Abstract:
Ommastrephes bartramii is an oceanic species with short life cycle, whose life history and biomass are affected by environmental and climatic factors significantly. Based on the fishery data, sea surface temperature (SST), chlorophyll
a (Chl
a) and Pacific decadal oscillation (PDO) from 2004 to 2015 in the Northwest Pacific, we applied patial autocorrelation statistics, hot spot analysis and wavelet analysis to study the spatio-temporal variation of
O. bartramii in that area under two PDO models with cold and warm periods. The results show that the PDO index was positively correlated with the catch per unit effort (CPUE) and the CPUE lagged PDO for eight months. However, the conjugate period was 2−4 months under the influence of CPUE and PDO index. The distribution of fishery hotspots under two PDO modes is characterized by the fact that the gravity centers of fishing ground is obviously distributed in high and low latitude direction with strong and weak spatial agglomeration in warm and cold periods, respectively. PDO index affects the spatio-temporal distribution of
O. bartramii in different periods significantly, which has positive implications for the sustainable development of O. bartramii in the Northwest Pacific Ocean.