福建沿海试养中间球海胆的初步研究

常亚青, 赵冲, 胡方圆, 宋坚, 冷晓飞, 廖修锦, 罗嘉, 刘明泰, 张伟杰

常亚青, 赵冲, 胡方圆, 宋坚, 冷晓飞, 廖修锦, 罗嘉, 刘明泰, 张伟杰. 福建沿海试养中间球海胆的初步研究[J]. 南方水产科学, 2020, 16(3): 1-9. DOI: 10.12131/20190156
引用本文: 常亚青, 赵冲, 胡方圆, 宋坚, 冷晓飞, 廖修锦, 罗嘉, 刘明泰, 张伟杰. 福建沿海试养中间球海胆的初步研究[J]. 南方水产科学, 2020, 16(3): 1-9. DOI: 10.12131/20190156
CHANG Yaqing, ZHAO Chong, HU Fangyuan, SONG Jian, LENG Xiaofei, LIAO Xiujin, LUO Jia, LIU Mingtai, ZHANG Weijie. Aquaculture of Strongylocentrotus intermedius in Fujian coastal areas[J]. South China Fisheries Science, 2020, 16(3): 1-9. DOI: 10.12131/20190156
Citation: CHANG Yaqing, ZHAO Chong, HU Fangyuan, SONG Jian, LENG Xiaofei, LIAO Xiujin, LUO Jia, LIU Mingtai, ZHANG Weijie. Aquaculture of Strongylocentrotus intermedius in Fujian coastal areas[J]. South China Fisheries Science, 2020, 16(3): 1-9. DOI: 10.12131/20190156

福建沿海试养中间球海胆的初步研究

基金项目: 国家自然科学基金面上项目 (31672652);国家重点研发计划项目 (2018YFD0901600);辽宁省重大科技攻关项目 (2017203003);辽宁省特聘教授项目;农业农村部全国农业科研杰出人才及其团队项目
详细信息
    作者简介:

    常亚青 (1967—),男,博士,教授,从事经济棘皮动物 (海参、海胆) 遗传育种、人工育苗和增养殖技术的科研及科技转化。E-mail: yqchang@dlou.edu.cn

  • 中图分类号: S 968.9

Aquaculture of Strongylocentrotus intermedius in Fujian coastal areas

  • 摘要:

    为探索中间球海胆 (Strongylocentrotus intermedius) 在福建沿海季节性养殖的可行性,于2018年11月开展了新品种中间球海胆“大金”南移福州海域养殖试验。试养海胆分为大 (壳径3 cm) 和小 (壳径1 cm) 两种规格。采用当地现有的鲍养殖海域和设施,定期投喂海带 (Laminaria japonica) 和龙须菜 (Gracilaria lemaneiformis)。经过6个月的养殖,福州养殖的大规格海胆壳径达 (55.90±2.63) mm,体质量 (56.30±6.92) g,性腺指数15.02%±1.5%,海胆生殖腺发育处于成熟前期 (Ⅲ期),性腺质量良好,且显著高于大连同期养殖的大规格海胆壳径 (46.56±3.88) mm和体质量 (39.07±5.05) g (P<0.05)。同时,福州养殖的小规格海胆壳径达 (40.97±0.87) mm,体质量 (23.18±0.37) g,性腺指数9.64%±1.00%。试养结果表明,冬春季中间球海胆可在福建沿海开展季节性养殖,采用现有海上设施和养殖笼,投喂鲜活大型藻类,海胆的生长速度显著优于同期大连养殖。中间球海胆福建沿海南移养殖是满足其日益增长的市场需求的重要途径。

    Abstract:

    In order to explore the feasibility of Strongylocentrotus intermedius of seasonal breeding in Fujian coastal areas, we moved a new breed of S. intermedius ‘Dajin’ southward to Fuzhou sea area in November 2018. The tested S. intermedius was divided into two types: large-size (3 cm test diameter) and small-size (1 cm test diameter). Using the existing abalone breeding facilities, we regularly fed Laminaria japonica and Gracilaria lemaneiformis. After six months of breeding, the test diameter of large-size S. intermedius bred in Fuzhou had reached (55.90±2.63) mm, while the body mass had reached (56.30±6.92) g and the gonadal index reached (15.02±1.5)%. The gonadal development entered the stage of premature (Stage III) with good quality, which was significantly greater than the test diameter (46.56±3.88) mm and body mass (39.07±5.05) g for S. intermedius bred in Dalian in the same period (P<0.05). Besides, the test diameter of small-size S. intermedius in Fuzhou had reached (40.97±0.87) mm, while the body mass had reached (23.18±0.37) g and the gonadal index had reached (9.64±1.00)%. Thus, it is suggested that seasonally breeding S. intermedius in the coastal areas of Fujian Province in winter and spring is feasible. Feeding with local fresh algae on basis of existing facilities and abalone cages leads to higer growth rate of S. intermedius than those bred in Dalian in the same period. The important way to meet the increasing market demand of S. intermedius is to move the breeding southward along Fujian coast.

  • 氨氮是水产养殖中蛋白质的分解产物,主要由剩余食物和鱼粪分解产生[1],其主要在水中以氨 (NH3) 和离子态铵 (NH4 +) 的形式存在。NH3是一种脂溶性氨水,容易穿透细胞膜而对鱼类造成毒害[2]。大多数鱼类对环境中的氨氮浓度很敏感,是导致鱼病发生的主要环境因子之一。氨氮胁迫会损伤鱼类的鳃组织,渗透进入血液淋巴组织,机体抗氧化酶系统受损,鳃、消化器官等组织结构发生病变从而影响机体呼吸及消化功能,甚至引起发病死亡[3-4]。因此,研究氨氮胁迫对水产动物生理指标及组织结构的影响,可为胁迫因子对机体的影响监测提供基础指标并明确鱼类对氨氮的耐受性,对促进水产养殖的可持续发展具有重要意义。目前,氨氮对水生生物影响的研究已有很多,如黑鲷 (Acanthopagrus schlegeli)[5]、牙鲆 (Paralichthys olivaceus)[6]、黄颡鱼 (Pelteobagrus fulvidraco)[7]、克氏原螯虾 (Procambarus clarkia)[8]、奥尼罗非鱼 (Oreochromis niloticus×O. areus)[9]、方斑东风螺 (Babylonia areolata)[10]等。黄厚见等[11]发现,随着氨氮浓度的升高,梭鱼 (Liza haematocheila) 的胃蛋白酶活力显著下降。不同氨氮浓度胁迫下,福瑞鲤 (Cyprinus carpio)[12] 与刺参 (Stichopus japonicus) [13]的Na+/K+-ATP酶与呼吸代谢酶活力随氨氮浓度的升高而降低。研究表明高于0.60 mg·L−1的氨氮会使吉富罗非鱼幼鱼的组织结构受损,显著影响罗非鱼的消化酶水平,从而使其生长率明显低于对照组[14]。团头鲂 (Megalobrama amblycephala) 幼鱼在氨氮胁迫6 h后,鳃丝血管扩张,上皮组织增生,肝细胞肿胀,胁迫48 h,鳃小片卷曲,上皮细胞部分脱落;肝细胞部分溶解、血窦扩张,形成点状病灶,组织结构受到严重破坏[15]。不同的水生生物对氨氮的耐受能力不同,不同规格的同一品种鱼对氨氮的耐受能力也存在差异[16]

    翘嘴鳜 (Siniperca chuatsi) 为典型肉食性鱼类,喜食活饵。目前,翘嘴鳜的养殖由于过度追求数量,养殖密度高,养殖过程中投喂大量的饵料鱼,饵料残渣和鱼的代谢产物在水中快速积累易导致水体中的氨氮浓度快速升高[17-18]。生产实践表明翘嘴鳜对氨氮非常敏感,氨氮胁迫下其生长特性、消化功能均可能发生变化,进而影响了养殖效益。目前国内外针对翘嘴鳜幼鱼的研究主要集中在生长选育、食性改良等方面,而关于氨氮胁迫的研究却很少。本实验以翘嘴鳜幼鱼鳃、消化组织为研究对象,分析半致死浓度(LC50)氨氮胁迫下,不同胁迫时间,翘嘴鳜幼鱼鳃丝呼吸代谢酶 [ 乳酸脱氢酶 (LDH)、己糖激酶(HK)]与Na+/K+-ATP酶以及胃囊、肠道消化酶[ 淀粉酶 (AMS)、胃蛋白酶、脂肪酶 (LPS)]活力的变化,探究急性氨氮胁迫对翘嘴鳜幼鱼鳃与消化道生理功能的影响机制,进而实时监测养殖水体的氨氮浓度变化,预防病害,以期为翘嘴鳜的生态健康养殖提供依据。

    本研究所用翘嘴鳜幼鱼均选自南京农业大学无锡渔业学院南泉养殖基地,暂养于室内控温循环水养殖系统 (400 L·桶−1)。选取体表无损伤、规格整齐的翘嘴鳜幼鱼300尾。实验开始前,翘嘴鳜幼鱼于室内控温循环水养殖系统暂养14 d。暂养期间保持自然光照周期,暂养水体实验条件为溶解氧 (DO)质量浓度≥6 mg·L−1、氨氮质量浓度≤0.05 mg·L−1、水温 (22.0±0.5) ℃。暂养期间饵料鱼每2 d投放1次,数量为翘嘴鳜的2倍。

    室内循环水系统保持水温 (22.1±0.3) ℃,暂养14 d后选取规格整齐的翘嘴鳜幼鱼120尾[ 体质量 (13.55±0.69) g,体长 (9.26±0.35) cm]进行LC50测试。设定0、30、60和90 mg·L−1氯化铵 (NH4Cl) (试剂号75-09-2,国药集团化学试剂有限公司) 4个浓度梯度。每组浓度设置3个平行,每个平行放置10尾鱼。在96 h观测期中每隔8 h使用W-1型多参数水质分析仪 (杭州陆恒生物科技有限公司) 检测各水体氨氮浓度,将其调整为实验设计的氨氮浓度,每24 h换水1/4。观测翘嘴鳜幼鱼的活性变化,计数并捞出死亡个体 (鱼体侧翻且鳃盖停止扇动视为死亡)。

    暂养结束后,依据氨氮胁迫96 h LC50,设置对照组 (0 mg·L−1) 与实验组 (48.65 mg·L−1),实验组与对照组设置3个重复,选取体质量相近、活性良好的翘嘴鳜幼鱼180尾 [体质量 (13.31±0.49) g、体长 (9.73±0.46) cm] 随机平均放置于6个养殖桶中 (400 L),每桶30尾。对照组为完全曝气的自来水 (氨氮实测值为0.05 mg·L−1)。实验期间水温 (22.0±0.5) ℃, pH维持在7.70±0.10,DO质量浓度维持在 (6.13±0.12) mg·L−1, 氨氮胁迫时长为96 h,实验期间保持水体静止,停止进食,持续充氧,每隔8 h使用W-1型多参数水质分析仪 (杭州陆恒生物科技有限公司) 检测各水体氨氮浓度,将其调整为实验设计的氨氮浓度,每24 h换水1/4。

    在氨氮胁迫第0、第6、第12、第24、第48和第96小时,每桶分别随机选择3尾翘嘴鳜并用50 mg·L−1 MS-222轻度麻醉,采集翘嘴鳜幼鱼活体的第二鳃弓处鳃丝、胃囊、肠道,−80 ℃冻存用于后续酶活力测定。

    Na+/K+-ATP酶、LDH、HK、胃蛋白酶、LPS、AMS检测试剂盒购自南京建成生物研究所。取0.1 g样品加入9倍体积的生理盐水研磨后3 000 r·min−1 4 ℃离心10 min,取上清液−80 ℃保存备用。各种酶活力按试剂盒中的说明书进行操作,均采用比色法进行测定。

    采用定磷法测定。取同批10%组织匀浆加0.68%的生理盐水稀释至1%,用考马斯亮兰法测定组织中的蛋白含量。以每小时每毫克组织蛋白中ATP酶分解ATP产生1 μmol无机磷的量为1个ATP酶活力单位。

    每毫升上清37 ℃与基质作用15 min,在反应体系中产生1 μmol丙酮酸为1单位。通过测定样品孔与标准孔的吸光值来计算酶活力。

    在37 ℃、pH 7.6的条件下,每克组织蛋白在本反应体系中每分钟生成1 mmol·L−1的NADP定义为1个酶活力单位。在340 nm波长处,测定吸光度的增加值来计算酶活力。

    每毫克组织蛋白37 ℃下, 每分钟分解蛋白生成1 μg氨基酸相当于1个酶活力单位,通过测定660 nm处的吸光值进行计算。

    在37 ℃条件下,每升上清与底物反应1 min后,每消耗1 μmol底物为一个酶活力单位。通过测定420 nm处吸光度值的差值来计算酶活力。

    组织中每毫克蛋白在37 ℃与底物作用30 min,水解10 mg淀粉定义为1个淀粉酶活力单位,根据与碘生成的蓝色复合物来计算AMS活力。

    翘嘴鳜幼鱼96 h LC50分析采用直线内插法。实验结果分析使用SPSS 20.0 软件。酶活力检测结果以3个平行组数据 “平均值±标准差 ($\overline X \pm {\rm{SD}} $)”表示,实验相同采样时间实验组与对照组的比较采用独立样本t检验进行统计分析。对相同处理组不同时间点的数据进行单因素方差分析 (One-Way ANOVA),差异显著时,使用Duncan's检验法进行差异性分析 (P<0.05)。

    4种NH4Cl浓度处理96 h后,翘嘴鳜幼鱼呈现出不同的应激行为甚至死亡。起初躁动不安、四处游动,随着时间延长,反应更加剧烈。48 h后游动迟缓,尾鳍呈不同程度向内侧弓起,90 mg·L−1实验组鱼尾鳍与身体几乎成直角。在翘嘴鳜幼鱼氨氮胁迫96 h后,0、30、60、90 mg·L−1氨氮浓度组分别死亡0、8、18、29尾,因此计算得出96 h氨氮LC50为48.65 mg·L−1

    在96 h氨氮胁迫中各组翘嘴鳜幼鱼鳃Na+/K+-ATP酶活力随时间呈降低-升高-降低的变化趋势 (图1-a)。氨氮胁迫至第6小时,鳃Na+/K+-ATP酶活力显著降低 (P<0.05),随即呈升高趋势;至第48小时已显著高于对照组,达到最高值 (对照组的1.84倍);胁迫至第96小时,Na+/K+-ATP酶活力降低,但仍显著高于对照组 (P<0.05)。

    图  1  急性氨氮胁迫对翘嘴鳜幼鱼鳃呼吸代谢酶活力的影响
    不同小写字母表示同一处理不同时间点之间差异显著 (P<0.05);*. 实验组和对照组在胁迫后同一时间点差异显著 (P<0.05);实验组氨氮质量浓度为48.65 mg·L−1,对照组氨氮质量浓度为0 mg·L−1
    Figure  1.  Effect of acute ammonia stress on respiratory metabolism activity in gill of S. chuatsi
    Different lowercase superscripts indicate significant difference (P<0.05) in the same treatment at different time; *. Significant difference between ammonia stress group and the control group at the same time (P<0.05); concentrations of ammonia in the stress group and the control group are 48.65 mg·L−1 and 0 mg·L−1, respectively.

    急性氨氮胁迫96 h,LDH活力呈升高的变化趋势 (图1-b)。至第12小时,鳃LDH活力开始呈现升高的趋势;至第96小时显著高于对照组,达到最高值 (对照组的2.13倍)。各组翘嘴鳜幼鱼鳃HK活力呈逐步升高的变化趋势 (图1-c)。至第6小时,鳃HK活力显著升高 (P<0.05);至第48小时显著高于对照组,达到最高值 (对照组的1.70倍)。

    在96 h急性氨氮胁迫中,胃囊AMS活力随时间呈先降低后升高的变化趋势 (图2-a)。对照组胃囊AMS活力与各实验组之间差异显著 (P<0.05)。氨氮胁迫至第6小时,胃囊AMS活力显著降低 (P<0.05);胁迫至第12小时,胃囊AMS活力达到最低值 (对照组的0.37倍),随即呈现升高的趋势;至第96小时已显著高于对照组,达到最高值 (对照组的1.23倍)。实验组胃囊胃蛋白酶活力随时间呈升高-降低的变化趋势 (图2-b)。受氨氮胁迫的影响,胁迫至第6小时,胃囊胃蛋白酶活力显著降低 (P<0.05),随即呈升高的趋势;胁迫至第48小时,胃囊胃蛋白酶活力达到最高值 (对照组的1.44倍);胁迫至第96小时,实验组胃囊胃蛋白酶活力降低,仍显著高于对照组 (P<0.05)。实验组胃囊LPS随时间呈升高-降低的趋势 (图2-c)。氨氮胁迫至第12小时,胃囊LPS活力显著升高 (P<0.05);第48小时胃囊LPS活力达到最高值 (对照组的1.71倍);胁迫至第96小时,实验组胃囊LPS活力降低,仍显著高于对照组 (P<0.05)。

    图  2  急性氨氮胁迫对翘嘴鳜幼鱼胃、肠道消化酶活力的影响
    Figure  2.  Effect of acute ammonia stress on digestive enzyme activity in stomach and intestine of S. chuatsi

    在96 h急性氨氮胁迫中,各组翘嘴鳜幼鱼肠道AMS活力随时间呈先降低后升高的变化趋势 (图2-d)。受氨氮胁迫的影响,对照组肠道AMS活力与各实验组差异显著 (P<0.05)。氨氮胁迫6 h,AMS活力显著降低 (P<0.05);第24小时肠道AMS活力达到最低值 (对照组的0.49倍),随即呈升高趋势;至第48小时已显著高于对照组,达到最高值 (对照组的1.12倍)。各组翘嘴鳜幼鱼肠道胃蛋白酶活力随时间呈先降低后升高的变化趋势 (图2-e)。氨氮胁迫至第6小时,肠道胃蛋白酶活力降低,但与对照组无显著差异 (P<0.05);胁迫至第12小时,实验组肠道胃蛋白酶活力显著降低,达到最低值 (对照组的0.89倍),随即呈升高趋势;至第96小时已显著高于对照组,达到最高值 (对照组的1.15倍)。实验组肠道LPS随时间呈逐渐升高趋势 (图2-f)。胁迫12 h肠道LPS活力显著升高 (P<0.05);至第96小时肠道LPS活力达到最高值 (对照组的2.99倍)。

    Na+/K+-ATP酶对环境渗透压的变化十分敏感,在硬骨鱼类中具有调节渗透压功能的重要作用[19],当水体环境中的高浓度氨氮通过鱼类鳃部进入机体时,鱼类也能够通过广泛分布于鳃组织中的Na+/K+-ATP酶与Na+/K+ (NH4 +) 载体以跨膜运输的方式将氨排出体外[20-21]。攀鲈 (Anabas testudineus) 在氨氮胁迫下其鳃部Na+/K+-ATP酶活力在氨氮胁迫1和6 d后均显著升高,且与胁迫时间呈正相关[22],这表明水体环境中氨氮浓度的变化能够诱导或抑制Na+/K+-ATP酶活力。本实验发现在氨氮胁迫下翘嘴鳜幼鱼鳃部Na+/K+-ATP酶活力持续升高,说明随着胁迫时间的延长,机体诱导提高了Na+/K+-ATP酶活力,通过泌氯细胞膜两侧的转运蛋白与Na+/K+ (NH4 +) 载体将氨排出体外。胁迫至第96小时,Na+/K+-ATP酶仍显著高于对照组,但已呈下降趋势,这可能是由于高浓度的氨氮影响了Na+/K+-ATP酶的蛋白结构,使酶活力降低。鳃部组织细胞功能虽然受到氨氮毒性的影响,但其酶活力仍显著高于对照组,表明鳃主动渗透调节能力仍能通过排出氨氮维持鱼体渗透压平衡。

    研究发现随着氨氮胁迫浓度的升高,硬骨鱼的耗氧率与排氨率均受到抑制[23]。HK与LDH是糖酵解过程中的重要酶类,HK能够将葡萄糖磷酸化以进行下一步的代谢反应,是糖无氧酵解反应的限速酶。LDH能够在无氧条件下催化丙酮酸生成乳酸,是生物无氧代谢的标志酶[24-25]。本研究发现翘嘴鳜幼鱼鳃组织中HK与LDH活力随氨氮胁迫时间延长而升高,并一直维持在较高水平,这说明氨氮胁迫下机体有氧呼吸过程可能受到抑制,并通过提高无氧代谢的方式提供机体所需能量。呼吸代谢模式从有氧呼吸向无氧呼吸转变的趋势,在低氧胁迫研究中则更为明显,如低氧胁迫下花鲈(Lateolabrax japanicus)幼鱼肝脏中糖原含量显著降低,LDH活力显著升高[26]。于晓[13]也发现氨氮胁迫下刺参组织中HK活力在短时间内迅速升高。因此在环境中氨氮水平升高时翘嘴鳜幼鱼呼吸代谢功能受氨氮毒性的影响,从而通过增加无氧代谢水平以维持机体能量供应,并缓解部分供氧压力,有利于机体提高对氨氮环境的适应性。

    在氨氮胁迫下,随着外源性氨氮不断通过鳃、皮肤、肠道等途径进入鱼体,导致鱼类体内氨氮浓度升高,进而引发氨中毒,鱼类会产生代谢紊乱、生长迟缓、组织损伤病变等一系列毒性效应[27]。高氨氮环境下,鱼类为了维持体内氨氮积累-代谢的平衡,不仅能够活化抗氧化酶、细胞修复因子、免疫因子以修复组织氧化损伤,通过排泄系统、呼吸系统将过多的氨氮排出体外,还可以通过降低活动频率、消化代谢水平以减少体内氨的生成,从而降低氨氮毒性水平[28]。本实验中,氨氮胁迫至第6小时,翘嘴鳜幼鱼胃囊与肠道AMS活力、胃囊胃蛋白酶活力显著下降 (P<0.05)。这说明氨氮胁迫初期,鱼类一方面降解、排出外源性氨氮,同时降低机体消化代谢水平,进一步降低体内氨氮水平,以规避毒性效应的不利影响。在三疣梭子蟹 (Portunus trituberculatus) 的急性氨氮胁迫研究中也发现AMS、胃蛋白酶活力在胁迫初期呈下降趋势[29]。然而在持续的氨氮胁迫下,鱼类为维持体内氨氮积累-代谢的平衡,需要消耗的能量远远高于机体的正常代谢水平,这也刺激了鱼类相应提高消化酶活力以增加能量供给,增强机体对氨氮环境的适应性。实验中氨氮胁迫第12小时后,AMS、胃蛋白酶、LPS呈上升趋势。这说明在持续的高浓度氨氮胁迫下,机体诱导消化酶活力升高,分解体内糖类、蛋白质、脂肪供应机体适应高氨氮环境所消耗的能量。随着氨氮胁迫时间的延长,氨氮不断以NH3的形式经鳃、表皮和肠黏膜等进入鱼体,胃、肠道等消化器官中的血氨含量不断升高,器官表层黏膜持续胁迫于高氨氮环境中可导致消化器官损伤,消化机能下降[30]。本实验中鳜鱼幼鱼胁迫至第96小时,胃囊AMS与肠道胃蛋白酶、LPS活力再次升高,说明持续氨氮胁迫条件下,鱼类通过代谢、排出的方式排出过多的外源性氨氮,降低血氨含量,能量需求大量增加。这可能是由于消化酶活力受机体调控“代偿”性升高,以维持机体的能量供给[31]。本研究还发现,在96 h胁迫过程中AMS活力先降低后升高的变化程度显著高于胃蛋白酶与LPS,这可能与糖类的代谢机制有关。这与李波[32]、常志成等[26]的研究结果相似,即AMS活力急剧升高可能是由于鱼类消化代谢糖类物质供应能量时氧卡系数最高,在供氧不足时鱼类诱导AMS活力急剧升高,以消化代谢体内糖类物质来供应能量。

  • 图  1   福州和大连水域在试验期间温度、pH、盐度变化情况 (n=3)

    Figure  1.   Variation of temperature, pH and salinity in Fuzhou and Dalian waters during the experiment

    图  2   福州和大连两地海胆的阶段生长情况比较

    同一测定时间,不同字母之间表示数据差异显著 (n=10);图4同此

    Figure  2.   Comparison of stage growth of S. intermedius in Fuzhou and Dalian

    Different letters indicate significant difference between the data. The same case in Figure 4

    图  3   2019年5月海胆在福州和大连两地亚里士多德提灯长度、亚里士多德提灯质量的差异比较 (n=10)

    *. 差异显著 (P<0.05);**. 差异极显著 (P<0.01);***. 差异极其显著 (P<0.001);后图同此

    Figure  3.   Comparison of lantern length and mass of S. intermedius in Fuzhou and Dalian in May 2019

    *. Significant difference (P<0.05); **. Very significant difference (P<0.01); ***. Extremely significant difference (P<0.001); the same case in the following figures

    图  4   福州和大连两地海胆的性腺质量和性腺指数阶段生长情况比较 (n=10)

    Figure  4.   Comparison of gonad and gonad mass index growth of S. intermedius in Fuzhou and Dalian

    图  5   2019年5月福州组和大连组海胆性腺的发育情况 (n=10)

    a. 福州组Ⅱ期的卵巢;b. 福州组Ⅲ期的精巢;c、d. 大连组Ⅱ期的精巢

    Figure  5.   Gonadal development of S. intermedius in Fuzhou and Dalian groups in May 2019

    a. Ovary at Stage II; b. Testis of Fuzhou group at Stage III; c and d. All testis of Dalian group at Stage II

    图  6   小规格中间球海胆壳径和体质量在福州海域生长情况 (n=10)

    Figure  6.   Growth of test diameter and body mass of small-size S. intermedius in Fuzhou sea area

    图  7   小规格中间球海胆性腺质量和性腺指数在福州海域阶段生长情况 (n=10)

    Figure  7.   Growth of small-size S. intermedius gonad mass and gonad index in Fuzhou sea area

    图  8   2019年5月放养在福州的小规格海胆性腺生物切片图 (n=10)

    a. 发育到Ⅱ期的精巢;b. 发育到Ⅲ的精巢

    Figure  8.   Biopsies of small-size S. intermedius gonads in Fuzhou sea area in May 2019

    a. Testis at Stage II; b. Testis at Stage III

    表  1   两种规格海胆饵料转化情况

    Table  1   Two types of S. intermedius bait conversion n=3; $\overline {\mathit{\boldsymbol{X}}}{\bf \pm {{SD}}} $

    海胆规格
    S. intermedius size/cm
    11月体质量
    Body mass in November/g
    1月体质量
    Body mass in January/g
    增长量
    Growth/g
    个体日摄食海带干质量
    Dry mass of individual daily intake of kelp/g
    消耗海带干质量
    Dry mass of consume of
    kelp/g
    饵料系数
    Food coefficient
    1 1.85±0.33 6.91±1.88 5.06±1.56 0.44±0.06 22.99±12.20 4.84±1.70
    3 13.78±0.93 26.51±0.34 12.73±1.23 0.61±0.10 26.74±10.26 2.55±0.93
    下载: 导出CSV

    表  2   与海胆其他养殖模式的比较

    Table  2   Comparison with other aquaculture modes of S. intermedius

    生长阶段
    Growth stage
    指标
    Index
    陆上工厂养殖
    Factory culture on land[5]
    海上筏式养殖
    Raft culture at sea[17]
    福建试养
    Aquaculture in Fujian Province
    初始值 Initial value 壳径 11.6 小:11.8 大:37.60 小:15.03±1.84 大:31.97±3.87
    体质量 0.47 小:0.75 大:22.72 小:1.45±0.44 大:13.78±0.93
    6个月 6 months 壳径 −    −    小:40.97±0.87 大:55.90±2.63
    体质量 −    −    小:23.18±0.37 大:56.30±6.92
    12个月 12 months 壳径 小:51.0 (最大) 大:52.0
    体质量 小:35.4 (最大) 大:56.4
    13个月 13 months 壳径 59.8 −    −   
    体质量 61.5 −    −   
    下载: 导出CSV
  • [1] 常亚青, 张伟杰, 冷晓飞, 等. 中间球海胆“大金”[J]. 中国水产, 2015(12): 58-59. doi: 10.3969/j.issn.1002-6681.2015.12.029
    [2] 常亚青, 王子臣. 虾夷马粪海胆筏式人工养殖研究[J]. 大连水产学院学报, 1997, 12(2): 7-14.
    [3] 王仁波, 李建军. 虾夷马粪海胆工厂化养殖初探——幼胆期不同密度及饵料试验[J]. 水产科学, 1998(2): 15-18.
    [4] 周玮, 孙俭, 王俊杰, 等. 我国海胆养殖现状及存在问题[J]. 水产科学, 2008, 27(3): 151-153. doi: 10.3969/j.issn.1003-1111.2008.03.012
    [5] 常亚青, 丁君, 宋坚, 等. 海参, 海胆生物学研究与养殖[M]. 北京: 海洋出版社, 2004: 420-427.
    [6] 于燕光, 逯云召, 宓慧菁. 天津地区海胆工厂化养殖试验[J]. 海洋与渔业, 2018(11): 72-73.
    [7]

    LAWRENCE J M, ZHAO C, CHANG Y Q. Large-scale production of sea urchin (Strongylocentrotus intermedius) seed in a hatchery in China[J]. Aquacult Int, 2019, 27(1): 1-7. doi: 10.1007/s10499-018-0319-2

    [8] 张显良, 崔利锋,李书民, 等. 2019中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2019: 23.
    [9] 宁岳, 曾志南, 苏碰皮, 等. 福建海水养殖业现状、存在问题与发展对策[J]. 福建水产, 2011, 33(3): 31-36. doi: 10.3969/j.issn.1006-5601.2011.03.014
    [10] 柯才焕. 我国鲍鱼养殖产业现状与展望[J]. 中国水产, 2013(1): 27-30. doi: 10.3969/j.issn.1002-6681.2013.01.010
    [11] 翁祖桐. 福建海带产业发展形势分析[J]. 中国水产, 2018(12): 83-86.
    [12] 余志明. 海胆南方筏式笼养技术[J]. 中国水产, 2007(3): 57. doi: 10.3969/j.issn.1002-6681.2007.03.037
    [13]

    ZHAO C, ZHANG W, CHANG Y Q, et al. Effects of continuous and diel intermittent feeding regimes on food consumption, growth and gonad production of the sea urchin Strongylocentrotus intermedius of different size classes[J]. Aquacult Int, 2013, 21(3): 699-708. doi: 10.1007/s10499-012-9604-7

    [14]

    ZHAO C, BAO Z M, CHANG Y Q. Fitness-related consequences shed light on the mechanisms of covering and sheltering behaviors in the sea urchin Glyptocidaris crenularis[J]. Mar Ecol, 2016, 37(5): 998-1007. doi: 10.1111/maec.12311

    [15] 富士昭. 北海道のウニとその增殖[M]. 东京: 日本水产资源保护协会, 1969: 12-22.
    [16] 富田恭司, 岸田正通, 全先清通. 北海道东部沿岸に生息するエゾバフンウニの生殖巢の季节变化[J]. 北水试月报, 1984, 41: 469-479.
    [17] 王子臣, 常亚青. 虾夷马粪海胆人工育苗的研究[J]. 中国水产科学, 1997, 4(1): 61-68.
    [18]

    MILLER B A, EMLET R B. Development of newly metamorphosed juvenile sea urchins (Strongylocentrotus franciscanus and S. purpuratus): morphology, the effects of temperature and larval food ration, and a method for determining the age[J]. J Exp Mar Biol Ecol, 1999, 235(1): 67-90. doi: 10.1016/S0022-0981(98)00164-6

    [19]

    RAYMOND B G, SCHEIBLING R E. Recruitment and growth of the sea urchin Strongylocentrotus droebachiensis (Müller) following mass mortalities of Nova Scotia, Canada[J]. J Exp Mar Biol Ecol, 1987, 108(1): 31. doi: 10.1016/0022-0981(87)90129-8

    [20]

    BRISCOE C S, SEBENS K P. Omnivory in Strongylocentrotus droebachiensis (Müller) (Echinodermata: Echinoidea): predation on subtidal mussels[J]. J Exp Mar Biol Ecol, 1988, 115(1): 1-24. doi: 10.1016/0022-0981(88)90186-4

    [21]

    MINOR M A, SCHEIBLING R E. Effects of food ration and feeding regime on growth and reproduction of the sea urchin Strongylocentrotus droebachiensis[J]. Mar Biol, 1997, 129(1): 159-167. doi: 10.1007/s002270050156

    [22]

    MEIDEL S K, SCHEIBLING R E. Size and age structure of the sea urchin Strongylocentrotus droebachiensis in different habitats[C]. Proceedings of the Ninth International Echinoderm Conference, San Francisco, Rotterdam: Balkema,1996: 737-742.

    [23]

    PEARCE C M, WEAVERS R W, WILLIAMS S W. Effect of three kelp species and a prepared diet on somatic growth of juvenile green sea urchins (Strongylocentrotus droebachiensis)[J]. Aquacult Ass Can Spe Pub, 2004, 8: 73-76.

    [24]

    DAGGETT T L, ROBINSON S M C. Effects of starch type, macroalgal meal source, and b-carotene on gonad yield and quality of the green sea urchin, Strongy locentrotus droebachiensis[J]. J Shell Res, 2003, 22(2): 505-519.

    [25]

    JAMES P, HEATH P, UNWIN M J. The effects of season, temperature and initial gonad condition on roe enhancement of the sea urchin Evechinus chloroticus[J]. Aquaculture, 2007, 270(1/2/3/4): 115-131.

    [26]

    LAWRENCE J M, CAO X B, CHANG Y Q, et al. Temperature effect of feed consumption, absorption, and assimilation efficiencies and production of the sea urchin Strongylocentrotus intermedius[J]. J Shell Res, 2009, 28(2): 389-395. doi: 10.2983/035.028.0223

    [27]

    SIIKAVUOPIO S I, CHRISTAINSEN J S, DALE T. Effects of temperature and season on gonad growth and feed intake in the green sea urchin (Strongylocentrotus droebachiensis)[J]. Aquaculture, 2006, 255(1/2/3/4): 389-394.

    [28]

    ZHAO C, TIAN X F, SUN P, et al. Long-term effects of temperature on gonad production, colour and flavor of the sea urchin Glyptocidaris crenularis[J]. Mar Biol Assoc UK, 2015, 95(1): 139-143. doi: 10.1017/S0025315414000745

    [29]

    WALKER C W, UNUMA T, LESSER M P. Gametogenesis and reproduction of sea urchins[M]//LAWRENCE JM. Edible Sea Urchins: Biology and Ecology. Amsterdam: Elsevier Science, 2007: 11-33.

    [30]

    UNUMA T, WALKER C W, DURHAM-HARRIS L, et al. The role of the major yolk protein in sea urchin reproduction and its relevance to aquaculture[M]. London: Durham, 2010: 437-444.

图(8)  /  表(2)
计量
  • 文章访问数:  5853
  • HTML全文浏览量:  2727
  • PDF下载量:  93
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-23
  • 修回日期:  2019-08-21
  • 录用日期:  2020-01-13
  • 网络出版日期:  2020-01-18
  • 刊出日期:  2020-06-04

目录

/

返回文章
返回