福寿螺对草鱼粪便再利用的可行性研究

欧芳, 吴迪, 尹敏, 王志坚, 金丽

欧芳, 吴迪, 尹敏, 王志坚, 金丽. 福寿螺对草鱼粪便再利用的可行性研究[J]. 南方水产科学, 2020, 16(2): 15-20. DOI: 10.12131/20190179
引用本文: 欧芳, 吴迪, 尹敏, 王志坚, 金丽. 福寿螺对草鱼粪便再利用的可行性研究[J]. 南方水产科学, 2020, 16(2): 15-20. DOI: 10.12131/20190179
OU Fang, WU Di, YIN Min, WANG Zhijian, JIN Li. Feasibility study on recycling of grass carp feces by Pomacea canaliculate[J]. South China Fisheries Science, 2020, 16(2): 15-20. DOI: 10.12131/20190179
Citation: OU Fang, WU Di, YIN Min, WANG Zhijian, JIN Li. Feasibility study on recycling of grass carp feces by Pomacea canaliculate[J]. South China Fisheries Science, 2020, 16(2): 15-20. DOI: 10.12131/20190179

福寿螺对草鱼粪便再利用的可行性研究

基金项目: 生物学双一流学科建设项目(5330100045);重庆市社会事业与民生保障科技创新专项(cstc2017-shms-zdyfX0039)
详细信息
    作者简介:

    欧 芳(1995—),女,硕士研究生,研究方向为渔业生态环境。E-mail: 1323089178@qq.com

    通讯作者:

    金 丽(1977—),女,博士,副教授,从事淡水鱼类研究。E-mail: jinll@swu.edu.cn

  • 中图分类号: S 931.3

Feasibility study on recycling of grass carp feces by Pomacea canaliculate

  • 摘要:

    为探究福寿螺 (Pomacea canaliculate) 能否有效利用草鱼 (Ctenopharyngodon idellus) 摄食水葫芦(Eichhornia crassipes) 后产生的粪便,该研究对草鱼粪便、水葫芦饵料处理组福寿螺的生长、体组成、消化酶活力、氮磷富集量等进行比较分析。结果显示:1) 两组福寿螺体质量均极显著增加 (P<0.01),其中水葫芦组特定生长率 (SGR)、食物转化率 (FCR) 均极显著高于草鱼粪便组 (P<0.01);成活率 (SR) 无显著差异 (P>0.05);2) 两组福寿螺软体部的体组成差异不显著 (P>0.05);3) 水葫芦组的胃淀粉酶活力显著高于草鱼粪便组 (P<0.05),纤维素酶、脂肪酶活力无显著差异 (P>0.05);4) 两组福寿螺均能有效富集氮(N)、磷 (P) 元素,且两组间无显著差异 (P>0.05)。结果表明福寿螺摄食草鱼粪便不仅能满足螺本身的基本生长需求,还能间接减轻水体中的N、P负荷,表明在已有的“水体-水葫芦-草鱼”养殖模式中,可利用福寿螺解决草鱼粪便污染问题。

    Abstract:

    In order to study whether apple snail (Pomacea canaliculate) can utilize the feces produced by grass carp (Ctenopharyngodon idellus) effectively after being fed with water hyacinth (Eichhornia crassipes), we analyzed the growth index, body composition, digestive enzyme activity and accumulation of nitrogen and phosphorus in grass carp feces group and water hyacinth bait group, respectively. The results show that: 1) The body mass in the two groups increased very significantly after 35 d (P<0.01). Both the specific growth rate (SGR) and food conversion rate (FCR) in water hyacinth group were very significantly higher than those in feces group (P<0.01). There was no significant difference in the survival rate (SR) between the two groups (P>0.05). 2) The difference in body composition between the two groups of snails was not significant (P>0.05). 3) The activity of gastric amylase in water hyacinth group was significantly higher than that in feces group (P<0.05), and there was no significant difference in cellulase and lipase activity between the two groups (P>0.05). 4) Apple snail accumulated nitrogen and phosphorus elements in both groups without significant difference (P>0.05). In summary, the feces of grass carp can meet the basic growth requirements of apple snails and reduce the nitrogen and phosphorus contents in water indirectly. It is suggested that apple snails can be used to reduce the pollution brought by grass carp feces in "water-water hyacinth-grass carp" farming mode.

  • 海陵湾位于粤西阳江海区,为半封闭港湾,内湾风浪平缓,是重要的贝类养殖和网箱养殖基地,也是广东省重要的增殖放流水域;外湾海岸线狭长,海域开阔,拥有国家海滨AAAAA级旅游风景区。不少学者已对海陵湾浮游植物[1]、沉积物[2-4]、水环境[5-6]、抗生素和雄激素来源[7-10]等方面做过相关研究,但关于海陵湾浮游动物的研究极少见报道。浮游动物作为海洋生态系统中重要的中间环节,其下行控制着浮游植物群落的数量,上行则可影响鱼类等的资源量,在海洋生态系统结构和功能中起重要的调控作用[11-12]。此外,浮游动物的生存状况与水环境密切相关,浮游动物群落结构的变化可反映水环境质量状况,因此,研究浮游动物群落结构变化对评价海域水质污染状况也具有重要意义。

    近年来,随着海陵湾养殖业和旅游业的发展,养殖废水、生活污水及船坞废水的大量排放,逐渐改变了海陵湾的生态环境,因此有必要定期监测海湾生态环境,以期为海湾的进一步开发利用提供依据。本研究对2015—2016年海陵湾的浮游动物种类组成、优势种、丰度和生物量、生物多样性等群落结构特征及其与主要环境因子的关系进行了分析,以期为保护海陵湾生态环境及维持海洋生物资源的可持续利用提供基础资料。

    于2015年2月(冬季)、7月(夏季)、11月(秋季)及2016年4月(春季)分别对阳江海陵湾(111°42.53'E、21°27.95'N—111°57.36'E、21°38.29'N)进行渔业生态资源综合调查(图1),共设置9个调查站位。浮游动物样品使用浅水Ⅰ型浮游生物网自底至表垂直拖网采集并用福尔马林溶液固定保存,再在室内用显微计数和湿质量生物量法分析。

    图  1  海陵湾采样站位示意图
    Figure  1.  Distribution of sampling stations in Hailing Bay

    优势度[13]

    $$ Y = \left( {{n_i}/N} \right) \times {f_i} $$

    Shannon-Wiener多样性指数[14]

    $$ H' = - \sum\limits_{i = 1}^S {{P_i}{{\log }_2}{P_i}} $$

    均匀度[15]

    $$ J' = H'/\left( {{{\log }_2}S} \right) $$

    其中ni为第i种的总个体数,N为海陵湾所有物种的总个体数,fi为第i种在海陵湾采样点出现的频率,以Y>0.02作为优势种;S为样品中的总种类数,Pi为第i种在全部样品中的比例(Pi=ni/N)。

    阳江海陵湾4个季节共发现132种浮游动物及14类浮游幼虫,以桡足类种类数最多 (54种),占总种数的40.91%,其次是水螅水母类 (18种),占总种数的13.64%;端足类和毛颚类各10种,分别占总种数的7.58%;管水母8种,占总种数的6.06%;其余类群种类数均低于6种(表1)。

    表  1  浮游动物种类组成
    Table  1.  Species composition of zooplankton
    类群
    group
    冬季
    winter
    夏季
    summer
    秋季
    autumn
    春季
    spring
    全年
    whole year
    种数
    species number
    占比/%
    percentage
    种数
    species number
    占比/%
    percentage
    种数
    species number
    占比/%
    percentage
    种数
    species number
    占比/%
    percentage
    种数
    species number
    占比/%
    percentage
    原生动物
    Protozoa
    1 3.33 2 8.00 2 2.70 3 3.26 3 2.27
    水螅水母类
    Hydromedusae
    8 26.67 2 8.00 9 12.16 10 10.87 18 13.64
    管水母类
    Siphonophorae
    1 3.33 1 4.00 1 1.35 8 8.70 8 6.06
    栉水母类
    Ctenophora
    2 6.67 1 4.00 1 1.35 1 1.09 2 1.52
    异足类
    Heteropoda
    1 1.35 2 2.17 2 1.52
    翼足类
    Pteropoda
    3 4.05 3 3.26 3 2.27
    枝角类
    Cladocera
    2 6.67 2 8.00 2 2.70 2 2.17 2 1.52
    桡足类
    Copepoda
    9 30.00 10 40.00 32 43.24 29 31.52 54 40.91
    介形类
    Ostracoda
    1 3.33 3 3.26 3 2.27
    糠虾类
    Mysidacea
    2 2.70 2 2.17 2 1.52
    端足类
    Amphipoda
    2 6.67 2 2.70 8 8.70 10 7.58
    磷虾类
    Euphausiacea
    1 4.00 3 4.05 2 2.17 3 2.27
    十足类
    Decapoda
    1 4.00 3 4.05 3 3.26 5 3.79
    毛颚类
    Chaetognatha
    2 6.67 2 8.00 9 12.16 9 9.78 10 7.58
    海樽类
    Thaliacea
    1 3.33 1 4.00 2 2.70 4 4.35 4 3.03
    有尾类
    Appendiculata
    1 3.33 2 8.00 2 2.70 3 3.26 3 2.27
    合计 total 30 100.00 25 100.00 74 100.00 92 100.00 132 100.00
    浮游幼体类
    pelagic larva
    8 9 11 11 14
    下载: 导出CSV 
    | 显示表格

    浮游动物群落种类组成存在季节变化,冬季共发现30种,处于次低水平;夏季种类数最少(25种),占全年出现浮游动物种类数的18.94%;随后,秋季浮游动物种类数增至74种,占全年出现浮游动物种类数的56.06%;次年春季浮游动物种类数继续增多(92种),占全年出现浮游动物种类数的69.70%。

    调查期间,该海域共出现11种优势种(不包括幼虫),两相邻调查季节间没有出现共同优势种,浮游动物群落存在明显的季节变化。

    冬季夜光虫 (Nocitiluca scintillans) 大量繁殖形成该海域唯一优势种,优势度高达0.96,平均丰度为5.40×103 个·m−3;夏季夜光虫消失,取而代之的是桡足类的红纺锤水蚤 (Acartia erythraea) 和瘦尾胸刺水蚤 (Centropages tenuiremis),以及有尾类的长尾住囊虫 (Oikopleura longicauda) 和红住囊虫 (O. rufescens);秋季毛颚类的肥胖软箭虫 (Flaccisagitta enflata)显著增多,桡足类优势种也发生了变化。到次年春季,夜光虫再次出现形成优势,平均丰度为227.12 个·m−3 (表2)。

    表  2  浮游动物优势种
    Table  2.  Dominant species of zooplankton
    季节
    season
    优势种 (优势度Y)
    dominant species (dominance Y)
    冬季 winter 夜光虫 (0.96)
    夏季 summer 红纺锤水蚤 (0.03)、瘦尾胸刺水蚤 (0.03)、长尾住囊虫 (0.07)、红住囊虫 (0.05)
    秋季 autumn 锥形宽水蚤 Temora turbinate (0.17)、叉胸刺水蚤 Centropages furcatus (0.10)、肥胖软箭虫 (0.18)
    春季 spring 夜光虫 (0.25)、鸟喙尖头溞 Penilia avirostris (0.15)、肥胖三角溞 Pseudevadne tergestina (0.33)、软拟海樽 Dolioletta gegenbauri (0.11)
    下载: 导出CSV 
    | 显示表格

    海陵湾浮游动物年均丰度为1 737.41 个·m−3,冬季 (5 652.85 个·m−3)最高,主要由夜光虫 (5 399.56 个·m−3)的大量增殖引起,丰度呈现湾内高于湾外;春季次之 (平均为814.41 个·m−3),湾外丰度高于湾内;秋季丰度比春季低 (平均469.51 个·m−3),丰度低值区也位于湾内;夏季浮游动物丰度最低 (仅12.88 个·m−3图2)。除夜光虫外,海陵湾浮游动物丰度以春季最高(587.29 个·m−3),秋季次之(469.51 个·m−3),冬季为253.29 个·m−3,夏季最低(12.88 个·m−3)。

    图  2  浮游动物丰度的平面分布
    Figure  2.  Horizontal distributions of zooplankton abundance

    原生动物是冬季浮游动物群落的第一大类群,仅夜光虫丰度就达到5 399.56 个·m−3,主要分布在湾内,在春季也形成优势,丰度平均为227.14 个·m−3,主要密集分布在湾外。桡足类种类最多,但仅在秋季丰度相对较高。枝角类在春季丰度最高,但其他季节均较低(图3)。

    图  3  浮游动物主要类群的季节变化
    Figure  3.  Seasonal variation of main groups of zooplankton

    浮游动物年均生物量为115.52 mg·m−3,冬季最高(291.88 mg·m−3),夏季最低 (0.81 mg·m−3),秋季(87.28 mg·m−3)略高于春季(82.11 mg·m−3)。生物量各季节的平面分布与丰度相似(图4)。

    图  4  浮游动物生物量的平面分布
    Figure  4.  Horizontal distributions of zooplankton biomass

    浮游动物多样性指数(H′)以秋季最高(4.21),冬季最低(0.86)且站位间变化最大,年平均为2.83;均匀度(J′)以夏季最高(0.93),冬季最低(0.21),年平均为0.60 (表3)。

    表  3  浮游动物生物多样性
    Table  3.  Biodiversity index of zooplankton
    季节
    season
    多样性指数 (H′) 均匀度 (J′)
    范围
    range
    均值
    average
    范围
    range
    均值
    average
    冬季 winter 0.11~2.32 0.86 0.03~0.58 0.21
    夏季 summer 2.98~4.03 3.55 0.84~0.97 0.93
    秋季 autumn 3.55~4.58 4.21 0.60~0.94 0.77
    春季 spring 2.00~3.58 2.70 0.32~0.88 0.50
    下载: 导出CSV 
    | 显示表格

    原生动物与水温呈显著负相关;枝角类与盐度呈极显著负相关,与叶绿素a浓度呈显著负相关,与溶解无机氮呈极显著正相关;浮游动物总丰度与水温呈显著负相关;浮游动物生物量与水温呈极显著负相关,与溶解氧呈显著正相关。

    调查期间,海陵湾共发现浮游动物132种,以桡足类最为丰富,是海湾浮游动物群落中最重要的类群,是中国海湾的一个普遍现象[16-19]。原生动物是海陵湾浮游动物在冬季的唯一优势类群,在浮游动物群落中占有重要的数量地位,而原生动物中又以夜光虫为主,主要分布在湾内海域。夜光虫是偏冷水性的广温广盐性赤潮种,在广东沿岸的低温季节多次形成赤潮[20]。海陵湾夜光虫也仅出现在温度较低的冬春季节。

    海陵湾北面为入海河流,南面为高盐南海水,宽阔的湾口使咸淡水交换充分,并主要存在河口低盐类群、广温广盐类群、暖水沿岸类群和暖水外海类群等4种浮游动物生态类群。海陵湾浮游动物群落在冬季以夜光虫占有绝对优势,但夏季消失。夏季,海陵湾处于丰水期,充沛的河水与南海高盐水高度混合,使该季节浮游动物优势种同时存在4种生态类群,显示了海陵湾夏季浮游动物群落的复杂性。秋季,暖水沿岸种、外海暖水种和广温广盐种依然为该季节的优势种,但优势种类发生了变化。春季,夜光虫再次出现,与鸟喙尖头溞 (Penilia avirostris)、肥胖三角溞 (Pseudevadne tergestina)和软拟海樽 (Dolioletta gegenbauri)共同形成优势。显然,除夜光虫在冬春季成为优势种外,其他种类仅在一个季节形成优势,说明海陵湾浮游动物优势种的季节变化明显,群落结构变化大。然而本研究的冬夏季间和秋春季间均跨越了一个季节,这也有可能导致该调查海域浮游动物群落季节变化明显,因此,在以后的研究中应尽量研究邻近季节的浮游动物变化以避免产生误差。

    温度是影响浮游动物生长繁殖的重要环境因子[11,21-22]。除夜光虫外,海陵湾浮游动物丰度春季最高,其后依次为秋季和冬季,夏季最低。金琼贝等[22]发现桡足类等某些浮游动物适宜在20~30 ℃水温之间生长,而超过该上限后出现了负增长现象。海陵湾夏季水温平均为29.64 ℃,未超过最适温度上限,说明夏季水温不是导致浮游动物数量减少的主要因素,而海陵湾冬季水温平均为17.73 ℃,低于最适水温下限,也说明在冬季水温是限制浮游动物生长的因素之一。盐度是影响浮游动物生长繁殖的另一重要环境因子[11,21,23-24]。黄加祺和郑重[24]发现沿岸浮游动物可在盐度介于0~31.7的水环境生长,但超过该上限后出现了负增长现象。海陵湾夏季盐度平均为32.53,高于沿岸类群的最适盐度上限,有可能抑制浮游动物的生长。此外,海陵湾夏季雨水充沛,雨水的冲刷和海水的涌入导致该海域水体波动较大,也可能不利于浮游动物的大量繁殖。海陵湾浮游动物种类数的季节变化也与除夜光虫外的浮游动物丰度的季节变化相似,表现为春秋季高于冬夏季,说明海陵湾浮游动物更适合在春秋季生长,冬季主要受温度影响,而夏季则受多种因素共同制约。

    海陵湾浮游动物丰度和生物量均在冬季最高,夏季最低。相关分析表明,浮游动物丰度和生物量均与水温呈现显著和极显著的负相关关系,但这种关系在极大程度上受夜光虫影响。已有研究表明,夜光虫生长的最适温度在17~22 ℃[20,25],水温高于25 ℃时夜光虫会大量死亡[26],而室内实验结果也表明夜光虫的生存上限水温约为26 ℃[27]。海陵湾冬、夏、秋、春季的水温分别为17.73 ℃、29.64 ℃、26.06 ℃和23.93 ℃,只有冬季水温在最适温度范围内,适合夜光虫大量繁殖,春季水温略高于最适水温,夜光虫可以生长但丰度不高,夏、秋季节水温均高于26 ℃,在调查中均未发现夜光虫。夜光虫在海陵湾的出现及其丰度与温度密切相关,主要表现为低温季节丰度高,高温季节丰度低,与南海北部海域的报道[28-29]相似。从表4浮游动物与环境因子的相关性也可看出,水温与以夜光虫为主的原生动物类群丰度呈显著的负相关,而与其他类群丰度则不存在显著的相关关系,说明以夜光虫为主的原生动物类群对浮游动物丰度和生物量与水温均呈显著负相关关系的贡献很大,而除夜光虫外,浮游动物可能不与水温呈显著负相关关系,因为除夜光虫外的浮游动物丰度表现为春秋季高于冬夏季,与水温不呈明显的趋势性变化。除温度外,夜光虫的分布还受营养盐的影响。许多研究表明,夜光虫与营养盐呈正相关关系[30-31]。但在本研究中,以夜光虫为主的原生动物与磷酸盐及溶解无机氮均呈不显著的负相关关系。营养盐和夜光虫主要通过浮游植物形成间接关系,可以认为营养盐是夜光虫的“初级养分”[29],但有时浮游植物丰度与营养盐并不成正比关系[32],夜光虫与浮游植物丰度亦如此。冬季S1的夜光虫丰度最高(35 400个·m−3),而叶绿素a仅3.47 mg·m−3,说明在采样前较长一段时间内叶绿素a浓度可能远高于采样时的浓度,随着夜光虫的大量摄食浮游植物急剧减少。此外,Uhlig和Sahling[33]、Umani等[34]发现水体的富营养化并不一定引起夜光虫繁殖,在水体保持稳定富营养化较长的一段时间内往往没有夜光虫出现。因此,夜光虫的大量繁殖并不直接依赖于水体的高营养盐环境,而是多个因素综合作用的结果。

    表  4  浮游动物与环境因子的相关关系
    Table  4.  Pearson correlation between zooplankton and environmental factors
    环境因子
    environmental factor
    原生动物
    Protozoa
    枝角类
    Cladocera
    桡足类
    Copepoda
    毛颚类
    Chaetognatha
    海樽类
    Thaliacea
    幼体类
    larva
    ZA/
    (个·m−3)
    ZB/
    (mg·m−3)
    水温/℃ temperature 0.351* −0.067 −0.148 0.040 −0.076 0.057 −0.354* −0.526**
    盐度 salinity 0.047 −0.488** −0.004 −0.025 −0.227 −0.174 0.021 −0.006
    ρ(叶绿素 a )/(mg·L−1) Chl a concentration 0.064 −0.354* 0.142 0.045 −0.218 −0.070 0.054 0.256
    ρ(溶解氧)/(mg·L−1) DO 0.319 0.003 0.235 0.063 0.175 0.054 0.329 0.558*
    ρ(磷酸盐)/(mg·L−1) PO4 3--P −0.128 −0.320 −0.052 −0.002 −0.165 −0.063 −0.143 0.080
    ρ(溶解无机氮)/(mg·L−1) DIN −0.061 0.513** −0.107 −0.080 0.299 0.091 −0.041 −0.050
    注:ZA. 浮游动物丰度;ZB. 浮游动物生物量;*. P<0.05; **. P<0.01Note: ZA. zooplankton abundance; ZB. zooplankton biomass
    下载: 导出CSV 
    | 显示表格

    夜光虫是一种常见的赤潮生物,赤潮爆发时可引起大量海洋生物死亡,如果赤潮发生在养殖区,则会对养殖业造成巨大损失。海陵湾在冬季出现了大量夜光虫,虽丰度暂时还未达到赤潮阈值,但其丰度之高很有可能随时形成赤潮,需时刻监测其发展动态,以及时应对并减少因赤潮带来的损失。

  • 图  1   养殖系统

    Figure  1.   Culture system

    图  2   两组消化酶活性比较

    Figure  2.   Comparison of digestive enzyme activities between two groups

    表  1   草鱼粪便和水葫芦的常规营养成分

    Table  1   Main nutrition components of grass carp feces and water hyacinth %

    组分
    Composition
    草鱼粪便
    Grass carp feces
    水葫芦
    Water hyacinth
    总氮 Total nitrogen 0.120 0 0.130 0
    总磷 Total phosphorus 0.019 4 0.031 1
    粗蛋白质 Crude protein 0.720 0 0.810 0
    粗脂肪 Crude fat 0.900 0 0.200 0
    粗纤维 Crude fiber 3.900 0 3.470 0
    粗灰分 Crude ash 0.840 0 0.850 0
    无氮浸出物 N-free extract 0.240 0 0.440 0
    干物质 Dry matter 6.600 0 5.800 0
    水分 Moisture 93.400 0 94.230 0
    下载: 导出CSV

    表  2   2种饵料饲养的福寿螺生长情况比较

    Table  2   Comparison of growth of P. canaliculate fed by two kinds of baits

    项目
    Item
    草鱼粪便组
    Grass carp feces group
    水葫芦组
    Water hyacinth group
    初均质量 (IBW, g) 7.48±0.26B 7.47±0.17B
    末均质量 (FBW, g) 9.27±0.36Ab 12.43±0.42Aa
    特定生长率 (SGR, %·d−1) 0.61±0.11b 1.47±0.11a
    成活率 (SR, %) 77.78±9.72 86.67±5.77
    摄食率 (FR, %) 97.77±4.40a 71.47±4.20b
    食物转化率 (FCR, %) 0.07±0.01b 0.21±0.18a
    注:同一行数据上标不同小写字母表示组间同一项目具极显著差异 (P<0.01);同一列数据上标不同大写字母表示组内不同项目具极显著差异 (P<0.01) Note: The data with different uppercase superscripts indicate very significant difference of the same project between the groups (P<0.01); the data with different lowercase superscripts indicate very significant difference of different projects between the groups (P<0.01).
    下载: 导出CSV

    表  3   2种饵料饲养下福寿螺软体部体组成比较

    Table  3   Comparison of body composition of P. canaliculate fed by two kinds of baits %

    组分
    Composition
    草鱼粪便
    Grass carp feces group
    水葫芦
    Water hyacinth group
    粗蛋白质 Crude protein 10.83±0.25 10.60±0.40
    粗脂肪 Crude fat 0.30±0.10 0.40±0.10
    粗灰分 Crude ash 4.13±0.15 4.00±0.10
    无氮浸出物 N-free extract 7.43±0.45 7.40±0.46
    干物质 Dry matter 24.07±0.90 23.40±0.96
    水分 Moisture 76.20±0.52 76.70±0.53
    下载: 导出CSV
  • [1] 熊洪林, 张娅, 陈嶙, 等. 福寿螺消化系统的性别差异及摄食行为观察[J]. 重庆师范大学学报(自然科学版), 2013, 30(4): 21-24.
    [2] 李华. 生态农业园区水产养殖排水水质改善技术研究[D]. 上海: 华东师范大学, 2011: 32-56.
    [3] 张晨, 张瑜, 曹宇, 等. 养殖鱼类粪便污染的危害、机理及治理方法研究进展[J]. 大连海洋大学学报, 2017, 32(5): 631-636.
    [4] 史丽娜, 王晓琴, 张万金, 等. 金草鱼搭配鲢鱼池塘鱼菜生态循环养殖技术[J]. 中国水产, 2019(2): 89-90.
    [5]

    LAKRA K C, LAL B, BANERJEE T K. Application of phytoremediation technology in decontamination of a fish culture pond fed with coal mine effluent using three aquatic macrophytes[J]. Int J Phytoremediat, 2019, 21(9): 840-848. doi: 10.1080/15226514.2019.1568384

    [6] 张伟, 韩士群, 郭起金. 凤眼莲、水花生、鲢鱼对富营养化水体藻类及氮、磷的去除作用[J]. 江苏农业学报, 2012, 28(5): 1037-1041.
    [7] 徐寸发, 张志勇, 秦红杰, 等. 不同生活型水生植物改善滇池草海水体的效果[J]. 江苏农业科学, 2015, 43(6): 307-311.
    [8] 刘海琴, 邱园园, 闻学政, 等. 4种水生植物深度净化村镇生活污水厂尾水效果研究[J]. 中国生态农业学报, 2018, 26(4): 616-626.
    [9] 张吉鹍. 凤眼莲的生物学特性及其对鄱阳湖湿地生态环境的潜在危害[J]. 江西畜牧兽医杂志, 2010(6): 28-32. doi: 10.3969/j.issn.1004-2342.2010.06.012
    [10] 胡廷尖, 李训朗, 王雨辰, 等. 草食性鱼种抑制凤眼莲生长的试验[J]. 热带农业科学, 2011, 31(9): 56-60. doi: 10.3969/j.issn.1009-2196.2011.09.013
    [11] 王洪兴, 程红, 孙霞, 等. 湖库大型水生植物过度生长的控制对策[J]. 农业环境与发展, 2011(2): 69-71.
    [12] 包成荣, 戚正梁, 李倩, 等. “水葫芦-草鱼”生态调控水质模式及其机理探究[J]. 河北渔业, 2016(8): 69-71. doi: 10.3969/j.issn.1004-6755.2016.08.020
    [13] 王晓平, 王玉兵, 杨桂军, 等. 不同鱼类对凤眼莲生长以及水质的影响[J]. 环境工程学报, 2017, 11(4): 1994-2000. doi: 10.12030/j.cjee.201601052
    [14] 戈贤平. 一草带三鲢[J]. 科学养鱼, 1986(3): 14.
    [15] 张明洋, 马先锋. 要及时清理草鱼排泄物[J]. 科学养鱼, 1991(5): 20.
    [16] 石广福. 养殖斑点叉尾鮰残饵和粪便对水质的影响[D]. 重庆: 西南大学, 2009: 12-37.
    [17] 黄晓南. 两起由粪便污染造成的鱼类死亡事故分析[J]. 福建水产, 2013, 35(3): 230-235. doi: 10.3969/j.issn.1006-5601.2013.03.010
    [18] 吴桃. 滤食性贝类对网箱养鱼的粪便、残饵的摄食效果研究[D]. 上海: 上海海洋大学, 2012: 15-28.
    [19] 陈言峰, 胡超群, 任春华. 单一或二元的凡纳滨对虾新鲜养殖废物用于花刺参养殖的研究[J]. 南方水产科学, 2014, 10(1): 1-8. doi: 10.3969/j.issn.2095-0780.2014.01.001
    [20] 王红芳. 畜禽粪污治理及资源化利用[J]. 畜牧兽医科技信息, 2019(7): 42.
    [21] 马亮. 延安市畜禽粪污资源化利用调查及分析[D]. 杨凌: 西北农林科技大学, 2019: 1-7.
    [22] 夏斌. 草鲢复合养殖池塘主要营养要素生物学循环过程的研究[D]. 青岛: 中国海洋大学, 2013: 8-101.
    [23] 佘启锋. 水葫芦的高值化利用及其生态治理[D]. 福州: 福州大学, 2014: 29-49.
    [24] 尹绍武, 颜亨梅, 王洪全, 等. 饵料种类对福寿螺生长发育的影响[J]. 中国农学通报, 2000(2): 5-7. doi: 10.3969/j.issn.1000-6850.2000.02.002
    [25] 郭靖, 章家恩, 张春霞, 等. 利用稻田养萍诱集控制福寿螺危害的效应研究[J]. 生态科学, 2016, 35(5): 8-14.
    [26] 钟观运, 邵庆均. 磷在鱼类营养中应用的研究进展[J]. 中国饲料, 2008(16): 4-7. doi: 10.3969/j.issn.1004-3314.2008.16.003
    [27] 申瑞玲, 程珊珊. 燕麦β-葡聚糖生理功能研究进展[J]. 食品与机械, 2007(6): 126-129. doi: 10.3969/j.issn.1003-5788.2007.06.036
    [28] 雍文岳, 黄忠志, 廖朝兴, 等. 饲料中脂肪含量对草鱼生长的影响[J]. 淡水渔业, 1985(6): 11-14.
    [29] 吕欣荣, 肖克宇. 纤维素酶及其在水产养殖上的应用[J]. 北京水产, 2007(4): 14-17.
    [30]

    BAUMANN D, BILKEI G. Effect of highly fermentable dietary fiber on the development of swine dysentery and on pig performance in a "Pure Culture Challenge Model"[J]. Berl Munch Tierarztl, 2002, 115(1/2): 37-42.

    [31]

    TUCKER L A, THOMAS K S. Increasing total fiber intake reduces risk of weight and fat gains in women[J]. J Nutr, 2009, 139(3): 576-581. doi: 10.3945/jn.108.096685

    [32]

    KUMLU M, EROLDOGAN O T, AKTAS M. Effects of temperature and salinity on larval growth, survival and development of Penaeus semisulcatus[J]. Aquaculture, 2000, 188(1): 167-173.

    [33]

    CHOBCHUENCHOM W, BHUMIRATANA A. Isolation and characterization of pathogens attacking Pomacea canaliculata[J]. World J Microb Biot, 2003, 19(9): 903-906. doi: 10.1023/B:WIBI.0000007312.97058.48

    [34]

    RAWLINGS T A, HAYES K A, COWIE R H, et al. The identity, distribution, and impacts of non-native apple snails in the continental United States[J]. Evol Biol, 2007, 7(1): 97.

    [35] 吴海洪. 福寿螺纤维素酶的研究[D]. 杭州: 浙江大学, 2006: 39-44.
    [36] 徐建荣, 程东成, 李波. 福寿螺消化酶的活力测定研究及其酶解效果分析[J]. 水产养殖, 2007, 28(3): 3-5. doi: 10.3969/j.issn.1004-2091.2007.03.002
    [37] 胡廷尖, 伍俊, 王雨辰, 等. “水-凤眼莲-鱼”水体富营养物质生态控制模式[J]. 水产养殖, 2012, 33(8): 1-2. doi: 10.3969/j.issn.1004-2091.2012.08.001
    [38] 张志勇, 郑建初, 刘海琴, 等. 凤眼莲对不同程度富营养化水体氮磷的去除贡献研究[J]. 中国生态农业学报, 2010, 18(1): 152-157.
    [39] 周新伟, 沈明星, 金梅娟, 等. 不同水葫芦覆盖度对富营养水体氮、磷的去除效果[J]. 江苏农业学报, 2016(1): 97-105. doi: 10.3969/j.issn.1000-4440.2016.01.015
    [40] 陈少莲, 刘肖芳, 华俐. 鲢, 鳙在东湖生态系统的氮, 磷循环中的作用[J]. 水生生物学报, 1991, 15(1): 8-26.
    [41] 李晓洁, 唐敏, 李云, 等. 鲢鳙在长寿湖水生态系统氮磷循环中的作用[J]. 淡水渔业, 2018, 48(3): 40-46. doi: 10.3969/j.issn.1000-6907.2018.03.007
    [42] 陈良斌. 一种动物蛋白源——大瓶螺[J]. 科学养鱼, 1991(2): 24.
    [43] 王润莲, 张政军, 梁沛琼, 等. 虾、蟹、螺副产物的营养价值[J]. 饲料研究, 2006(6): 61-62. doi: 10.3969/j.issn.1002-2813.2006.06.021
    [44] 孟凡国. 蚂蟥人工饲料的初步研究[D]. 南京: 南京农业大学, 2013: 8-18.
    [45] 王海候, 沈明星, 陆长婴, 等. 螺蛳替代商品饲料比例对中华绒螯蟹产量和水质的影响[J]. 水产科学, 2015, 34(11): 690-695.
  • 期刊类型引用(3)

    1. 唐俊逸,秦民,刘晋涛,王震,党二莎,余香英. 海陵湾营养盐分布特征及其富营养化评价. 海洋湖沼通报. 2022(03): 93-100 . 百度学术
    2. 苏文欣,赵育萱,江旭菲,刘永霞,刘岩,申家琛,秦歌,万云,冷欣. 河南沙颍河北部流域浮游动物群落结构及水质评价. 湿地科学与管理. 2022(04): 46-50 . 百度学术
    3. 苏家齐,朱长波,张博,陈素文,李婷. 海陵湾网箱养殖区浮游植物群落结构及其与环境因子的关系. 上海海洋大学学报. 2022(04): 929-939 . 百度学术

    其他类型引用(6)

图(2)  /  表(3)
计量
  • 文章访问数:  5504
  • HTML全文浏览量:  2796
  • PDF下载量:  38
  • 被引次数: 9
出版历程
  • 收稿日期:  2019-09-08
  • 修回日期:  2019-11-09
  • 录用日期:  2019-12-12
  • 网络出版日期:  2019-12-17
  • 刊出日期:  2020-04-04

目录

/

返回文章
返回