饲料蛋白水平对拉萨裸裂尻幼鱼肠道和肝脏的消化酶活性及组织结构的影响

王建, 曾本和, 徐兆利, 张忭忭, 刘海平, 王万良, 王金林, 周建设, 黄莉萍

王建, 曾本和, 徐兆利, 张忭忭, 刘海平, 王万良, 王金林, 周建设, 黄莉萍. 饲料蛋白水平对拉萨裸裂尻幼鱼肠道和肝脏的消化酶活性及组织结构的影响[J]. 南方水产科学, 2019, 15(6): 112-119. DOI: 10.12131/20190107
引用本文: 王建, 曾本和, 徐兆利, 张忭忭, 刘海平, 王万良, 王金林, 周建设, 黄莉萍. 饲料蛋白水平对拉萨裸裂尻幼鱼肠道和肝脏的消化酶活性及组织结构的影响[J]. 南方水产科学, 2019, 15(6): 112-119. DOI: 10.12131/20190107
WANG Jian, ZENG Benhe, XU Zhaoli, ZHANG Bianbian, LIU Haiping, WANG Wanliang, WANG Jinlin, ZHOU Jianshe, HUANG Liping. Effect of dietary protein level on digestive enzyme activity and histological structure in intestine and liver of juvenile Schizopygopsis younghusbandi[J]. South China Fisheries Science, 2019, 15(6): 112-119. DOI: 10.12131/20190107
Citation: WANG Jian, ZENG Benhe, XU Zhaoli, ZHANG Bianbian, LIU Haiping, WANG Wanliang, WANG Jinlin, ZHOU Jianshe, HUANG Liping. Effect of dietary protein level on digestive enzyme activity and histological structure in intestine and liver of juvenile Schizopygopsis younghusbandi[J]. South China Fisheries Science, 2019, 15(6): 112-119. DOI: 10.12131/20190107

饲料蛋白水平对拉萨裸裂尻幼鱼肠道和肝脏的消化酶活性及组织结构的影响

基金项目: 西藏自治区自然科学基金项目 (ZRKX2017000143);西藏自治区科技厅重点研发及转化计划项目 (XZ201801NB12)
详细信息
    作者简介:

    王 建(1992—),男,硕士研究生,从事鱼类增养殖研究。E-mail: 1358422028@qq.com

    通讯作者:

    刘海平(1981—),男,博士,研究员,从事高原鱼类养护研究。E-mail: luihappying@163.com

  • 中图分类号: S 963.71

Effect of dietary protein level on digestive enzyme activity and histological structure in intestine and liver of juvenile Schizopygopsis younghusbandi

  • 摘要:

    为探究饲料蛋白水平对拉萨裸裂尻 (Schizopygopsis younghusbandi) 幼鱼肠道和肝脏的消化酶活性及组织结构的影响,设计出蛋白质水平分别为20%、25%、30%、35%、40%、45%的6种等脂等能的饲料,饲喂初始体质量为 (22.42±0.56) g的拉萨裸裂尻幼鱼60 d。结果显示,随着饲料蛋白水平升高,肠道和肝脏的蛋白酶活性呈先升高后降低的趋势,其中35%蛋白水平组蛋白酶活性显著高于其他实验组 (P<0.05)。脂肪酶和淀粉酶活性随着饲料蛋白水平的升高呈降低趋势 (P<0.05)。前、中、后肠的管壁厚度和绒毛高度呈先升高后降低的趋势 (P<0.05),其中在30%蛋白水平组的前肠和中肠管壁厚度最高,35%蛋白水平组后肠管壁厚度最高,30%蛋白水平组前肠、中肠和后肠绒毛高度最高。饲料蛋白水平高于35%时会损伤肝脏组织结构。在该实验条件下,综合考虑鱼体肠道和肝脏中消化酶活性及组织结构,拉萨裸裂尻幼鱼饲料蛋白水平以30%为宜。

    Abstract:

    To explore the effects of different feed protein levels on the digestive enzyme activity and histological structure in the intestine and liver of juvenile Schizopygopsis younghusbandi, we designed six kinds of equal-energy experimental feeds with different protein levels (20%, 25%, 30%, 35%, 40%, 45%) to feed the juveniles with initial body mass of (22.42±0.56) g for 60 d. The results show that with the increase of feed protein level, the protease activity in intestine and liver increased first then declined. The protease activity in 35% protein group was significantly higher than that in the other groups (P<0.05). The lipase and amylase activities reduced significantly (P<0.05). The wall thickness and villus height of foregut, midgut and hindgut all increased and then decreased (P<0.05). The wall thickness of foregut and midgut were highest in 30% group, while the wall thickness of the hindgut was highest in the 35% group. The villus height of foregut, midgut and hindgut were highest in 30% group. Feed protein level higher than 35% may damage liver tissue structure. Under this condition, considering the digestive enzymes activity and histological structure of intestines and liver, the optimum protein level of juvenile S. younghusbandi should be 30%.

  • 罗非鱼原产于非洲,现已被联合国粮农组织(FAO)列为人类六大主食品之一[1],罗非鱼产业是当今世界渔业的重要组成部分。罗非鱼因具有生长快、产量高、食性杂、适应性与抗病力强,可在淡水与咸水中养殖等优点,而且其肉厚色白、质嫩刺少、富有弹性、细腻味美,含多种不饱和脂肪酸及丰富的蛋白质、维生素、微量元素等营养成分,成为深受生产者和消费者喜爱的鱼类品种之一。近年来,中国大力推广养殖罗非鱼,随着高密度精养模式的发展,在养殖中大量使用高脂、高糖饲料,采取饱食性投喂,导致罗非鱼脂肪肝病频繁发生。

    鱼类脂肪肝病是长期以来困扰水产养殖者的难题之一。近年来国内外学者围绕脂肪肝病对鱼类生长的影响、脂肪肝组织学及脂肪肝病防治等开展了大量研究,研究对象包括舌齿鲈Moronidae Dicentrarchus、大西洋鳕Gadus morhua、草鱼Ctenopharyngodon idellus、团头鲂Megalobrama amblycephala、红姑鱼Sciaenops ocellatus、石斑鱼Epinephelus akaara等众多种类[2-7],目前对于罗非鱼脂肪肝病仅见黄凯等[8]和庞思成[9]初步研究报道。文章通过配制不同脂肪含量的饲料,研究养殖中奥尼罗非鱼(Oreochromis niloticus×O.aureus)的生长指标与肝脏形态学、组织学等变化,旨在阐明脂肪水平对罗非鱼幼鱼脂肪肝病发生的影响,为罗非鱼高效健康养殖及养殖鱼类脂肪肝病的防治提供理论依据和技术支撑。

    试验用奥尼罗非鱼幼鱼体长2.08±0.18 cm,体重0.26±0.02 g。随机取600尾试验鱼,分为5组,每组设3个平行,每个水泥池养殖40尾鱼,15个室外长方形水泥池(0.75 m×0.5 m×1.2 m)均循环流水过滤,试验期间自然光照。水温26.5±2.0℃,DO 7.03±0.23 mg · L-1,pH 6.9±0.1,NH3-N含量0.03±0.01 mg · L-1

    养殖试验为期70 d,在前30 d投饲每天为鱼体重5%左右,每天上午8时至下午8时每隔3 h投喂1次,共投喂5次;30 d后每天投饲量为鱼体重3%左右,每天投喂3次,分别为上午9时、中午1时和下午6时。并在投喂30 min后迅速吸取残饵并晒干称重。

    试验饲料原料包括酪蛋白、明胶、纤维素、糊精、鱼油、豆油、复合维生素、复合矿盐、氯化胆碱和氯化钠等。为了排除饲料蛋白和能量等因素的影响,各组饲料添加等氮和等能量的酪蛋白和糊精,采用鱼油和豆油1 : 1混合后作为添加的脂肪源。试验共设5个脂肪梯度组,1~5组添加的脂肪量分别为0%、2%、4%、6%和8%,饲料蛋白源为酪蛋白,用糊精调节脂肪梯度,饲料日粮配方组成见表 1。将原料用小型颗粒机制粒,在60℃恒温箱中经5 h烘干,制成粒径2 mm的颗粒状饲料,密封冷藏备用。

    表  1  奥尼罗非鱼幼鱼基础日粮的组成
    Table  1  Composition of the experimental diets for juvenile tilapia %
    配方
    formulation
    试验组treatments
    1 2 3 4 5
    鱼油与豆油fish oil and soybean oil 0 2.00 4.00 6.00 8.00
    糊精dextrine 51.57 49.57 47.57 45.57 43.57
    酪蛋白casein 35.00 35.00 35.00 35.00 35.00
    明胶glutin 5.00 5.00 5.00 5.00 5.00
    纤维素cellulose 5.00 5.00 5.00 5.00 5.00
    复合维生素avitamins permix 1.00 1.00 1.00 1.00 1.00
    复合矿盐bmineral permix 1.00 1.00 1.00 1.00 1.00
    氯化胆碱choline chloride 0.30 0.30 0.30 0.30 0.30
    氯化钠sodium chloride 0.50 0.50 0.50 0.50 0.50
    粘合剂adhesive 0.50 0.50 0.50 0.50 0.50
    抗氧化剂antioxidant 0.02 0.02 0.02 0.02 0.02
    诱食剂phagostimulant 0.01 0.01 0.01 0.01 0.01
    防腐剂antiseptic 0.10 0.10 0.10 0.10 0.10
    注:a. 每千克复合维生素含VD 480 000 IU,VE 20.00 g,VK 0.20 g,VC 14.00 g,VB1 0.10 g,VB2 1.40 g,VB6 1.20 g,VB12 0.20 g,泛酸钙6.521 g,烟酸5.60 g,生物素0.20 g,肌醇88.00 g;b. 每千克复合矿盐含FeSO4 · 7H2O(19.74%Fe)152.00 g,CuSO4 · 5H20(25.22%Cu)2.40 g,ZnSO4 · 7H2O(19.25%Zn)31.20 g,MnSO4 · H2O(31.89%Mn)8.20 g,Na2SeO3 · 5H2O(28.54%)0.18 g,KI(75.73%)0.16 g,CaCO3 805.86 g
    Note:a. Vitamins premix per kilogram including VD 480 000 IU, VE 20.00 g, VK 0.20 g, VC 14.00 g, VB1 0.10 g, VB2 1.40 g, VB6 1.20 g, VB12 0.20 g, pantothenic acid calcium 6.521 g, nicotinic acid 5.60 g, biotin 0.20 g, inositol 88.00 g;b. mineral premix per kilogram including FeSO4 · 7H2O (19.74%Fe) 152.00 g, CuSO4 · 5H20 (25.22%Cu) 2.40 g, ZnSO4 · 7H2O (19.25%Zn) 31.20 g, MnSO4 · H2O (31.89%Mn) 8.20 g, Na2SeO3 · 5H2O (28.54%) 0.18 g, KI (75.73%) 0.16 g, CaCO3 805.86 g
    下载: 导出CSV 
    | 显示表格

    养殖试验结束时,每池随机取罗非鱼10尾,首先用MS-222麻醉后逐尾测定体长体重,进行生长指标统计。随后逐尾解剖,观察记录内脏中各个器官组织(肝胰脏、胆囊等)变化特征,并拍照留存。最后剖离出肝脏,固定于10%福尔马林缓冲液中,按常规组织切片法进行脱水、石蜡包埋、切片和H-E(苏木精-伊红对染法)染色;切片厚度5~6 μm;切片在光学显微镜下观察记录微观形态结构特征,并拍照留存。

    采用统计分析软件SPSS 13.0进行方差分析和Duncan氏多重比较,各组试验数据结果以平均数±标准差表示。试验的相关计算公式:

    相对增重率(%) = (末重-初重) /初重×100;

    肥满度=体重/全长3×100;

    饲料系数=摄食饲料总量/ (末重-初重)。

    养殖期间奥尼罗非鱼幼鱼1~5组间的增重率均有显著性差异。1~3组试验鱼随着饲料脂肪水平升高,增重率先升高后降低,以3组为最高。肥满度变化规律与增重率相似,呈现先上升后下降的趋势,以3组最高,达(1.92±0.18)%;1、3、4和5组间肥满度均有显著性差异;而2组试验鱼则与1组、3组间有显著性差异,与4、5组间无显著性差异。饲料系数在1~5组间均有显著性差异,3组试验鱼饲料系数最低,为1.01±0.09,5组的最高,达1.36±0.23(表 2)。

    表  2  饲料脂肪水平对奥尼罗非鱼幼鱼生长指标的影响
    Table  2  Effects of different diet lipid levels on growth of juvenile tilapia
    生长指标
    growth index
    试验组treatments
    1 2 3 4 5
    增重率/% WGR 3 554±68a 4 369±111b 5 481±156c 4 269±203de 3 404±128e
    肥满度/% CF 1.63±0.14a 1.78±0.21bc 1.92±0.18de 1.80±0.21b 1.74±0.24c
    饲料系数FCR 1.12±0.13a 1.08±0.12b 1.01±0.09c 1.24±0.19de 1.36±0.23e
    注:同行所标字母不同表示两者差异显著,而字母相同表示差异不显著
    Note:The different letters on the parameters in one row stand for significant difference (P < 0..05), otherwise, the same ones stand for no significant difference.
    下载: 导出CSV 
    | 显示表格

    表 3可知,随着脂肪添加量的增加,1~5组奥尼罗非鱼幼鱼肝脏重量、肝体比、肝脏脂肪含量和肌肉脂肪含量等4个指标均呈现逐渐升高的趋势,饲料脂肪水平对这4个指标都有明显影响,呈正相关关系。5组的肝脏脂肪含量为(43.44±3.87)%,分别比1、2、3和4组高34.53%、24.72%、19.11%和10.59%。随着脂肪添加量的增加,1~5组奥尼罗非鱼幼鱼的肝脏重量、肝体比和肝脏脂肪含量等指标在各个组间都具显著性差异。

    表  3  饲料脂肪水平对奥尼罗非鱼幼鱼肝脏脂肪含量的影响
    Table  3  Effects of different diet lipid levels on liver fat content of juvenile tilapia
    指标
    index
    试验组treatments
    1 2 3 4 5
    肝脏重/g liver weight 0.29±0.08e 0.38±0.11d 0.49±0.18c 0.58±0.12b 0.67±0.21a
    肝体比/% HSI 2.85±0.15e 3.22±0.19d 3.84±0.36c 4.65±0.54b 5.56±0.71a
    肝脏脂肪含量(湿重)/%
    liver fat content
    32.29±2.24e 34.83±3.53d 36.47±2.39c 39.28±3.34b 43.44±3.87a
    注:同行所标字母不同表示两者差异显著,字母相同表示差异不显著Note:The different superscript letters on the parameters in one row stand for significant difference (P < 0..05), otherwise, the same ones stand for no significant difference.
    下载: 导出CSV 
    | 显示表格

    投喂不同脂肪含量的饲料,经70 d养殖试验后,各个试验组罗非鱼的肝脏和胆囊颜色及体积的异常变化见表 4。结果表明,低脂肪水平的1~3组与高脂肪水平的4~5组的肝脏和胆囊差别较大。1~3组肝脏和胆囊的颜色与体积正常,肠系膜无白色脂肪沉积(图 1-a)。而4~5组病鱼的肝胰脏肿大,呈油腻状,颜色发黄,柔软粉糊,用刀切易碎,有的出现白色坏死病灶,部分胆囊肿大且颜色变深,肠系膜均有过量的白色脂肪沉积,严重时脂肪几乎覆盖整个肠器官,呈现典型的脂肪肝病变特征(图 1-b)。第4组脂肪肝出现率为44.44%,第5组脂肪肝出现率为66.67%。

    表  4  不同饲料脂肪水平对奥尼罗非鱼幼鱼脂肪肝形成的影响
    Table  4  Effects of different diet lipid levels on fatty liver disease in juvenile tilapia %
    组别
    group
    肝脏liver 胆囊gallbladder 出现脂肪肝
    appearance of fatty liver disease
    颜色异常colour abnormity 体积异常volume abnormality 颜色异常colour abnormality 体积异常volume abnormality
    1 0 0 0 0 0
    2 0 0 0 0 0
    3 0 0 0 0 0
    4 55.56 55.56 55.56 55.56 44.44
    5 33.33 33.33 33.33 33.33 66.67
    下载: 导出CSV 
    | 显示表格
    图  1  正常与患病的罗非鱼比较
    a. 正常的奥尼罗非鱼幼鱼剖腹观察(取自第1组);b. 患病的奥尼罗非鱼幼鱼剖腹观察(取自第5组)
    Fig. 1  The difference between normal and sick tilapia
    a. The viscus dissection symptom of normal tilapia(group 1);b. The viscus dissection symptom of sick tilapia(group 5)

    对不同试验组的奥尼罗非鱼幼鱼肝脏进行组织学切片,并在光学显微镜下(16×100~16×200)观察拍照,肝细胞拍照结果见图 2-1~5。1~3组试验鱼肝细胞排列整齐,肝细胞索明显,肝细胞平均直径为8.9 μm,未发现脂肪肝病变特征。4~5组罗非鱼肝细胞平均直径为17.9 μm,最大达23.2 μm,呈现明显的脂肪肝病变特征,患病组肝细胞的直径超过正常组肝细胞约1倍(表 5)。1~5组试验鱼的肝细胞直径随着饲料脂肪水平升高而增大,其中低脂肪水平的1~3组与高脂肪水平的4~5组有显著差异,而1组、2组、3组间无显著差异,4和5组间亦无显著差异。

    图  2  各组肝脏组织学切片
    N. 细胞核;CM. 细胞膜;FD. 脂肪滴;1. 1组试验鱼肝脏切片图(H-E染色,×40);2. 2组试验鱼肝脏切片图(H-E染色,×40);3. 3组试验鱼肝脏切片图(H-E染色,×40);4. 4组试验鱼肝脏切片图(H-E染色,×40);5. 5组试验鱼肝脏切片图(H-E染色,×40)
    Fig. 2  Histology of different group
    N. nucleus; CM. cell membrane; FD. fat dripping; 1. The liver section of tilapia (group 1); 2. The liver section of tilapia (group 2);3. The liver section of tilapia (group 3); 4. The liver section of tilapia (group 4);5. The liver section of tilapia (group 5).
    表  5  罗非鱼肝脏组织细胞病理变化特征
    Table  5  Pathological changes in hepatopancreas cells of juvenile tilapia fed diets with different lipid levels
    试验组group 1 2 3 4 5
    肝细胞脂肪变性(空泡化)liver cell is change ++ +++
    肝细胞坏死liver cell is dead + +++
    肝细胞直径/μm liver cell diameter 7.8±2.5a 8.7±1.3a 10.4±0.5a 16.5±4.4b 19.3±3.9b
    肝脏颜色live colour 正常 正常 正常 淡黄色 土黄色
    注:-.未见病变;+.轻度病变;+ +.中度病变;+ + +.重度病变;同行所标字母不同表示两者差异显著,字母相同表示差异不显著
    Note:-.no pathological change;+.slight pathological change;+ +.medium pathological change;+ + +.high pathological change. The different letters on the parameters in one row stand for significant difference (P < 0..05), otherwise, the same ones stand for no significant difference.
    下载: 导出CSV 
    | 显示表格

    第5组患病试验鱼肝细胞核偏位,肝细胞胞浆内有大小不一的脂肪滴,且脂肪滴浸润细胞胞浆将细胞核挤压至一侧,甚至肝细胞核心出现萎缩,整个肝细胞浆充满脂肪滴使肝细胞肿胀、胞浆外逸,呈现细胞透明空泡化,变性的肝细胞随后坏死,有的细胞核破裂或溶解,有的细胞核消失,但其结构轮廓仍在。变性的肝细胞互相离散,肝小叶结构被破坏,显得柔软粉糊,用刀切易碎。坏死的组织被溶解吸收,肝脏表面出现大小不一的白色坏死病灶。

    脂肪作为鱼类能量的主要来源之一,当饲料脂肪不足时,蛋白质将被作为能源消耗;因此,在饲料中适当提高脂肪含量,有助于提高饲料蛋白质的利用效率,促进鱼类生长。然而饲料脂肪水平过高,对鱼的生长和品质有不利影响,比如鱼类易患脂肪肝、代谢性疾病和肉味差等[10]。奥尼罗非鱼幼鱼生长指标表明,4%脂肪含量时试验鱼的生长最好,而在6%~8%脂肪含量时,罗非鱼幼鱼生长指标显著下降,甚至出现明显的脂肪肝病症状,初步表明奥尼罗非鱼幼鱼饲料中脂肪的适宜添加量为4%。

    不同鱼类对饲料脂肪需要量不同,团头鲂幼鱼饲料中脂肪适宜含量为2%~5%,在3.6%左右团头鲂增重率最大,饲料系数最低和蛋白质效率最高[5];俄罗斯鲟Acipenser gueldenstaeti稚鱼在饲料脂肪添加量为5%时增重率及饲料系数达到最佳[11];鳜鱼Siniperca chuatsi在饲料脂肪水平7%~12%时特定生长率和蛋白质效率最高[10],因此,此试验中奥尼罗非鱼幼鱼饲料脂肪添加量与杂食性鱼类团头鲂、俄罗斯鲟等相近,而比肉食性鳜鱼低,这表明饲料脂肪添加量与鱼类的食性密切相关。饲料脂肪添加量除与品种相关外,亦与饲料中脂肪酸组成、饲料配方、鱼类生长阶段、饲养条件等有关[12]。鱼类对饲料中脂肪的利用能力与高不饱和脂肪酸的差异密切有关[4, 6],而且氧化油脂会导致罗非鱼的增重率和饲料转化率显著下降,肝体比增加[13]

    此试验中添加脂肪量6%~8%的4和5组罗非鱼均出现了典型的脂肪肝病,而添加脂肪量0~4%的1~3组未出现上述症状,表明饲料中脂肪添加过量易使罗非鱼幼鱼产生脂肪肝,这与冯健和贾刚[6]研究红姑鱼肝胰脏脂肪含量与日粮脂肪水平成正比,脂肪肝病的病变程度与日粮脂肪水平成正相关的结果一致。

    罗非鱼患脂肪肝病后病变特征主要表现在肝脏、胆囊及肠系膜等部位。肝胰脏是鱼类的重要器官,是发生鱼类脂肪肝病的主要部位,患脂肪肝的罗非鱼肝脏肿大,油腻状,柔软粉糊,颜色发黄,有的出现白色坏死病灶,这与草鱼、红姑鱼、虹鳟Salrno irideus等患脂肪肝的症状相似[4, 6, 14]。鱼类患脂肪肝病后胆囊亦会发生一定的形态变化[14-15],正常情况下,罗非鱼胆囊处于中等充满状态,颜色为绿色,此试验发现部分患病罗非鱼胆囊偏大且颜色变深为墨绿色。引起胆囊变化的原因可能是脂肪肝病的发生使病鱼食欲下降,肝脏中分泌至胆囊的胆汁无法排出从而使胆囊膨胀变大,胆汁大量淤积后使胆囊颜色变深,导致伴有胆汁淤积现象。罗非鱼脂肪消化吸收的主要部位在肠道前部,肠道内的脂肪酶大多数来自肝胰脏,饲料中的脂肪在脂肪酶的作用下分解为甘油和脂肪酸而被吸收,罗非鱼是无胃鱼类,由于摄入过量脂肪及脂肪肝影响脂肪酶的合成,因此,摄入的脂肪经过肠道被消化吸收时而发生沉积引起患脂肪肝病鱼的肠系膜有明显的脂肪积累。

    脂肪肝可引起奥尼罗非鱼幼鱼肝细胞结构改变,呈现肝胰脏病理组织变化。患病试验鱼肝细胞排列不规则,肝细胞索较紊乱,肝细胞明显增大,肝细胞胞浆内出现明显的大小不一的脂肪滴,严重时整个肝细胞浆充满脂肪滴使细胞变性呈空泡化,部分肝细胞中细胞核偏位或消失,有的局部肝细胞坏死或浸润,这与红姑鱼、虹鳟等患脂肪肝后的症状相似[6, 14]

    LIN等[16]认为草鱼营养性脂肪肝发生可分为3个阶段:肝脂肪积存阶段、肝脂肪浸润阶段和肝细胞核心出现萎缩阶段。此试验中第4组病鱼肝细胞排列不规则,肝细胞索较紊乱,这是由于肝细胞中脂肪油滴蓄积细胞质,造成部分肝细胞增大,是脂肪肝病的第2个阶段;第5组部分病鱼肝细胞核偏位,肝细胞胞浆内有大小不一的脂肪滴,且脂肪滴浸润细胞胞浆将细胞核挤压至一侧,甚至肝细胞核心出现萎缩,这已发展为脂肪肝病的第3阶段。这与建鲤Cyprinuis carpio var.Jian摄食氧化脂肪造成的症状有相同之处,如肝脏表面形成腊样色素,肝细胞破裂,胞浆外逸,肝细胞肿大,细胞空泡变性,发生坏死等[17]

  • 表  1   基础饲料配方及营养组成 (风干基础)

    Table  1   Composition and nutrient levels of basal diets (air-dry basis) %

    原料
    ingredient
    w (饲料蛋白质)/% dietary protein level
    20 25 30 35 40 45
    白鱼粉 white fish meal 20.00 24.80 25.00 25.00 25.00 26.80
    酪蛋白 casein 3.80 5.60 11.40 17.20 22.80 27.00
    糊化淀粉 gelatinized starch 9.00 9.00 9.00 9.00 9.00 6.00
    玉米淀粉 corn starch 37.50 31.00 21.00 12.00 3.00 0.00
    鱼油 fish oil 5.10 4.65 4.48 4.32 4.20 4.00
    南极磷虾粉 antarctic krill meal 2.00 2.00 2.00 2.00 2.00 2.00
    多维 multi-dimensional 0.50 0.50 0.50 0.50 0.50 0.50
    多矿 multi-mineral 5.00 5.00 5.00 5.00 5.00 5.00
    纤维素 cellulose 14.10 14.45 18.62 21.98 25.50 25.70
    羧甲基纤维素 carboxymethyl cellulose 3.00 3.00 3.00 3.00 3.00 3.00
    合计 total 100.00 100.00 100.00 100.00 100.00 100.00
    营养成分* nutrient level
     粗蛋白质 CP 20.06 25.16 30.35 35.81 40.37 45.68
     粗脂肪 EE 7.05 7.01 7.01 7.00 7.03 7.08
     粗灰分 ash 5.26 5.86 5.17 5.4 5.76 5.88
     总能/(MJ·kg-1) gross energy 15.10 15.26 15.10 15.07 15.01 15.39
     水分 moisture 11.09 11.65 11.5 11.12 11.52 11.47
     注:*. 实测值;多矿:碳酸钙8%,乳酸钙12%,乳酸亚铁8%,柠檬酸锌4%,乳酸锌4%,柠檬酸钾6%,碳酸钾5%,氯化钠 20%,富硒酵母 0.5%,柠檬酸钠 12%,麦芽糊精 20.5%;多维:维生素A 10%,维生素B1 5%,维生素B2 5%,维生素B5 5%,维生素B6 5%,维生素B12 0.1%,维生素C 25%,维生素D 10%,维生素E 10%,胡萝卜素 5%,麦芽糊精 19.9%  Note: *. measured values; mineral premix: CaCO3.5H2O 8%, calcium lactate 12%, fenous lactate 8%, zinc citrate 4%, zinc lactate 4%, potassium citrate 6%, potash 1%, sodium chloride 20%, selenium-enriched yeasts 0.5%, sodium citrate 12%, maltodextrin 20.5%; vitamin premix (mg∙kg-1 diet): vitamin A 10%, vitamin B1 5%, vitamin B2 5%, vitamin B5 5%, vitamin B6 5%, vitamin B12 0.1%, vitamin C 25%, vitamin D 10%, vitamin E 10%, carotene 5%, maltodextrin 19.9%
    下载: 导出CSV

    表  2   不同饲料蛋白水平下拉萨裸裂尻幼鱼消化酶活性的变化

    Table  2   Change of digestive enzyme activities of juvenile S. younghusbandi with different dietary protein levels n=10; $\overline{{\mathit{\boldsymbol{X}}}} \bf{\pm} {\bf{SD}}$

    w (饲料蛋白质)/%
    dietary protein level
    肝脏蛋白酶/(U∙mg−1)
    LPR
    肠蛋白酶/(U∙mg−1)
    IPR
    肠脂肪酶/(U∙g−1)
    ILPS
    肝脏脂酶/(U∙g−1)
    LLPS
    肠淀粉酶/(U∙g−1)
    IAMS
    肝淀粉酶/(U∙g−1)
    LAMS
    20 48.23±8.60a 428.06±86.56a 48.39±2.04b 8.10±0.33c 1.97±0.04c 0.49±0.02c
    25 105.89±6.73c 941.01±123.74bc 47.40±3.95b 7.72±0.41c 1.86±0.12c 0.47±0.03bc
    30 139.09±15.89d 1 248.78±146.72d 44.74±2.89b 7.57±0.39bc 1.78±0.10b 0.45±0.04bc
    35 190.01±5.22e 1 710.12±46.97e 38.90±2.49a 6.82±0.59ab 1.61±0.04b 0.43±0.02b
    40 114.68±6.12c 1 032.13±100.06c 36.75±2.1a 6.40±0.51a 1.42±0.09a 0.36±0.02a
    45 89.45±4.37b 835.01±28.79b 36.59±2.26a 6.42±0.37a 1.39±0.17a 0.35±0.04a
    注:上标字母按平均值从小到大排列,依次为a,b ...;同列字母相同或无字母表示差异不显著(P>0.05),不同表示差异显著(P<0.05);下表同此 Note: The letters are drawn from small to large according to the average value followed by a, b...; in the same column, values with same small letter superscripts or no superscripts indicate no significant differences (P>0.05), different small letter superscripts indicate significant differences (P<0.05). The same case in the following tables.
    下载: 导出CSV

    表  3   不同饲料蛋白水平下拉萨裸裂尻幼鱼肠道管壁厚度的变化

    Table  3   Change of intestinal tube wall thickness of juvenile S. younghusbandi with differentdietary protein levels n=6; $\overline {{\mathit{\boldsymbol{X}}}} {\bf{\pm}} {\bf{SD}}$

    w (饲料蛋白质)/%
    dietary protein level
    前肠/μm
    foregut
    中肠/μm
    midgut
    后肠/μm
    hindgut
    20 77.33±3.88a 67.99±2.56a 38.93±4.81a
    25 118.90±12.07c 82.57±1.82cd 47.97±2.63b
    30 166.71±9.40e 88.59±4.74d 55.18±1.73cd
    35 133.02±8.91d 78.96±5.43bc 59.86±6.55d
    40 115.61±4.23c 73.06±3.23ab 50.69±3.12bc
    45 94.50±3.11b 68.43±8.75a 35.33±1.78a
    下载: 导出CSV

    表  4   不同饲料蛋白水平下拉萨裸裂尻幼鱼肠道绒毛高度的变化

    Table  4   Changes of intestinal villus height of juvenile S. younghusbandi under different dietary protein levels n=6; ${\overline {{\mathit{\boldsymbol{X}}}} {{\mathit{\boldsymbol{\pm}}}} {\bf{SD}}}$

    w (饲料蛋白质)/%
    dietary protein level
    前肠/μm
    foregut
    中肠/μm
    midgut
    后肠/μm
    hindgut
    20 286.90±8.86a 214.11±12.45a 180.13±8.72c
    25 368.69±13.36b 251.62±13.76b 193.10±5.3c
    30 485.67±55.61c 343.89±19.89d 236.72±17.49d
    35 397.04±13.13b 338.78±16.67cd 230.70±7.17d
    40 309.88±25.19a 305.01±29.15c 159.87±5.67b
    45 258.11±33.08a 242.91±18.55ab 128.15±5.03a
    下载: 导出CSV
  • [1] 陈义方, 李卓佳, 牛津, 等. 饲料蛋白水平对不同规格凡纳滨对虾蛋白质表观消化率和消化酶活性的影响[J]. 南方水产科学, 2012, 08(5): 66-71. doi: 10.3969/j.issn.2095-0780.2012.05.010
    [2] 孙翰昌, 徐敬明, 庞敏. 饲料蛋白水平对瓦氏黄颡鱼消化酶活性的影响[J]. 水生态学杂志, 2010, 31(2): 84-88.
    [3] 吴永恒, 王秋月, 冯政夫, 等. 饲料粗蛋白含量对刺参消化酶及消化道结构的影响[J]. 海洋科学, 2012, 36(1): 36-41. doi: 10.3969/j.issn.1671-6647.2012.01.005
    [4]

    LEIGH S C, NGUYEN-PHUC B Q, GERMAN D P. The effects of protein and fiber content on gut structure and function in zebrafish (Danio rerio)[J]. J Comp Physiol B, 2018, 188: 237-253. doi: 10.1007/s00360-017-1122-5

    [5] 段友健. 拉萨裸裂尻鱼个体生物学和种群动态研究[D]. 武汉: 华中农业大学, 2015: 93-94.
    [6] 李芳. 西藏尼洋河流域水生生物研究及水电工程对其影响的预测评价[D]. 西安: 西北大学, 2006: 69-73.
    [7] 王孝平, 邢树礼. 考马斯亮法测定蛋白质含量的研[J]. 天津化工, 2009, 23(3): 40-41. doi: 10.3969/j.issn.1008-1267.2009.03.016
    [8] 王常安, 户国, 孙鹏, 等. 饲料蛋白质和脂肪水平对亚东鲑亲鱼生长性能、消化酶活性和血清指标的影响[J]. 动物营养学报, 2017, 29(2): 571-582. doi: 10.3969/j.issn.1006-267x.2017.02.025
    [9] 李成, 秦溱, 李金龙, 等. 不同蛋白水平饲料对光倒刺鲃幼鱼生长, 消化酶及体成分的影响[J]. 饲料工业, 2018, 39(24): 34-39.
    [10] 梁萍, 秦志清, 林建斌, 等. 饲料中不同蛋白质水平对半刺厚唇鱼幼鱼生长性能及消化酶活性的影响[J]. 中国农学通报, 2018, 34(2): 136-140. doi: 10.11924/j.issn.1000-6850.casb17090056
    [11] 桑永明, 杨瑶, 尹航, 等. 饲料蛋白水平对方正银鲫幼鱼生长, 体成分, 肝脏生化指标和肠道消化酶活性的影响[J]. 水生生物学报, 2018, 42(4): 736-743. doi: 10.7541/2018.090
    [12]

    RAMESH R, DUBE K, REDDY A K, et al. Effect of varying protein levels on growth and digestive enzyme activities of pengba Osteobrama belangeri (Valenciennes, 1844)[J]. Ind J Fish, 2017, 64: 206-213.

    [13]

    MENDEZ-MARTINEZ Y, GARCIA-GUERRERO M U, MARTINEZ-CORDOVA L R, et al. Effect of different ratios of dietary protein-energy on growth, body proximal composition, digestive enzyme activity, and hepatopancreas histology in Macrobrachium americanum (Bate, 1868) prawn juveniles[J]. Aquaculture, 2018, 485: 1-11. doi: 10.1016/j.aquaculture.2017.11.012

    [14]

    TOK N C, JAIN K K, PRABU D L, et al. Metabolic and digestive enzyme activity of Pangasianodon hypophthalmus (Sauvage, 1878) fingerlings in response to alternate feeding of different protein levels in the diet[J]. Aquacult Res, 2017, 48(6): 2895-2911. doi: 10.1111/are.2017.48.issue-6

    [15]

    SILVA W S, COSTA L S, LÓPEZ-OLMEDA J F, et al. Gene expression, enzyme activity and performance of Nile tilapia larvae fed with diets of different CP levels[J]. Animal, 2019, 13(7): 1376-1384. doi: 10.1017/S175173111800318X

    [16] 米海峰. 不同蛋白源和大豆抗营养因子对牙鲆蛋白消化酶的活性与基因表达的影响[D]. 青岛: 中国海洋大学, 2008: 39-43.
    [17]

    LÓPEZ-LÓPEZ S, NOLASCO H, VILLARREAL-COLMENARES H A. Digestive enzyme response to supplemental ingredients in practical diets for juvenile freshwater crayfish Cherax quadricarinatus[J]. Aquacult Nut, 2005, 11(2): 79-85.

    [18] 吴本丽, 黄龙, 何吉祥, 等. 长期饥饿后异育银鲫对饲料蛋白质的需求[J]. 动物营养学报, 2018, 30(6): 2215-2225. doi: 10.3969/j.issn.1006-267x.2018.06.025
    [19] 赵书燕, 林黑着, 黄忠, 等. 不同蛋白质水平下添加小肽对石斑鱼生长、消化酶、血清生化和抗氧化能力的影响[J]. 南方水产科学, 2016, 12(3): 15-23. doi: 10.3969/j.issn.2095-0780.2016.03.003
    [20]

    ZHANG W, LIU K, TAN B P, et al. Transcriptome, enzyme activity and histopathology analysis reveal the effects of dietary carbohydrate on glycometabolism in juvenile largemouth bass, Micropterus salmoides[J]. Aquaculture, 2019, 504: 39-51. doi: 10.1016/j.aquaculture.2019.01.030

    [21]

    WANG L G, HU S Y, LOU B, et al. Effect of different dietary protein and lipid levels on the growth, body composition, and intestinal digestive enzyme activities of juvenile yellow drum Nibea albiflora (Richardson)[J]. J Ocean Univ Chin, 2018, 17(5): 1261-1267. doi: 10.1007/s11802-018-3660-1

    [22]

    HEIKKINEN J, VIELMA J, KEMILAINEN O, et al. Effects of soybean meal based diet on growth performance, gut histopathology and intestinal microbiota of juvenile rainbow trout (Oncorhynchus mykiss)[J]. Aquaculture, 2006, 261(1): 259-268. doi: 10.1016/j.aquaculture.2006.07.012

    [23]

    CHEN F J, WANG H C. Study on histological structure of intestine in Gymnocypris przewalskii with different age[J]. P Vet Med, 2013, 34(1): 34-37.

    [24]

    WEI Y L, LIANG M Q, ZHENG K K, et al. The effects of fish protein hydrolysate on the digestibility of juvenile turbot (Scophthalmus maximus L)[J]. Acta Hydrobiol Sinica, 2014, 38(5): 910-920.

    [25] 徐静. 蛋白对生长中期草鱼生产性能、肠道、机体和鳃健康及肌肉品质的作用及其作用机制[D]. 雅安: 四川农业大学, 2016: 34-35.
    [26] 孙金辉, 范泽, 张美静, 等. 饲料蛋白水平对鲤幼鱼肝功能和抗氧化能力的影响[J]. 南方水产科学, 2017, 13(3): 113-119. doi: 10.3969/j.issn.2095-0780.2017.03.015
    [27] 李坚明, 甘晖, 冯广朋, 等. 饲料脂肪含量与奥尼罗非鱼幼鱼肝脏形态结构特征的相关性[J]. 南方水产, 2008, 4(5): 37-43. doi: 10.3969/j.issn.2095-0780.2008.05.006
  • 期刊类型引用(3)

    1. 王晗,卢圣鄂,卓维,亓俊朋,任风鸣. Illumina高通量测序辅助分离鉴定宽体金线蛭肠炎病病原菌. 中国药学杂志. 2025(07): 695-703 . 百度学术
    2. 田甜,张建明,朱欣,张德志,胡亚成. 50日龄中华鲟幼鱼肠道微生物群落结构特征及其影响因素. 南方水产科学. 2025(02): 102-109 . 本站查看
    3. 杨飞,汪斌,喻召雄,周治兵,兰松,张中良,周波. 长江鲟源致病性中间气单胞菌的分离鉴定及药敏试验. 西南农业学报. 2024(12): 2787-2792 . 百度学术

    其他类型引用(2)

推荐阅读
基于reca基因的qpcr与raa-lfd检测鳗败血假单胞菌方法的建立与应用
王一霖 et al., 南方水产科学, 2025
羊栖菜寡糖的酶法制备及其抗氧化性与抑菌活性研究
董媚 et al., 南方水产科学, 2025
基于cbam-unet的大菱鲆鱼卵识别计数方法
钱程 et al., 南方水产科学, 2024
草鱼subfatin分子鉴定及表达特性分析
杨博雅 et al., 南方水产科学, 2024
一株多重耐药准肺炎克雷伯菌的基因组和耐药基因分析
崔晶花 et al., 遵义医科大学学报, 2024
耐头孢菌素类鲍曼不动杆菌adc基因同源性分析
蒋冬香 et al., 华夏医学, 2025
Pheiges: all-cell-free phage synthesis and selection from engineered genomes
Levrier, Antoine et al., NATURE COMMUNICATIONS, 2024
The substitutions l50f, e166a, and l167f in sars-cov-2 3clpro are selected by a protease inhibitor in vitro and confer resistance to nirmatrelvir
Jochmans, Dirk et al., MBIO, 2023
Evaluation of a three-gene methylation model for correlating lymph node metastasis in postoperative early gastric cancer adjacent samples
FRONTIERS IN ONCOLOGY, 2024
Identification of transcription factors associated with the disease-free survival of triple-negative breast cancer through weighted gene co-expression network analysis
CYTOJOURNAL, 2024
Powered by
图(1)  /  表(4)
计量
  • 文章访问数:  5032
  • HTML全文浏览量:  2623
  • PDF下载量:  39
  • 被引次数: 5
出版历程
  • 收稿日期:  2019-05-18
  • 修回日期:  2019-06-20
  • 录用日期:  2019-07-07
  • 网络出版日期:  2019-07-16
  • 刊出日期:  2019-12-04

目录

/

返回文章
返回