南亚、日本以及我国东南沿海地区[1-3]。方斑东风螺因贝壳上具有漂亮的方形斑纹又被称为“花螺”,其味道鲜甜、肉质紧实有嚼劲,被誉为21世纪最具开发前景的养殖良种之一[4-5]。近年来,东风螺养殖产业发展迅速,养殖规模进一步扩大[6]。随着人们生活水平的不断提高,在追求产量的同时,对螺的品质和外观也提出了更高的要求,清晰而明艳的方形斑纹更受消费者青睐。
在水产动物健康养殖过程中,为水产动物提供适宜的栖息环境,不仅可以减少环境应激反应,对提高养殖成活率、增加养殖效益也具有重要意义[7]。环境与生物是相互适应的,底质类型往往对潜沙型生物的生长、存活和生理状态产生更强的影响[8]。已有研究表明,双壳贝类Mysella vitrea、Telline deltoidalis和Timoclea scabra在砂质环境中的生长情况更好[9-10];管角螺 (Hemifusus tuba Gemlin) 在泥沙质或无底质环境中的生长率较高,而在沙质中较差[11];缢蛏 (Sinonovacula constricta) 稚贝在砂或掺有贝壳的泥质砂中的成活率较高[12];青蛤 (Cyclina sinensis) 在泥沙质中生长较好[13]。而对于水泥池养殖的东风螺,相较于无砂环境,铺砂更利于其存活,且底质中含泥量在10%以内对东风螺无显著影响[14]。除了不同的底质材质,水环境的颜色对水生生物生长也有显著影响。三疣梭子蟹 (Portunus trituberculatus) 在红色或黄色环境下,成活率较高,生长较快[15];而河鲈(Perca fluviatilis) 则是在浅色环境下生长较快[16];红螯螯虾 (Cherax quadricarinatus) 在人工调配的蓝色水体中,成活率较高,生长较快,体色有较高的观赏价值[17]。可见,底质环境对水产动物的影响是多方面的[18-19],可以通过改变养殖底质环境达到促进生长和改善外观的目的。
当前方斑东风螺的养殖底质多为砂砾[3],在养殖过程中需要经常洗砂和换砂,不仅导致生产效率低下,还增加了养殖风险。陶粒为目前工厂化养殖的常用人工材料,由陶土烧制而成,具有质量轻、多气孔、比表面积及孔隙率大、含氧量高、可培育硝化细菌等特点,具有广阔的应用前景[20-22]。本文以河砂为对照组,选择4种不同颜色的陶粒底质 (棕色、黑色、黄色和白色) 开展为期30 d的养殖对比实验,研究不同底质类型及颜色对方斑东风螺稚螺生长、壳色及抗氧化能力的影响,探讨其较适宜的养殖底质,以期筛选出传统河砂的替代物,为新型工厂化循环水养殖模式探索、东风螺健康养殖和壳色调控提供理论依据和技术支持。
1. 材料与方法
1.1 实验材料
实验于2022年1—2月在海南省琼海市海洋与渔业科学院科研基地进行,方斑东风螺稚螺由海南省文昌市坤田水产有限公司提供,在养殖系统中暂养7 d后,选取大小均匀、潜沙正常、活力较好的稚螺作为实验材料,其平均壳高、壳宽和体质量分别为 (10.40 ± 0.39) mm、(6.90±0.27) mm和 (0.231±0.020) g。
河砂购自淘宝城固山货特产店,棕色、黑色、黄色、白色陶粒均购自淘宝灵寿县磊诚矿产品加工厂,粒径均为1 mm。
1.2 实验设计与养殖管理
实验设置河砂、棕色陶粒、黑色陶粒、黄色陶粒、白色陶粒共5个实验组,各实验组分别设置3个平行组,每个平行组放置100粒实验稚螺,底质厚度控制为2.5 cm,实验周期为30 d。
实验采用微流水养殖系统[23],使用经沉淀、沙滤及滤袋过滤后的新鲜海水 (盐度29‰),控制水位高度30 cm,水温在 (24.3±1.6) ℃,盐度稳定在29‰,pH介于8~8.1,养殖系统24 h连续充氧并保证水体溶解氧质量浓度>7.0 mg·L−1,每个处理组养殖水体的面积为0.48 m2,流速为70 L·h−1。每天早上 (8:00) 投喂剪碎的新鲜牡蛎肉,日投喂量为体质量的25%,每天投喂1次。
1.3 样品的采集与处理
1.3.1 动物组织样品处理
实验结束时,从每个处理组3个重复中各取15粒螺,称量后去壳取完整软体组织,混合后按质量 (g)∶体积 (mL) 为 1∶9加入生理盐水,机械匀浆,3 000 r·min−1离心10 min,取上清液于−80 ℃冰箱储藏,用于后续抗氧化酶活性测定。
1.3.2 底质样品处理
实验结束时,在每个处理组3个重复中各称取新鲜底质10 g (精确至0.1 g),混合后放入三角瓶中,加入100 mL 2 mol· L−1氯化钾 (KCl) 溶液,放入摇床常温下振荡30 min,立即过滤至水样瓶中用于底质氨氮 (NH4 +-N) 含量的测定。每组3个重复中各称取新鲜底质10 g,混合后放入三角瓶中,加入0.1 g硫酸钙 (CaSO4) 和50 mL水,放入摇床常温下振荡10 min,静置5 min后,上清液过滤用于底砂亚硝酸盐 (NO2 −-N) 含量的测定。
1.4 检测指标与计算
1.4.1 底质指标的检测
对底质样品进行 NH4 +-N 和 NO2 −-N 含量分析 (SmartChem-140化学分析仪)。NH4 +-N 和 NO2 −-N 的测定分别采用靛酚蓝法和重氮耦合法。
1.4.2 生长指标及成活率
实验结束后,每个处理组的3个重复各随机挑选30粒螺用于生长指标的测定。使用游标卡尺对样品进行壳高 (SH) 和壳宽 (SW) 的测量 (图1),用分析天平进行体质量的称量。
成活率按下列公式计算:
$$ R_{\mathrm{s}}= N_t / N_1\times 100 {\text{%}}$$ (1) 式中:Rs为成活率(%);N1和Nt分别为实验开始时和结束后的成活个数。
1.4.3 外壳颜色指标检测
实验结束后,在每个处理组3个重复中各挑选30粒螺进行拍照,用于后期壳色分析。壳色测定采用图片分析法[17],在摄影箱 (22 cm×22 cm×22 cm) 上方8 cm处对稚螺进行拍摄,随后采用Adobe Photoshop CS3软件测量不同实验组稚螺整个壳部的CIE (1976)-Lab表色系参数。颜色参数换算公式如下:
$$ L^*=(L / 255) \times 100 $$ (2) $$ a^*=(240 a / 255) \times 120 $$ (3) $$ b^*=(240 b / 255) \times 120 $$ (4) 式中:L、a、b是通过Adobe Photoshop CS3软件获得的图片颜色参数直接数值。L*代表明度;a*表示红度,表示从绿到红的变化,数值介于−120~120;b*代表黄度,表示从蓝到黄的变化,数值介于−120~120。
1.4.4 组织抗氧化能力及膜脂过氧化物含量的检测
采用南京建成生物科技有限公司的生化试剂盒进行总抗氧化能力 (T-AOC)、超氧化物歧化酶 (SOD)、过氧化氢酶 (CAT) 活性及丙二醛 (MDA) 含量的测定,操作方法严格按照说明书进行。
1.5 数据处理
实验数据均以“平均值±标准差 (
$\bar x $ ±s)”表示,所有数据采用DPS 14.5软件进行数据处理,采用单因素方差分析 (One-way ANOVA) 对各实验组进行显著性检验, 利用Turkey法进行多重比较,以0.05为显著性阈值。2. 结果
2.1 不同底质的氨氮和亚硝酸盐含量分析
实验结束后,不同底质下的NH4 +-N和NO2 −-N质量浓度存在差异 (图2)。黄色和白色陶粒组的NH4 +-N、NO2 −-N质量浓度分别为 (0.234±0.008)、(0.029±0.000) mg·L−1和 (0.225±0.014)、(0.029±0.001) mg·L−1,均显著低于其他实验组 (P<0.05);河砂组中NH4 +-N质量浓度最高 [(0.382±0.010) mg·L−1],显著高于4种颜色的陶粒组 (P<0.05);黄色和白色陶粒组间无显著性差异 (P>0.05)。
2.2 不同底质环境下的成活率
不同底质环境显著影响方斑东风螺稚螺的成活率 (图3,P<0.05)。黄色和白色陶粒组稚螺的成活率显著低于河砂组、棕色和黑色陶粒组 (P<0.05),而棕色和黑色陶粒组稚螺的成活率显著高于河砂组 (P<0.05)。实验结束时,棕色陶粒组的成活率最高 [(62.00±2.00)%],白色陶粒组最低 [(42.50±3.00)%],且各实验组的成活率均小于65%。
2.3 不同底质环境下的生长情况
随着养殖时间的推移,养殖在不同底质环境中的稚螺在壳高、壳宽、体质量等生长指标上表现出差异 (图4)。实验结束时,河砂组稚螺的壳高、壳宽、体质量分别为 (14.22±0.03) mm、(9.37±0.04) mm、(0.541±0.022) g,显著高于黑色、黄色和白色陶粒组 (P<0.05),但与棕色陶粒组之间无显著性差异 (P>0.05);白色陶粒组稚螺平均体质量最小,仅 (0.427±0.024) g。
2.4 不同底质环境下的壳色分析
不同底质环境会显著影响方斑东风螺稚螺的壳色 (图5)。各实验组稚螺壳的L*、a*和b*具有一致的规律性;棕色陶粒组的L*、a*、b*最高,分别为45.86±0.11、7.38±0.12、26.53±0.01,显著高于其他组 (P<0.05);黑色陶粒组方斑东风螺的L*、a*、b*次之,分别为43.67±0.32、7.09±0.06、24.35±0.32,显著高于河砂组、黄色和白色陶粒组 (P<0.05);而河砂组、黄色和白色陶粒组的L*、a*、b*无显著性差异 (P>0.05)。
2.5 抗氧化酶活性和膜脂过氧化物含量分析
不同底质环境下稚螺抗氧化酶活性和膜脂过氧化物含量见图6。各组间稚螺的总抗氧能力存在显著性差异(图6-a,P<0.05),由高到低分别为:棕色陶粒组[(0.297±0.009) mmol·g−1]>黑色陶粒组[(0.246±0.004) mmol·g−1]>河砂组[(0.220±0.007) mmol·g−1]>黄色陶粒组[(0.168±0.004) mmol·g−1]>白色陶粒组 [(0.141±0.002) mmol·g−1]。
对CAT活性的影响见图6-b,白色陶粒组稚螺的CAT活性为 (30.864±0.623) U·mg−1,显著高于其他实验组;黄色陶粒组次之,显著高于另外3组;棕色陶粒组稚螺的CAT活性最低 [(12.614±0.378) U·mg−1],显著低于其他组 (P<0.05)。
黄色和白色陶粒组稚螺的SOD活性显著高于其他实验组 (P<0.05),其中河砂组的SOD活性最低 [(7.008±0.817) U·mg−1,图6-c]。
方斑东风螺稚螺膜脂过氧化物含量受底质环境影响显著 (图6-d),黄色和白色陶粒组稚螺MDA质量摩尔浓度分别为 (1.539±0.045) 和 (1.580±0.015) nmol·mg−1,显著高于其他3组 (P<0.05)。
3. 讨论
3.1 底质对养殖环境的影响
在养殖过程中,底质不仅是底栖贝类的栖息场所,还承担了大部分营养物质和有机物的沉积。饵料残渣、排泄物以及动物尸体倾向于在底部聚集。当沉积物超出了底质自身的承载量,这些有毒物质会被释放到养殖水体中,间接对养殖动物造成影响[24]。在水体中,NH4 +-N以NH4 + 和NH3的形式存在,NH3可直接进入细胞膜,破坏膜结构、影响蛋白质代谢,甚至造成DNA损伤[25]。在养殖水体和底质中,NH4 +-N与NO2 −-N是微生物利用含氮有机物进行硝化作用过程中产生的重要中间产物,其含量可作为判断养殖环境好坏的重要指标[26]。本研究发现,不同底质环境中NH4 +-N和NO2 −-N的含量存在差异,河砂组中NH4 +-N含量高,陶粒组中NH4 +-N含量低。这可能与陶粒多孔、比表面积大的结构有关[27],有利于硝化细菌的繁殖,且陶粒间空隙较大有利于底质中的水体流动、物质交换。已有研究表明,陶粒能有效去除NH4 +-N,去除率高达80% [28]。本实验棕色陶粒组的NO2 −-N含量与河砂组无显著性差异,黄色和白色陶粒组NH4 +-N含量较低,这可能与底质颜色影响养殖生物有关。在黄色和白色陶粒环境下,浅色或更透亮的环境使稚螺受到较强的环境胁迫,摄食减少,排泄量降低,从而导致NH4 +-N含量低。且在实验后期黄色和白色陶粒组稚螺成活个数较少,通过流水可以充分地将残饵与粪便排出养殖系统。Abed和Zeng[29]研究表明深色背景能够明显促进生物摄食,减轻生理压力,而浅色背景下 (白色) 锯缘青蟹 (Scylla serrata) 的成活率最低。
3.2 底质对方斑东风螺存活与生长的影响
方斑东风螺具有潜埋习性,对底质类型有一定要求,且长时间生活在底质中,受底质环境的影响久。而底质作为一种外界环境,与温度、盐度、溶解氧共同影响着水生生物的生长发育、基因表达、能量积累、物质代谢等各个方面,甚至威胁其生存[30-32]。一般而言,生物长期接受某种 (类) 不适刺激会导致其消耗大量能量用于抵御外界胁迫、维持内稳态和机体组织损伤修复,进而影响其生长[33-34]。在水产动物养殖过程中,为其提供适宜的栖息环境,有利于减少其因不适刺激而引起的能量消耗,从而促进其健康生长。本研究发现,不合适的底质不仅会加速方斑东风螺稚螺的死亡速率,同时也会降低存活个体的生长性能。在本实验条件下,棕色陶粒和河砂更利于方斑东风螺的成活与生长,而白色陶粒组生长最慢,成活率最低。究其原因可能是由于方斑东风螺为海洋底栖生物,浅色 (黄色和白色) 陶粒底质与东风螺自然栖息环境相差大,造成了较强的环境胁迫,使得稚螺处于应激状态,这可从浅色陶粒组的T-AOC较低,CAT、SOD、MDA较高得到证实。而这种对浅色陶粒底质环境的不适应使得稚螺长期处于应激状态,将更多的能量用于抵御外界的环境应激,导致其生长缓慢。而持续的胁迫使能量的重分配失衡[34],最终导致死亡,造成白色陶粒组的死亡率高。已有研究也得出相似结果,如底质环境较符合原来的生境时,利于管角螺生长[35];在黑色和红色背景环境下,红鳌螯虾成活率最高[36]。腹足类软体动物由于运动能力较差,日间通常埋栖于海底或躲藏于礁石中,避免被捕获[37-40],当养殖环境与其自然栖息地的环境差异较大时,其生理会受到较大影响,所以在养殖过程中应注意底质环境对方斑东风螺的影响。此外,本实验结束时方斑东风螺稚螺的成活率总体不高,主要由于实验在冬季进行 (1—2月),温度相对较低 [(24.3±1.6) ℃],导致成活率普遍不高,这与生产经验相符。方斑东风螺为热带种,刘永等[41]研究发现当水温超过26 ℃时,方斑东风螺的活力好、摄食快且摄食量大,生长速度也较快;当水温在24 ℃左右时,其摄食能力下降,活力也相对减弱,随着温度的下降,部分稚螺出现死亡。温度会影响生物的生长、存活、免疫、代谢等多个方面[32,34]。因此,在方斑东风螺养殖过程中底质与水质环境都应得到重视。
3.3 底质对方斑东风螺外观的影响
外观与色泽作为重要的经济性状,是影响消费者购买经济动物的重要评判标准之一[42-44]。漂亮的外观不仅给消费者带来视觉享受,还能显著提高其市场价值。贝类的壳色受遗传与环境调控,相较于生长发育、营养成分的影响,壳色变化与环境的关系更为紧密[45]。而L*、a*、b* 作为评价经济动物色泽最直观的重要指标,在水产动物的体色研究中得到广泛应用[46],如红螯螯虾[17],锦鲤 (Cyprinus carpio)[47]等。本研究利用L*、a*、b* 对不同底质条件下的壳色进行测定,发现棕色陶粒组养殖的稚螺贝壳更加鲜亮,其L*、a*、b* 均显著高于其他实验组。同时深色组 (河砂组、棕色和黑色陶粒组) 相较于浅色组,稚螺壳上斑点的颜色更深、更明显。这可能是在不同环境下,生物体倾向于选择与环境更相近的体色,从而在多变的环境下保存自己。Manriquez等[48]研究发现智利鲍 (Concholepas concholepas) 的壳色会随着个体生长不断趋同于周围环境的颜色;Siegenthaler等[19]发现褐虾 (Crangon crangon) 能够通过快速改变体色以适应周围环境;Stevens等[49]研究指出角眼沙蟹 (Ocypode ceratophthalmus) 会根据每天色彩的变化节奏来调整在沙滩上的伪装。同样,在方斑东风螺的养殖过程中,可以通过改变底质颜色来培育特定壳色,以提高其经济价值。
3.4 不同底质对方斑东风螺抗氧化性能的影响
T-AOC是机体内抗氧化能力的总体体现[50],是酶促和非酶促因子抗氧化能力的总合。本研究发现棕色陶粒组的T-AOC最高,表明在该养殖环境下稚螺具有更强的抗氧化能力。而CAT、SOD是机体内重要的抗氧化酶,CAT和SOD的协同作用可维持自由基的动态平衡,进而减少机体的氧化损伤[51]。SOD活性间接反映了机体清除活性氧自由基的能力,它能够让活性氧发生歧化,生成过氧化氢 (H2O2) 和氧气 (O2) [52],而CAT能催化H2O2生成水 (H2O)和O2。因此CAT、SOD活性的变化在一定程度上能反映出机体在环境胁迫下抗氧化系统的变化[53]。本研究中,棕色陶粒组的CAT、SOD较低,表明在该养殖环境中东风螺的应激反应较小。MDA是脂质过氧化物分解后的重要产物,是研究脂质过氧化作用的重要生物标志物,也可间接反映细胞的受损程度,其测定常与SOD和CAT测定配合使用[54]。MDA的检测结果同样显示棕色陶粒组的水平较低,细胞受损程度较小,进一步证实该养殖环境对东风螺稚螺的影响较小。而浅色陶粒的底质环境中,T-AOC较低,CAT、SOD、MDA较高,均表明稚螺处于较强的应激状态。其原因可能是背景色对养殖生物的生理水平产生了影响,相似的结果在其他生物中也有发现,如红鳌螯虾在黑色环境下具有较高的生长速度和成活率[55];拟穴青蟹 (S. paramamosain) 在红色环境下产生更强的氧化应激[56];牙鲆 (Paralichthys olivaceus) 在较亮的环境中皮质醇含量增加[57]。
4. 结论
本研究通过对不同底质条件下的底质环境指标、生长成活情况、壳色变化、抗氧化能力以及氧化损伤程度的检测,发现不同底质类型和颜色可显著影响方斑东风螺稚螺的生长、壳色及抗氧化能力。在以棕色陶粒为底质的养殖条件下稚螺的成活率最高,生长速度较快,壳色更为艳丽,底质NH4 +-N含量较低,总抗氧化能力最高,氧化损伤较低。可见,在生产中选择棕色陶粒作为方斑东风螺稚螺养殖底质替代河砂,具有广泛的应用前景。
-
表 1 养虾塘基本情况
Table 1 Basic information of shrimp ponds
Ⅰ号塘
Pond IⅡ号塘
Pond IIⅢ号塘
Pond III虾塘面积 Area/m2 14 000 13 000 12 500 虾苗投放量 Shrimp input/×104 尾 300 280 270 对虾收获量 Shrimp harvest/kg 7 000 9 500 8 000 对虾成活率 Survival rate/% 70 80 75 饲料投喂量 Feed input/kg 5 000 6 000 5 000 表 2 养虾塘水体溶解有机碳、氮、磷营养盐及叶绿素a浓度差异性分析
Table 2 ANOVA analysis of contents of DOC, nitrogen and phosphorus nutrients and chlorophyll a in shrimp ponds
变量
Variable可溶性有机碳
DOC可溶性无机氮
DIN磷酸盐
PO4 3−-P叶绿素 a
Chlorophyll aF P F P F P F P 采样池塘 Sampling pond 4.150 0.017 40.161 <0.001 5.405 0.005 371.082 <0.001 采样日期 Sampling date 31.496 <0.001 63.478 <0.001 4.015 0.001 276.654 <0.001 采样池塘×采样日期
Sampling pond×Sampling date8.476 <0.001 18.110 <0.001 2.766 0.001 33.768 <0.001 注:P<0.05表示存在显著差异;P<0.01表示存在极显著差异 Note: Significant difference at 0.05 level (P<0.05); Very significant difference at 0.01 level (P<0.01) 表 3 养虾塘水体可溶性有机碳、营养盐及叶绿素 a浓度与理化指标的相关分析
Table 3 Correlation analysis of contents of DOC, nutrients and chlorophyll a in shrimp pond water with physicochemical indices
指标
Index水温
Water temperature/℃溶解氧
Dissolved oxygen/(mg·L−1)pH 盐度
Salinity叶绿素 a
Chlorophyll a/
(μg·L−1)可溶性无机碳 DOC/(mg·L−1) −0.416** 0.069 0.175 0.323* 0.413** 硝酸盐氮 NO3 −-N/(mg·L−1) 0.021 0.137 0.332* 0.177 0.181 氨氮 NH4 +-N/(mg·L−1) −0.411** −0.090 0.202 0.099 0.211 亚硝酸盐氮 NO2 −-N/(mg·L−1) 0.109 0.085 0.228 0.227 0.128 磷酸盐 PO4 3−-P/(mg·L−1) −0.033 −0.427 −0.577** 0.000 −0.244 叶绿素 a Chlorophyll a/(μg·L−1) −0.178 0.371* 0.192 0.479** 1 注:*. 显著性相关 (P<0.05);**. 极显著性相关 (P<0.01) Note: *. Significant at 0.05 level (P<0.05);**. Very significant at 0.01 level (P<0.01) -
[1] REN C Y, WANG Z M, ZHANG Y Z, et al. Rapid expansion of coastal aquaculture ponds in China from Landsat observations during 1984−2016[J]. Int J Appl Earth Obs, 2019, 82: 1-12.
[2] FAO. Fishery and Aquaculture Statistics 2017[R]. Roma: Food and Agriculture Organization of the United Nations, 2019: 3-80.
[3] SIL VA K R D, WASIELESKY W, ABREU P C, et al. Nitrogen and phosphorus dynamics in the biofloc production of the Pacific white shrimp, Litopenaeus vannamei[J]. J World Aquacult Soc, 2013, 44(1): 30-41. doi: 10.1111/jwas.12009
[4] YANG P, LAI D Y F, JIN B S, et al. Dynamics of dissolved nutrients in the aquaculture shrimp ponds of the Min River estuary, China: concentrations, fluxes and environmental loads[J]. Sci Total Environ, 2017, 603-604: 256-267. doi: 10.1016/j.scitotenv.2017.06.074
[5] OSTI J A S, MORAES M A B, CARMO C F, et al. Nitrogen and phosphorus flux from the production of Nile tilapia through the application of environmental indicators[J]. Braz J Biol, 2017, 78(1): 25-31. doi: 10.1590/1519-6984.02116
[6] 郭丰, 黄凌风, 周时强, 等. 斑节对虾养殖垦区水质状况的调查研究[J]. 厦门大学学报(自然版), 2001, 40(4): 931-935. [7] 宋玉芝, 秦伯强, 高光. 氮及氮磷比对附着藻类及浮游藻类的影响[J]. 湖泊科学, 2007, 19(2): 125-130. doi: 10.3321/j.issn:1003-5427.2007.02.003 [8] 杨平, 谭立山, 金宝石, 等. 九龙江河口区养虾塘水体营养盐与叶绿素a含量的变化特征及影响因素[J]. 湿地科学, 2017, 15(6): 794-801. [9] 施沁璇, 王俊, 盛鹏程, 等. 淡水养殖池塘中水体碳氮比对养殖环境的影响[J]. 江苏农业科学, 2017, 45(21): 186-189. [10] 高磊. 碳氮比调节在对虾养殖中的作用及优化[D]. 青岛: 中国海洋大学, 2012: 54-68. [11] AVNIMELECH Y. Carbon/nitrogen ratio as a control element in aquaculture systems[J]. Aquaculture, 1999, 176: 227-235. doi: 10.1016/S0044-8486(99)00085-X
[12] 张许光. 2014年中国对虾养殖总结及2015年展望[EB/OL]. [2015-03-19]. http://www.shuichan.cc/news_view−237856.html. [13] 杨平, 仝川, 何清华, 等. 闽江口鱼虾混养塘水−气界面温室气体通量及主要影响因子[J]. 环境科学学报, 2013, 33(5): 1493-1503. [14] YANG P, ZHANG Y F, LAI D Y F, et al. Fluxes of carbon dioxide and methane across the water-atmosphere interface of aquaculture shrimp ponds in two subtropical estuaries: the effect of temperature, substrate, salinity and nitrate[J]. Sci Total Environ, 2018, 635: 1025-1035. doi: 10.1016/j.scitotenv.2018.04.102
[15] ZHANG L, WANG L, YIN K D, et al. Pore water nutrient characteristics and the fluxes across the sediment in the Pearl River estuary and adjacent waters, China[J]. Estuar Coast Shelf S, 2013, 133: 182-192. doi: 10.1016/j.ecss.2013.08.028
[16] ZHANG Y F, YANG P, YANG H, et al. Plot-scale spatiotemporal variations of CO2 concentration and flux across water-air interfaces at aquaculture shrimp ponds in a subtropical estuary[J]. Environ Sci Pollut R, 2019, 26: 5623-5637. doi: 10.1007/s11356-018-3929-3
[17] 张瑜斌, 章洁香, 詹晓燕, 等. 高位虾池养殖过程主要理化因子的变化及水质评价[J]. 水产科学, 2009, 28(11): 628-634. doi: 10.3969/j.issn.1003-1111.2009.11.004 [18] 赵卫红, 杨登峰, 王江涛, 等. 中国对虾养殖系统中无机和各形态有机N、P浓度及其变化[J]. 海洋环境科学, 2006, 25(2): 1-5. doi: 10.3969/j.issn.1007-6336.2006.02.001 [19] 王伟良, 李德尚. 养虾围隔中无机氮浓度与放养密度及环境因子的关系[J]. 海洋科学, 2000, 24(10): 44-47. doi: 10.3969/j.issn.1000-3096.2000.10.016 [20] van LUJIN F, BOERS P C M, LIJKLEMA L, et al. Nitrogen fluxes and processes in sandy and muddy sediments from a shallow eutrophic lake[J]. Water Res, 1999, 33(1): 33-42. doi: 10.1016/S0043-1354(98)00201-2
[21] 周劲风, 温琰茂. 珠江三角洲基塘水产养殖对水环境的影响[J]. 中山大学学报(自然科学版), 2004, 43(5): 103-106. doi: 10.3321/j.issn:0529-6579.2004.05.029 [22] RICARDO J M, VERDEGEM M C J, DAM A A V, et al. Effect of organic nitrogen and carbon mineralization on sediment organic matter accumulation in fish ponds[J]. Aquacult Res, 2005, 36: 983-995. doi: 10.1111/j.1365-2109.2005.01309.x
[23] 申玉春, 熊邦喜, 叶富良, 等. 凡纳滨对虾高位池养殖系统的水质理化状况[J]. 广东海洋大学学报, 2006, 26(1): 16-21. doi: 10.3969/j.issn.1673-9159.2006.01.004 [24] 苏跃朋, 马甡, 田相利, 等. 中国明对虾精养池塘氮、磷和碳收支的研究[J]. 南方水产, 2009, 5(6): 54-58. doi: 10.3969/j.issn.1673-2227.2009.06.010 [25] 齐明, 申玉春, 吴灶和, 等. 凡纳滨对虾高位养殖池氮、磷营养盐与初级生产力研究[J]. 广东农业科学, 2010, 37(9): 170-172. doi: 10.3969/j.issn.1004-874X.2010.09.065 [26] MAHMOOD T, FANG J, JIANG Z, et al. Seasonal distribution, sources and sink of dissolved organic carbon in integrated aquaculture system in coastal waters[J]. Aquacult Int, 2016, 25: 71-85.
[27] 谭立山, 杨平, 徐康, 等. 闽江河口短叶茳芏湿地及其围垦的养虾塘CH4排放通量的比较[J]. 环境科学学报, 2018, 38(2): 1214-1223. [28] 孙忠, 王跃斌, 陆建学. 三疣梭子蟹不同养殖模式池塘叶绿素a的变化特征及粒级结构[J]. 海洋渔业, 2012, 34(2): 177-182. doi: 10.3969/j.issn.1004-2490.2012.02.008 [29] 钱昊钟, 赵巧华, 钱培东, 等. 太湖叶绿素a浓度分布的时空特征及其影响因素[J]. 环境化学, 2013, 32(5): 789-796. doi: 10.7524/j.issn.0254-6108.2013.05.010 [30] REDFIELD A C. The biological control of chemical factors in the environment[J]. Am Sci, 1958, 46(3): 205-221.
[31] CHEN M, ZENG G M, ZHANG J C, et al. Global landscape of total organic carbon, nitrogen and phosphorus in lake water[J]. Sci Rep, 2015, 5: 15043. doi: 10.1038/srep15043
[32] 王芳, 国先涛, 董双林. 水域生态系统生态化学计量学研究进展[J]. 中国海洋大学学报(自然科学版), 2015, 45(12): 16-23. [33] 王维奇, 徐玲琳, 曾从盛, 等. 河口湿地植物活体−枯落物−土壤的碳氮磷生态化学计量特征[J]. 生态学报, 2011, 31(23): 7119-7124. [34] 程瑞梅, 王娜, 肖文发, 等. 陆地生态系统生态化学计量学研究进展[J]. 林业科学, 2018, 54(7): 130-136. doi: 10.11707/j.1001-7488.20180714 [35] YANG P, YANG H, LAI D Y F, et al. Production and uptake of dissolved carbon, nitrogen and phosphorus in overlying water of aquaculture shrimp ponds in subtropical estuaries, China[J]. Environ Sci Pollut R, 2019, 26: 21565-21578. doi: 10.1007/s11356-019-05445-y
[36] 孙盛明, 朱健, 戈贤平, 等. 零换水条件下养殖水体中碳氮比对生物絮团形成及团头鲂肠道菌群结构的影响[J]. 动物营养学报, 2015, 27(3): 948-955. doi: 10.3969/j.issn.1006-267x.2015.03.036 [37] ZHANG K, TIAN X L, DONG S L, et al. An experimental study on the budget of organic carbon in polyculture systems of swimming crab with white shrimp and short-necked clam[J]. Aquaculture, 2016, 451: 58-64. doi: 10.1016/j.aquaculture.2015.08.029
[38] GAL D, PEKAR F, KEREPECZKI E. A survey on the environmental impact of pond aquaculture in Hungary[J]. Aquacult Int, 2016, 24(6): 1543-1554. doi: 10.1007/s10499-016-0034-9
[39] KNOSCHE R, SCHRECKENBACH K, PFEIFER M, et al. Balances of phosphorus and nitrogen in carp ponds[J]. Fish Manag Ecol, 2000, 7: 15-22. doi: 10.1046/j.1365-2400.2000.00198.x
[40] PENMETSA A R K R, MUPPIDI S R, POPURI R, et al. Impact of aquaculture on physico-chemical characteristics of water and soils in the coastal tracts of East and West Godavari districts, Andhra Pradesh, India[J]. Int J Eng Trends Tech, 2013, 6(6): 313-319.
[41] 齐振雄, 张曼平. 对虾养殖池塘氮磷收支的实验研究[J]. 水产学报, 1998, 22(2): 124-128. [42] 邹景忠, 董丽萍, 秦保平. 渤海湾富营养化和赤潮问题的初步探讨[J]. 海洋环境科学, 1983, 2(2): 41-54. -
期刊类型引用(2)
1. 朱轩仪,郑晓婷,邢逸夫,黄建华,董宏标,张家松. 三丁酸甘油酯提高凡纳滨对虾鳃组织抗周期性高温胁迫能力的研究. 南方水产科学. 2024(03): 66-75 . 本站查看
2. 付府伊,徐钰栋,赖宇谦,段晓雪,刘自逵,贺喜,宋泽和. 人参粗提物与裂褶多糖或葡萄糖氧化酶复配对蛋鸡生产性能和血清生化指标的影响. 饲料研究. 2024(22): 27-33 . 百度学术
其他类型引用(2)