闽江河口养虾塘水体可溶性有机碳、营养盐和叶绿素a浓度变化特征

赵光辉, 杨平, 唐晨, 韩智献, 仝川

赵光辉, 杨平, 唐晨, 韩智献, 仝川. 闽江河口养虾塘水体可溶性有机碳、营养盐和叶绿素a浓度变化特征[J]. 南方水产科学, 2020, 16(3): 70-78. DOI: 10.12131/20190208
引用本文: 赵光辉, 杨平, 唐晨, 韩智献, 仝川. 闽江河口养虾塘水体可溶性有机碳、营养盐和叶绿素a浓度变化特征[J]. 南方水产科学, 2020, 16(3): 70-78. DOI: 10.12131/20190208
ZHAO Guanghui, YANG Ping, TANG Chen, HAN Zhixian, TONG Chuan. Variation of DOC, nutrients and chlorophyll a contents in shrimp ponds of Minjiang River Estuary[J]. South China Fisheries Science, 2020, 16(3): 70-78. DOI: 10.12131/20190208
Citation: ZHAO Guanghui, YANG Ping, TANG Chen, HAN Zhixian, TONG Chuan. Variation of DOC, nutrients and chlorophyll a contents in shrimp ponds of Minjiang River Estuary[J]. South China Fisheries Science, 2020, 16(3): 70-78. DOI: 10.12131/20190208

闽江河口养虾塘水体可溶性有机碳、营养盐和叶绿素a浓度变化特征

基金项目: 国家自然科学基金项目 (41671088;41801070)
详细信息
    作者简介:

    赵光辉 (1994—),男,硕士研究生,研究方向为湿地生物地球化学。E-mail: sxyqghz@163.com

    通讯作者:

    仝 川 (1964—),男,博士,教授,从事湿地生物地球化学循环研究。E-mail: tongch@fjnu.edu.cn

  • 中图分类号: S 968.22

Variation of DOC, nutrients and chlorophyll a contents in shrimp ponds of Minjiang River Estuary

  • 摘要:

    为揭示河口区陆基养虾塘可溶性有机碳 (DOC)、营养盐、叶绿素a时空动态变化及其生态化学计量特征,在福建省闽江河口鳝鱼滩选择3个陆基养虾塘作为研究对象,于2018年5—10月原位测定养虾塘水温、pH、盐度、溶解氧指标,并采集不同深度水样,实验室测定DOC、可溶性无机氮 (DIN)、磷酸盐 (PO4 3−-P)、叶绿素a浓度,探讨其主要影响因素。结果表明,养虾塘水体中DOC、DIN、PO4 3−-P和叶绿素a质量浓度分别介于5.73~16.79 mg·L−1、0.04~1.80 mg·L−1、0.03~0.16 mg·L−1和15.02~443.08 μg·L−1,均存在明显的时空变化特征;养虾塘水体DOC、营养盐、叶绿素a浓度受到养殖水体水环境参数、人为活动、养殖生物的共同影响;养虾塘水体碳 (C)、氮 (N)、磷 (P) 营养元素组成与植物、土壤之间具有相似性,并且表现为碳盈余和氮限制。在养殖过程中,加强对养虾塘水体营养盐和叶绿素a的动态变化监测,通过人为方式调节养虾塘水体C、N、P比率,对于防止养虾塘水体富营养化,促进养虾塘生态系统绿色可持续生产具有重要作用。

    Abstract:

    In order to reveal the spatiotemporal dynamic changes of DOC, nutrients, chlorophyll a and their eco-chemical metrological characteristics of land-based shrimp ponds in the Minjiang River Estuary, Fujian Province, from May to October 2018, we have analyzed the water temperature, pH, salinity, dissolved oxygen. The soluble organic carbon (DOC), soluble inorganic nitrogen (DIN), PO4 3−-P and chlorophyll a mass concentration were 5.73−16.79 mg·L−1, 0.04−1.80 mg·L−1, 0.03−0.16 mg·L−1 and 15.02−443.08 μg·L−1, respectively, all with obvious characteristics of spatio-temporal changes. The concentrations of DOC, nutrients and chlorophyll a were affected by the water environment parameters, human activities and cultured organisms. The water nutrient composition of carbon, nitrogen and phosphorus was similar with that of plants and soil, showing carbon surplus and nitrogen limitation. In summary, In the process of aquaculture, it is very important to strengthen the monitoring of the dynamic changes of nutrients and chlorophyll a in shrimp ponds, and artificially adjust the ratio of carbon, nitrogen and phosphorus, so as to prevent eutrophication of shrimp pond and promote the green and sustainable production of ecosystem of shrimp ponds.

  • 凡纳滨对虾 (Litopenaeus vannamei) 又名南美白对虾,最初主要栖息于南美太平洋地区[1],其对盐度、温度的适应范围广,且生长快、肉质好,是当今世界养殖产量最高的对虾品种[2],目前在中国东部沿海到西部内陆等区域均有养殖。根据中国渔业统计年鉴数据,2022年我国凡纳滨对虾养殖总产量高达209.86万吨[3]

    多糖 (Polysaccharide) 是由超过10个单糖的醛基和酮基通过苷键连接成的聚合糖高分子碳水化合物,是构成生命的四大基本物质之一。多糖可以通过增大巨噬细胞体积,促进淋巴细胞增殖,改善淋巴细胞亚群结构,促进细胞因子分泌,提高动物机体血清中抗体水平等来提高机体免疫力[4-6]。免疫多糖作为水产养殖免疫增强剂使用,具有广泛的应用前景及生态和经济收益,能够替代部分抗生素,减少药物的使用量,减轻对养殖水环境的污染,提高对虾养殖的成功率。

    裂褶菌 (Schizophyllum communer Fr.) 是裂褶菌科、裂褶菌属的真菌[7],广泛分布于世界各地。裂褶菌多糖是裂褶菌子实体、菌丝体或发酵液提取的一种活性多糖,因其具有抗菌、抗炎、抗氧化、抗肿瘤和调节免疫等多种功效而受到广泛关注[8]。目前,已陆续报道桦褐孔菌 (Inonotus obliquus) 多糖[9]、虫草多糖[10]、灵芝多糖[11]、灰树花多糖[12]、β-1,3葡聚糖[13]和香菇多糖[14]等多糖作为免疫增强剂应用于水产养殖中,显著提高了养殖动物的生长性能、免疫力和抗氧化能力。已有学者对裂褶菌多糖的理化性质、发酵提纯进行了研究,发现其能显著提高小鼠 (Mus musculus) 的免疫力和抗肿瘤能力[15],而在水产养殖中尚未见关于裂褶菌多糖的应用研究报道。本研究在饲料中添加不同水平的裂褶菌多糖,分析凡纳滨对虾的生长性能、免疫酶和抗氧化酶活力、对虾肠道及菌群结构的变化,以期为裂褶菌多糖在凡纳滨对虾养殖中的应用提供数据支持。

    本实验在饶平西海岸生物科技有限公司养殖基地展开,12口室内水泥池,每口池面积25 m2,凡纳滨对虾选用福建漳浦博澳快大品系虾苗。裂褶菌多糖由广州市欣海利生生物科技有限公司提供。所用凡纳滨对虾配合饲料为澳华集团虾安康系列,主要营养成分 (质量分数) 为:粗蛋白质42.0%,粗脂肪6.0%,粗纤维5.0%,粗灰分18.0%,总磷2.0%,赖氨酸2.4%,水分12%等。

    养殖水源为自然海水,盐度为25‰~28‰,水质清澈,符合GB 11607—1989《渔业水质标准》和NY 5052—2001《无公害食品 海水养殖用水水质》的要求。

    实验用凡纳滨对虾在池塘中暂养28 d,投喂对虾配合饲料。实验开始时选取初始体质量约为1.85 g的对虾,每口池塘投放约12 500尾。实验设置对照组和实验组共4组,饲料中裂褶菌多糖的添加量(质量分数)分别为0% (C组)、0.5% (S1组)、1.0% (S2组) 和2.0% (S3组),每组3口池塘。每日分别于6:00、12:00和18:00投喂3次,日投喂量为体质量的4%~6%,根据摄食情况调整投喂量,进行56 d的养殖实验。

    裂褶菌多糖的添加方法为:称取对应饲料量百分比的裂褶菌多糖用少量水稀释后,再与饲料搅拌均匀,晾干0.5 h后投喂。实验期间保持水温为 (27.5±2.5) ℃、pH为8.0±0.4、溶解氧质量浓度>7.0 mg·L−1,氨氮质量浓度<0.5 mg·L−1

    在养殖实验结束前禁食24 h。实验第56天,从每口池塘随机采集65尾对虾,其中30尾用于测量记录体长及体质量。15尾用于检测对虾血清中的生化指标及酶活,用灭菌的1 mL注射器和5号针头从虾头部的后缘插入围心腔进行采血,置于1.5 mL无菌离心管中[11],4 ℃静置过夜,5 000 r·min−1离心15 min取上清液,于−80 ℃冰箱中保存。其余20尾对虾制备两份肠道样品,一份置于10 mL 4% (质量分数) 多聚甲醛中常温保存,用于肠道切片观察;另一份置于10 mL保存液 [配方 (1 L):无水乙醇 750 mL,0.5 mol·L−1 EDTA 10 mL,无菌水240 mL] 中于 −80 ℃保存,进行对虾肠道菌群结构分析。

    用直尺和电子天平测量记录对虾的体长和体质量。

    采用Beckman Synchron CX5全自动生化分析仪测定血清中总蛋白 (TP)、胆固醇 (CHO)、尿酸 (UC) 等的浓度。谷丙转氨酶 (ALT)、谷草转氨酶 (AST)、总一氧化氮合成酶 (TNOS)、超氧化物歧化酶 (SOD)、溶菌酶 (LZM)、碱性磷酸酶 (AKP)、过氧化氢酶 (CAT) 等酶活性,丙二醛 (MDA) 浓度和总抗氧化能力 (T-AOC) 均采用南京建成生物工程研究所的专用试剂盒测定;酚氧化酶 (PO) 活性采用北京雪杰特科科技有限公司的专用试剂盒测定。

    取置于10 mL 4%多聚甲醛中常温保存的对虾肠道样品,由武汉塞维尔生物科技有限公司进行肠道组织切片、HE染色、显微观察分析,并使用CaseViewer软件测量上皮细胞高度。

    取置于10 mL保存液中保存的对虾肠道样品,用于对虾肠道菌群结构分析。选择16S rDNA的V4—V5区为扩增区间,扩增引物为:515F (5'-GTGCCAGCMGCCGCGG-3')和907R (5'-CCGTCAATTCMTTTRAGTTT-3'),高通量测序分析由明科生物技术 (杭州) 有限公司使用Illumina MiSeq平台测定。采用 QIIME 1.9.1软件计算对虾肠道菌群的多样性指数。

    生长性能指标体质量增长率 (Weight gain rate, WGR)、特定生长率 (Specific growth rate, SGR)、饲料系数 (Feed conversion rate, FCR)、成活率 (Survival rate, SR)、摄食量 (Feed intake, FI) 等计算公式如下:

    $$ R_{\mathrm{WG}}=\left(W_t - W_0\right) / W_0 \times 100 {\text{%}} $$ (1)
    $$ R_{\mathrm{SG}}=100 \times\left(\ln W_t-\ln W_0\right) / t $$ (2)
    $$ F_{\mathrm{E}}=F /\left(W_t-W_0\right) $$ (3)
    $$ R_{\mathrm{S}}=n_2 / n_1 \times 100{\text{%}} $$ (4)
    $$ Q_{\mathrm{FI}}=F /\left[\left(n_1 + n_2\right) / 2\right] $$ (5)

    式中:RWG为平均体质量增长率 (%);RSG为特定生长率 (%·d−1);FE为饲料系数;RS为成活率 (%);QFI为摄食量 (g);F为总摄食量 (g);Wt为终末体质量 (g);W0为初始体质量 (g);n1为实验开始时的虾尾数;n2为实验结束时的虾尾数;t为养殖时间 (d)。

    实验结果以“平均值±标准误 ($\overline { x}\pm s_{ \overline {x }} $)”表示,使用SPSS 19.0软件对实验数据进行统计和单因素方差分析 (One-way ANOVA),显著性水平为P<0.05。

    裂褶菌多糖对凡纳滨对虾生长性能的影响见表1。实验56 d后,S2组的终末均体质量为23.13 g,显著高于C、S1和S3组 (P<0.05),而C、S1、S3组间无显著性差异 (P>0.05)。S2组平均体质量增长率和特定生长率分别为1 150.45%和4.51%,显著高于C、S1和S3组 (P<0.05),而C、S1、S3组间无显著性差异 (P>0.05)。S2组成活率为75.37%,显著高于C、S1和S3组 (P<0.05),且S3组成活率显著高于C和S1组 (P<0.05)。S1、S2、S3组摄食量显著高于C组 (P<0.05),且S2组 (25.63 g) 显著高于S1 (21.40 g) 和S3组 (21.13 g) (P<0.05),S1、S3组无显著性差异 (P>0.05)。各组间的饲料系数和终末体长无显著性差异 (P>0.05)。

    表  1  裂褶菌多糖对凡纳滨对虾生长性能比较
    Table  1.  Comparison of effects of schizophyllan on growth performance of L. vannamei
    指标     
    Index     
    裂褶菌多糖添加量 Addition amounts of schizophyllan
    0% (C)0.5% (S1)1.0% (S2)2.0% (S3)
    初始体质量 Initial body mass/g 1.85±0.03 1.85±0.03 1.85±0.03 1.85±0.03
    终末体质量 Final body mass/g 18.44±3.34a 20.33±0.45a 23.13±0.31b 19.90±2.55a
    体质量增长率 WGR/% 896.94±180.42a 999.10±24.37a 1 150.45±16.51b 975.68±137.90a
    特定生长率 SGR/(%·d−1) 4.09±0.33a 4.28±0.40a 4.51±0.24b 4.23±0.23a
    饲料系数 FCR 1.45±0.01 1.47±0.02 1.45±0.02 1.46±0.03
    成活率 SR/% 70.15±0.10a 70.12±0.11a 75.37±0.32b 72.21±0.13c
    摄食量 FI/g 18.89±0.43a 21.44±0.36b 25.77±0.38c 21.23±0.40b
    终末体长 Final body length/cm 11.03±1.16 11.75±0.35 12.25±0.64 11.88±0.88
    注:组间显著性差异采用不同小写字母表示 (P<0.05),下同。 Note: Different lowercase letters indicate significant differences between groups (P<0.05); the same below.
    下载: 导出CSV 
    | 显示表格

    养殖实验结束后,取凡纳滨对虾的肠组织切片,用HE染色后在显微镜下观察。结果显示对照组肠道上皮细胞有部分损伤、脱落,微绒毛排列不紧密,内层上皮细胞的高度低,而S2和S3组对虾肠道内层上皮细胞紧密连接,微绒毛排列整齐,无明显损伤 (图1)。S2和S3组内层上皮细胞的高度最高达36 μm,显著高于对照组 (30 μm, P<0.05),S2、S3组间无显著性差异 (P>0.05,图2)。

    图  1  对照组与实验组肠道切片对比 (200×)
    a. C组 (0%) 肠道切片;b. S1 组 (0.5%) 肠道切片;c. S2 组 (1.0%) 肠道切片;d. S3 组 (2.0%) 肠道切片;A、B、C为不同上皮细胞高度。
    Figure  1.  Comparison of intestinal slices between control group and test groups (200×)
    a. Intestinal slices of Group C; b. Intestinal slices of Group S1; c. Intestinal slices of Group S2; d. Intestinal slices of Group S3; A, B and C represent different epithelial cell heights.
    图  2  对照组与实验组肠道上皮细胞高度
    Figure  2.  Height of intestinal epithelial cells in control and test groups

    添加裂褶菌多糖的实验组血清总蛋白浓度较对照组有升高趋势,而胆固醇浓度有降低趋势,但差异均不显著 (P>0.05,表2)。S2 (12.95 μmol·L−1) 和S3组 (10.75 μmol·L−1) 的尿酸浓度显著低于对照组 (20.17 μmol·L−1, P<0.05),S1组则无显著性差异 (P>0.05)。谷草转氨酶活性各组间无显著性差异 (P>0.05);各实验组的谷丙转氨酶活性均低于对照组,其中S1 (247.33 U·L−1) 和S3组 (230.67 U·L−1) 显著低于对照组 (431.67 U·L−1, P<0.05)。可见,添加适当水平的裂褶菌多糖能够提高对虾血清总蛋白浓度,显著降低尿酸浓度和谷丙转氨酶活性。

    表  2  裂褶菌多糖对凡纳滨对虾血清生化指标的影响
    Table  2.  Effect of schizophyllan on serum biochemical indexes of L. vannamei
    指标     
    Index     
    裂褶菌多糖添加量 Addition amount of schizophyllan
    0% (C)0.5% (S1)1.0% (S2)2.0% (S3)
    总蛋白 TP/(g·L−1) 52.71±13.01 59.49±11.00 69.07±4.48 53.91±7.18
    胆固醇 CHO/(mmol·L−1) 0.72±0.21 0.69±0.10 0.64±0.20 0.74±0.39
    尿酸 UA/(μmol·L−1) 20.17±5.95a 16.06±3.51ab 12.95±2.09b 10.75±2.44b
    谷草转氨酶 AST/(U·L−1) 382.00±142.68 443.67±100.81 474.33±140.63 427.33±143.12
    谷丙转氨酶 ALT/(U·L−1) 431.67±55.37a 247.33±91.15b 302.00±61.29ab 230.67±123.45b
    溶菌酶 LZM/(U·mL−1) 0.05±0.01a 0.09±0.03ac 0.14±0.04b 0.13±0.03bc
    酚氧化酶 PO/(U·mL−1) 0.30±0.11a 0.52±0.03b 0.47±0.03b 0.41±0.05b
    碱性磷酸酶 ALP/(U·mL−1) 0.64±0.32a 1.43±0.39b 1.70±0.24b 1.43±0.03b
    总一氧化氮合酶 TNOS/(U·mL−1) 12.89±1.44a 13.75±0.83ac 15.59±1.64bc 16.23±1.04b
    超氧化物歧化酶 SOD/(U·mL−1) 246.55±7.35a 267.37±47.87a 333.78±25.07b 253.23±40.09a
    过氧化氢酶 CAT/(U·mL−1) 12.93±2.87a 17.18±2.57b 23.68±0.91c 20.59±0.97bc
    丙二醛 MDA/(nmol·L−1) 6.40±1.20 5.95±0.54 5.77±0.68 6.31±2.71
    总抗氧化能力 T-AOC/(U·mL−1) 5.18±1.66a 5.75±0.82ab 8.67±2.41b 7.40±1.62ab
    下载: 导出CSV 
    | 显示表格

    添加裂褶菌多糖的实验组S2 (0.14 U·mL−1) 和S3组 (0.13 U·mL−1) 血清中溶菌酶活性显著高于对照组 (0.05 U·mL−1P<0.05,表2)。3个实验组血清酚氧化酶和碱性磷酸酶活性均显著高于对照组 (P<0.05),且3个实验组间无显著性差异 (P>0.05)。S2 (15.59 U·mL−1) 和S3组 (16.23 U·mL−1) 血清中总一氧化氮合成酶的活性显著高于对照组 (12.89 U·mL−1, P<0.05),S1组与对照组无显著性差异 (P>0.05),且S3组显著高于S1组 (P<0.05)。可见,添加不同浓度的裂褶菌多糖能够提高对虾溶菌酶、酚氧化酶、碱性磷酸酶和总一氧化氮合成酶活性。

    饲料中添加适量的裂褶菌多糖提高了对虾血清中超氧化物歧化酶活性,S2组 (333.78 U·mL−1) 活性显著高于对照组 (246.55 U·mL−1, P<0.05) (表2)。S1、S2和S3组过氧化氢酶活性均显著高于对照组 (P<0.05),且S2组显著高于S1组 (P<0.05),S3与S1组无显著性差异 (P>0.05)。各实验组血清中丙二醛含量较对照组有下降趋势 (P>0.05)。S2组 (8.67 U·mL−1) 血清总抗氧化能力显著高于对照组 (5.18 U·mL−1, P<0.05),其余各实验组差异不显著 (P>0.05)。可见,添加不同浓度的裂褶菌多糖能够提高对虾总抗氧化能力、超氧化物歧化酶和过氧化氢酶活性,降低丙二醛浓度。

    表3可知,饲料中添加不同浓度的裂褶菌多糖对凡纳滨对虾肠道有效OTUs数目无显著性影响 (P>0.05),肠道OTUs数目最高值出现在S2组。用Alpha多样性分析对虾肠道微生物群落的多样性,显示各组肠道菌群检测覆盖率指数均大于0.99,样品达到要求。凡纳滨对虾肠道菌群Ace、Chao1、Shannon、Simpson指数均无显著性差异 (P>0.05)。

    表  3  裂褶菌多糖对凡纳滨对虾肠道菌群多样性的影响
    Table  3.  Effects of schizophyllan on intestinal microflora diversity of L. vannamei
    指标     
    Index     
    裂褶菌多糖添加量 Addition amounts of schizophyllan
    0% (C)0.5% (S1)1.0% (S2)2.0% (S3)
    操作分类单元 OTUs 236.33±19.50 201.00±25.16 242.67±82.97 240.33±3.21
    Chaol 指数 Chao1 261.33±19.43 227.33±24.83 266.67±78.82 274.33±23.03
    ACE 指数 ACE 261.33±10.50 226.33±22.23 269.67±71.39 262.47±22.50
    香农指数 Shannon 3.37±0.57 3.45±0.18 3.48±0.15 3.42±0.12
    辛普森指数 Simpson 0.70±0.24 0.53±0.13 0.57±0.08 0.65±0.05
    覆盖率指数 Coverage 0.999±0.00 0.999±0.00 0.999±0.00 0.999±0.00
    下载: 导出CSV 
    | 显示表格

    在门水平,对虾肠道菌群主要包含变形菌门、放线菌门、软壁菌门、拟杆菌门等 (图3)。各组菌群类别基本一致,但相对丰度存在一定差异。S1组变形菌门的相对丰度 (46.35%) 较对照组 (52.67%) 有下降趋势 (P>0.05)。S2组软壁菌门的相对丰度 (5.33%) 较对照组 (1.05%) 有上升趋势(P>0.05),而S3组软壁菌门的相对丰度 (12.32%) 显著高于对照组 (P<0.05)。与对照组相比,添加裂褶菌多糖的各实验组变形菌门相对丰度均下降,软壁菌门升高。

    图  3  不同浓度裂褶菌多糖饲喂凡纳滨对虾肠道菌群在门水平的相对丰度
    Figure  3.  Relative abundance of predominant phylum of intestinal microflora of L.vannamei fet with different concentrations of schizophyllan

    在属水平上,肠道菌群主要由PseudoruegeriaFormosaMuricauda、鲁杰氏菌 (Ruegeria) 和弧菌属 (Vibrio) 等组成 (图4)。其中,S1和S2组中Formosa (11.65%和8.02%)、Pseudoruegeria (12.03%和16.32%)、Muricauda (6.67%和6.69%) 的相对丰度均显著高于对照组 (P<0.05);而弧菌属 (2.32%和0.71%) 的相对丰度显著低于对照组 (5.33%, P<0.05)。S2和S3组鲁杰氏菌属 (5.73%和12.38%) 的相对丰度显著高于对照组 (2.62%, P<0.05)。

    图  4  不同水平裂褶菌多糖饲喂凡纳滨对虾肠道菌群属水平的相对丰度
    Figure  4.  Relative abundance of predominant genus of intestinal microflora of L.vannamei fet with different concentrations of schizophyllan

    多糖作为免疫增强剂已广泛应用于水产养殖中,其可显著提高对虾的生长性能。本研究将裂褶菌多糖以不同比例添加到饲料中饲养凡纳滨对虾,实验组对虾的终末体质量、体长等生长性能均有提高,其中S2组对虾的体质量增长最显著;且肠道上皮细胞排列整齐、高度高。这一结果与饲料中添加适量的β葡聚糖能够显著提高红鲷 (Pagrus auratus)[16]、南亚鲮鱼 (Labeo rohita hamilton)[17]及大黄鱼 (Pseudosciaena crocea)[18]生长性能的结果相似;也与添加其他多糖如桦褐孔菌多糖[9]能显著提高凡纳滨对虾的成活率和摄食量,灵芝多糖[11]和β-1,3葡聚糖[13]能显著提高凡纳滨对虾的终体质量、平均体质量增长率的结果一致。这可能是由于多糖进入到养殖动物肠道内,为其提供营养,且在肠道内发酵生成短链脂肪酸,保护和修复肠道上皮细胞,改善肠道结构,促进营养物质吸收,从而提高了摄食量、生长性能及肠道健康度,促使对虾摄入更多饲料和营养以满足自身生长及日常活动所需的能量。多糖因具有独特的功效与特点,目前已在水产养殖过程中发挥着重要作用。

    血清中生化指标是反映养殖动物体内物质代谢和组织器官机能状态的重要指标[19]。总蛋白和胆固醇等指标变化是动物体内蛋白代谢和脂类吸收水平的体现,而尿酸是动物血清中蛋白质代谢分解后产生的,尿酸浓度越低,表明蛋白质分解的越少,其浓度也反映出动物体内的物质代谢是否正常[20-22]。本研究中,添加不同水平的裂褶菌多糖能提高对虾血清总蛋白浓度,胆固醇和谷草转氨酶无显著差异,尿酸浓度和谷丙转氨酶活性显著降低,与刘小玲等[9]研究的桦褐孔菌多糖对凡纳滨对虾生化指标影响的结果一致,表明饲料中添加裂褶菌多糖能减少蛋白质的异常消耗分解,保护对虾健康。

    溶菌酶、总一氧化氮合成酶、酚氧化酶和碱性磷酸酶等是血清中的重要免疫酶,其活性高低直接反映对虾免疫能力的强弱,而增强免疫力和抗氧化能力是鱼虾预防病害的重要途径[23]。本研究中,添加裂褶菌多糖能提高对虾溶菌酶、酚氧化酶、碱性磷酸酶和总一氧化氮合成酶等免疫酶活性;还能增强总抗氧化能力、超氧化物歧化酶和过氧化氢酶活性,降低丙二醛浓度,且S2组免疫酶活性和抗氧化能力显著高于对照组 (P<0.05)。杨娜等[15]将不同剂量的裂褶菌多糖灌喂小鼠发现,其对免疫力低下的小鼠有一定的恢复作用,可增强小鼠巨噬细胞的吞噬能力,当裂褶菌多糖质量浓度为2 000 μg·mL−1时,对结肠癌细胞增殖的抑制率可达45.32%。在水产饲料中添加多糖或单糖等免疫增强剂可显著提高凡纳滨对虾[8]、卵形鲳鲹 (Trachinotus ovatus)[24]、刺参 (Stichopus japonicus)[25]、大菱鲆 (Scophthalmus maximus)[26]和舌齿鲈 (Dicentrarchus labrax)[27]等养殖动物的溶菌酶、酚氧化酶等免疫酶活性和抗氧化能力,与本研究结果相似。但在实际养殖过程中,使用免疫增强剂提高养殖动物免疫力,其效果与使用剂量和时间有密切关系,有研究发现高剂量的β-1,3葡聚糖会抑制鱼虾的生长,降低其免疫能力[28-30]。故在养殖过程中使用免疫多糖应确定适用剂量,以达到最佳的养殖效果。

    肠道是机体消化吸收的主要器官,内含大量结构复杂的微生物菌群,承担着营养吸收的重任。微生物菌群与宿主之间存在着相互促进、相互依赖、相互制约的关系。通常来说,肠道菌群的多样性降低可能会使肠道菌群结构紊乱,增加机体的患病风险[31]。Wu等[32]研究发现,厚壁菌门、软壁菌门、变形菌门、放线菌门和拟杆菌门等是健康凡纳滨对虾肠道中的主要组成门类,与本研究结果类似。有研究指出变形菌门通常在机体腐败中起重要作用,其含量过高可能会导肠道微生态环境发生改变、失调或者肠炎等,而厚壁菌门可帮助肠道发酵多糖、吸收营养等[33-34]。本研究中,添加裂褶菌多糖可提高对虾肠道上皮细胞高度,S2和S3组显著高于对照组 (P<0.05),变形菌门相对丰度降低。说明添加裂褶菌多糖调控了凡纳滨对虾的肠道菌群结构,降低了有害菌的相对丰度。有报道发现,鲁杰氏菌通过产生抑菌蛋白和密度感应淬灭酶等方式防控水产养殖病害,并且能够抑制发光弧菌 (Vibrio vulnificus) 等多种常见病原菌[35]Pseudoruegeria sp. M32A2M分泌的新化合物二酮哌嗪环 [Ala-Gly],对几种甲藻类有特定的杀藻活性,但对硅藻类无影响[36];而Muricauda则是一种潜在的有机污染物降解菌。陈晓瑛等[37]研究发现饲料中添加低聚木糖,对虾肠道的总菌和双歧杆菌数量显著高于对照组(P<0.05),肠道弧菌数量显著低于对照组 (P<0.05);Su等[38]和潘金露[39]均报道了饲料中添加壳寡糖 (COS) 能够显著降低鱼类肠道弧菌属的相对丰度;殷朝敏等[40]将裂褶菌多糖的复合制剂应用于调控人体的肠道菌群,效果显著。与本研究添加裂褶菌多糖的S1和S2组中FormosaPseudoruegeriaMuricauda的相对丰度均显著高于对照组 (P<0.05),S2和S3组鲁杰氏菌属的相对丰度显著高于对照组 (P<0.05),而与对虾白便综合症相关的致病弧菌属[41]的相对丰度显著低于对照组 (P<0.05) 的结果相似。这可能是由于多糖作为碳源能促进肠道内有益菌的增殖,同时多糖的结构物质与病原微生物外源凝集素相似,其与病原菌相结合,携带病原菌排出体外,减少了病原菌与肠道的结合[42]。从而起到调控养殖动物的肠道菌群结构、促进有益菌增殖、降低有害菌丰度的作用,进而减少肠道相关疾病的发生。

    饲料中添加1.0% 的裂褶菌多糖对凡纳滨对虾的生长性能、抗氧化能力和免疫力均有显著提升作用,同时还能调控肠道门和属水平上的菌群丰度,提高有益菌占比,降低有害菌占比。

  • 图  1   研究区域概况

    Figure  1.   Locations of survey area

    图  2   养虾塘主要水体理化性质时间变化特征

    Figure  2.   Temporal variation of main physical and chemical properties in shrimp ponds

    图  3   养虾塘水体可溶性有机碳和叶绿素a浓度时间变化特征

    Figure  3.   Temporal variation characteristics of DOC and chlorophyll a mass concentration in shrimp ponds

    图  4   养虾塘水体可溶性无机氮和磷酸盐浓度时间变化特征

    Figure  4.   Temporal variation characteristics of DIN and PO4 3−-P mass concentration in shrimp ponds

    图  5   养虾塘水体可溶性无机碳、可溶性无机氮、磷酸盐的碳、氮、磷的化学计量比特征

    Figure  5.   Stoichiometric characteristics of carbon, nitrogen and phosphorus of DOC、DIN、PO4 3−-P in shrimp ponds

    表  1   养虾塘基本情况

    Table  1   Basic information of shrimp ponds

    Ⅰ号塘
    Pond I
    Ⅱ号塘
    Pond II
    Ⅲ号塘
    Pond III
    虾塘面积 Area/m2 14 000 13 000 12 500
    虾苗投放量 Shrimp input/×104 300 280 270
    对虾收获量 Shrimp harvest/kg 7 000 9 500 8 000
    对虾成活率 Survival rate/% 70 80 75
    饲料投喂量 Feed input/kg 5 000 6 000 5 000
    下载: 导出CSV

    表  2   养虾塘水体溶解有机碳、氮、磷营养盐及叶绿素a浓度差异性分析

    Table  2   ANOVA analysis of contents of DOC, nitrogen and phosphorus nutrients and chlorophyll a in shrimp ponds

    变量
    Variable
    可溶性有机碳
    DOC
    可溶性无机氮
    DIN
    磷酸盐
    PO4 3−-P
    叶绿素 a
    Chlorophyll a
    FPFPFPFP
    采样池塘 Sampling pond 4.150 0.017 40.161 <0.001 5.405 0.005 371.082 <0.001
    采样日期 Sampling date 31.496 <0.001 63.478 <0.001 4.015 0.001 276.654 <0.001
    采样池塘×采样日期
    Sampling pond×Sampling date
    8.476 <0.001 18.110 <0.001 2.766 0.001 33.768 <0.001
    注:P<0.05表示存在显著差异;P<0.01表示存在极显著差异 Note: Significant difference at 0.05 level (P<0.05); Very significant difference at 0.01 level (P<0.01)
    下载: 导出CSV

    表  3   养虾塘水体可溶性有机碳、营养盐及叶绿素 a浓度与理化指标的相关分析

    Table  3   Correlation analysis of contents of DOC, nutrients and chlorophyll a in shrimp pond water with physicochemical indices

    指标
    Index
    水温
    Water temperature/℃
    溶解氧
    Dissolved oxygen/(mg·L−1)
    pH盐度
    Salinity
    叶绿素 a
    Chlorophyll a/
    (μg·L−1)
    可溶性无机碳 DOC/(mg·L−1) −0.416** 0.069 0.175 0.323* 0.413**
    硝酸盐氮 NO3 -N/(mg·L−1) 0.021 0.137 0.332* 0.177 0.181
    氨氮 NH4 +-N/(mg·L−1) −0.411** −0.090 0.202 0.099 0.211
    亚硝酸盐氮 NO2 -N/(mg·L−1) 0.109 0.085 0.228 0.227 0.128
    磷酸盐 PO4 3−-P/(mg·L−1) −0.033 −0.427 −0.577** 0.000 −0.244
    叶绿素 a Chlorophyll a/(μg·L−1) −0.178 0.371* 0.192 0.479** 1
    注:*. 显著性相关 (P<0.05);**. 极显著性相关 (P<0.01) Note: *. Significant at 0.05 level (P<0.05);**. Very significant at 0.01 level (P<0.01)
    下载: 导出CSV
  • [1]

    REN C Y, WANG Z M, ZHANG Y Z, et al. Rapid expansion of coastal aquaculture ponds in China from Landsat observations during 1984−2016[J]. Int J Appl Earth Obs, 2019, 82: 1-12.

    [2]

    FAO. Fishery and Aquaculture Statistics 2017[R]. Roma: Food and Agriculture Organization of the United Nations, 2019: 3-80.

    [3]

    SIL VA K R D, WASIELESKY W, ABREU P C, et al. Nitrogen and phosphorus dynamics in the biofloc production of the Pacific white shrimp, Litopenaeus vannamei[J]. J World Aquacult Soc, 2013, 44(1): 30-41. doi: 10.1111/jwas.12009

    [4]

    YANG P, LAI D Y F, JIN B S, et al. Dynamics of dissolved nutrients in the aquaculture shrimp ponds of the Min River estuary, China: concentrations, fluxes and environmental loads[J]. Sci Total Environ, 2017, 603-604: 256-267. doi: 10.1016/j.scitotenv.2017.06.074

    [5]

    OSTI J A S, MORAES M A B, CARMO C F, et al. Nitrogen and phosphorus flux from the production of Nile tilapia through the application of environmental indicators[J]. Braz J Biol, 2017, 78(1): 25-31. doi: 10.1590/1519-6984.02116

    [6] 郭丰, 黄凌风, 周时强, 等. 斑节对虾养殖垦区水质状况的调查研究[J]. 厦门大学学报(自然版), 2001, 40(4): 931-935.
    [7] 宋玉芝, 秦伯强, 高光. 氮及氮磷比对附着藻类及浮游藻类的影响[J]. 湖泊科学, 2007, 19(2): 125-130. doi: 10.3321/j.issn:1003-5427.2007.02.003
    [8] 杨平, 谭立山, 金宝石, 等. 九龙江河口区养虾塘水体营养盐与叶绿素a含量的变化特征及影响因素[J]. 湿地科学, 2017, 15(6): 794-801.
    [9] 施沁璇, 王俊, 盛鹏程, 等. 淡水养殖池塘中水体碳氮比对养殖环境的影响[J]. 江苏农业科学, 2017, 45(21): 186-189.
    [10] 高磊. 碳氮比调节在对虾养殖中的作用及优化[D]. 青岛: 中国海洋大学, 2012: 54-68.
    [11]

    AVNIMELECH Y. Carbon/nitrogen ratio as a control element in aquaculture systems[J]. Aquaculture, 1999, 176: 227-235. doi: 10.1016/S0044-8486(99)00085-X

    [12] 张许光. 2014年中国对虾养殖总结及2015年展望[EB/OL]. [2015-03-19]. http://www.shuichan.cc/news_view−237856.html.
    [13] 杨平, 仝川, 何清华, 等. 闽江口鱼虾混养塘水−气界面温室气体通量及主要影响因子[J]. 环境科学学报, 2013, 33(5): 1493-1503.
    [14]

    YANG P, ZHANG Y F, LAI D Y F, et al. Fluxes of carbon dioxide and methane across the water-atmosphere interface of aquaculture shrimp ponds in two subtropical estuaries: the effect of temperature, substrate, salinity and nitrate[J]. Sci Total Environ, 2018, 635: 1025-1035. doi: 10.1016/j.scitotenv.2018.04.102

    [15]

    ZHANG L, WANG L, YIN K D, et al. Pore water nutrient characteristics and the fluxes across the sediment in the Pearl River estuary and adjacent waters, China[J]. Estuar Coast Shelf S, 2013, 133: 182-192. doi: 10.1016/j.ecss.2013.08.028

    [16]

    ZHANG Y F, YANG P, YANG H, et al. Plot-scale spatiotemporal variations of CO2 concentration and flux across water-air interfaces at aquaculture shrimp ponds in a subtropical estuary[J]. Environ Sci Pollut R, 2019, 26: 5623-5637. doi: 10.1007/s11356-018-3929-3

    [17] 张瑜斌, 章洁香, 詹晓燕, 等. 高位虾池养殖过程主要理化因子的变化及水质评价[J]. 水产科学, 2009, 28(11): 628-634. doi: 10.3969/j.issn.1003-1111.2009.11.004
    [18] 赵卫红, 杨登峰, 王江涛, 等. 中国对虾养殖系统中无机和各形态有机N、P浓度及其变化[J]. 海洋环境科学, 2006, 25(2): 1-5. doi: 10.3969/j.issn.1007-6336.2006.02.001
    [19] 王伟良, 李德尚. 养虾围隔中无机氮浓度与放养密度及环境因子的关系[J]. 海洋科学, 2000, 24(10): 44-47. doi: 10.3969/j.issn.1000-3096.2000.10.016
    [20]

    van LUJIN F, BOERS P C M, LIJKLEMA L, et al. Nitrogen fluxes and processes in sandy and muddy sediments from a shallow eutrophic lake[J]. Water Res, 1999, 33(1): 33-42. doi: 10.1016/S0043-1354(98)00201-2

    [21] 周劲风, 温琰茂. 珠江三角洲基塘水产养殖对水环境的影响[J]. 中山大学学报(自然科学版), 2004, 43(5): 103-106. doi: 10.3321/j.issn:0529-6579.2004.05.029
    [22]

    RICARDO J M, VERDEGEM M C J, DAM A A V, et al. Effect of organic nitrogen and carbon mineralization on sediment organic matter accumulation in fish ponds[J]. Aquacult Res, 2005, 36: 983-995. doi: 10.1111/j.1365-2109.2005.01309.x

    [23] 申玉春, 熊邦喜, 叶富良, 等. 凡纳滨对虾高位池养殖系统的水质理化状况[J]. 广东海洋大学学报, 2006, 26(1): 16-21. doi: 10.3969/j.issn.1673-9159.2006.01.004
    [24] 苏跃朋, 马甡, 田相利, 等. 中国明对虾精养池塘氮、磷和碳收支的研究[J]. 南方水产, 2009, 5(6): 54-58. doi: 10.3969/j.issn.1673-2227.2009.06.010
    [25] 齐明, 申玉春, 吴灶和, 等. 凡纳滨对虾高位养殖池氮、磷营养盐与初级生产力研究[J]. 广东农业科学, 2010, 37(9): 170-172. doi: 10.3969/j.issn.1004-874X.2010.09.065
    [26]

    MAHMOOD T, FANG J, JIANG Z, et al. Seasonal distribution, sources and sink of dissolved organic carbon in integrated aquaculture system in coastal waters[J]. Aquacult Int, 2016, 25: 71-85.

    [27] 谭立山, 杨平, 徐康, 等. 闽江河口短叶茳芏湿地及其围垦的养虾塘CH4排放通量的比较[J]. 环境科学学报, 2018, 38(2): 1214-1223.
    [28] 孙忠, 王跃斌, 陆建学. 三疣梭子蟹不同养殖模式池塘叶绿素a的变化特征及粒级结构[J]. 海洋渔业, 2012, 34(2): 177-182. doi: 10.3969/j.issn.1004-2490.2012.02.008
    [29] 钱昊钟, 赵巧华, 钱培东, 等. 太湖叶绿素a浓度分布的时空特征及其影响因素[J]. 环境化学, 2013, 32(5): 789-796. doi: 10.7524/j.issn.0254-6108.2013.05.010
    [30]

    REDFIELD A C. The biological control of chemical factors in the environment[J]. Am Sci, 1958, 46(3): 205-221.

    [31]

    CHEN M, ZENG G M, ZHANG J C, et al. Global landscape of total organic carbon, nitrogen and phosphorus in lake water[J]. Sci Rep, 2015, 5: 15043. doi: 10.1038/srep15043

    [32] 王芳, 国先涛, 董双林. 水域生态系统生态化学计量学研究进展[J]. 中国海洋大学学报(自然科学版), 2015, 45(12): 16-23.
    [33] 王维奇, 徐玲琳, 曾从盛, 等. 河口湿地植物活体−枯落物−土壤的碳氮磷生态化学计量特征[J]. 生态学报, 2011, 31(23): 7119-7124.
    [34] 程瑞梅, 王娜, 肖文发, 等. 陆地生态系统生态化学计量学研究进展[J]. 林业科学, 2018, 54(7): 130-136. doi: 10.11707/j.1001-7488.20180714
    [35]

    YANG P, YANG H, LAI D Y F, et al. Production and uptake of dissolved carbon, nitrogen and phosphorus in overlying water of aquaculture shrimp ponds in subtropical estuaries, China[J]. Environ Sci Pollut R, 2019, 26: 21565-21578. doi: 10.1007/s11356-019-05445-y

    [36] 孙盛明, 朱健, 戈贤平, 等. 零换水条件下养殖水体中碳氮比对生物絮团形成及团头鲂肠道菌群结构的影响[J]. 动物营养学报, 2015, 27(3): 948-955. doi: 10.3969/j.issn.1006-267x.2015.03.036
    [37]

    ZHANG K, TIAN X L, DONG S L, et al. An experimental study on the budget of organic carbon in polyculture systems of swimming crab with white shrimp and short-necked clam[J]. Aquaculture, 2016, 451: 58-64. doi: 10.1016/j.aquaculture.2015.08.029

    [38]

    GAL D, PEKAR F, KEREPECZKI E. A survey on the environmental impact of pond aquaculture in Hungary[J]. Aquacult Int, 2016, 24(6): 1543-1554. doi: 10.1007/s10499-016-0034-9

    [39]

    KNOSCHE R, SCHRECKENBACH K, PFEIFER M, et al. Balances of phosphorus and nitrogen in carp ponds[J]. Fish Manag Ecol, 2000, 7: 15-22. doi: 10.1046/j.1365-2400.2000.00198.x

    [40]

    PENMETSA A R K R, MUPPIDI S R, POPURI R, et al. Impact of aquaculture on physico-chemical characteristics of water and soils in the coastal tracts of East and West Godavari districts, Andhra Pradesh, India[J]. Int J Eng Trends Tech, 2013, 6(6): 313-319.

    [41] 齐振雄, 张曼平. 对虾养殖池塘氮磷收支的实验研究[J]. 水产学报, 1998, 22(2): 124-128.
    [42] 邹景忠, 董丽萍, 秦保平. 渤海湾富营养化和赤潮问题的初步探讨[J]. 海洋环境科学, 1983, 2(2): 41-54.
  • 期刊类型引用(2)

    1. 朱轩仪,郑晓婷,邢逸夫,黄建华,董宏标,张家松. 三丁酸甘油酯提高凡纳滨对虾鳃组织抗周期性高温胁迫能力的研究. 南方水产科学. 2024(03): 66-75 . 本站查看
    2. 付府伊,徐钰栋,赖宇谦,段晓雪,刘自逵,贺喜,宋泽和. 人参粗提物与裂褶多糖或葡萄糖氧化酶复配对蛋鸡生产性能和血清生化指标的影响. 饲料研究. 2024(22): 27-33 . 百度学术

    其他类型引用(2)

图(5)  /  表(3)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 4
出版历程
  • 收稿日期:  2019-10-13
  • 修回日期:  2020-01-02
  • 录用日期:  2020-02-12
  • 网络出版日期:  2020-02-20
  • 刊出日期:  2020-06-04

目录

/

返回文章
返回