Economic and ecological benefits of annually two-cycle farming method of GIFT tilapia with in-pond raceway system
-
摘要:
为实现池塘循环水槽养殖模式的高效利用,降低养殖风险,文章开展了吉富罗非鱼(GIFT, Oreochromis niloticus)一年两造池塘循环水槽养殖研究。第一造吉富罗非鱼放养密度分别为183尾·m−2和274尾·m−2,规格为(36.6±2.8) g,养殖期为122 d;第二造吉富罗非鱼放养密度分别为154尾·m−2和215尾·m−2,放养规格为(185.2±15.8) g,养殖期为100 d;外池塘套养罗氏沼虾(Macrobrachium rosenbergii)、鲢(Hypophthalmichthys molitrix)和鳙(Aristichthys nobilis)。对养殖过程中的水质、养殖结果和效益进行评价分析。结果显示,第一造吉富罗非鱼成活率为83.38%,饵料系数1.12,养殖产量24 107 kg;第二造吉富罗非鱼成活率为93.35%,饵料系数1.17,养殖产量25 730 kg;外池塘罗氏沼虾2 012 kg,鲢1 789 kg,鳙801 kg;每公顷投入452 566元,收入655 099元,利润202 533元,投资回报率44.75%。研究表明,利用池塘循环水槽养殖模式开展吉富罗非鱼一年两造养殖,降低了链球菌发病率,提高了养殖效益,实现了养殖模式的高效利用。
-
关键词:
- 吉富罗非鱼 /
- 池塘循环水槽养殖模式 /
- 高效利用 /
- 一年两造
Abstract:To achieve an efficient utilization of pond aquaculture system and reduce the risk of cultivation, we investigated the annually two-cycle farming method of GIFT tilapia (Oreochromis niloticus) with in-pond raceway system. In the first breeding production, we kept the fish [(36.6±2.8) g] in two raceway for 122 d with the densities of 183 ind·m−2 and 274 ind·m−2, respectively. In the second breeding production,we kept the fish [(185.2±15.8) g] in two raceway for 100 d with the densities of 154 ind·m−2 and 215 ind·m−2, respectively. Meanwhile, Macrobrachium rosenbergii, Hypophthalmichthys molitrix and Aristichthys nobilis were cultured around the pond. Then we evaluated the water quality, aquaculture results and breeding benefits in the aquaculture process. The results show that the survival rate of GIFT tilapia was 83.38%; the feed coefficient was 1.12; the aquaculture yield was 24 107 kg in the first breeding production. While in the second breeding production, the survival rate was 93.35%; the feed coefficient was 1.17; and the aquaculture yield was 25 730 kg. The yields of M. rosenbergii, H. molitrix and A. nobilis were 2 012 kg, 1 789 kg and 801 kg, respectively. For the breeding benefits, the average investment and income were 452 566 Yuan per square hectare and 655 099 Yuan per square hectare, respectively, with a profit of 202 533 Yuan per square hectare and a return rate of investment of 44.75%. It is indicated that the annually two-cycle farming method with in-pond raceway system is effective for GIFT tilapia breeding, which can reduce the incidence of Streptococcus and improve the breeding efficient utilization.
-
鱼类运动轨迹监测技术主要有视觉监测技术和声波监测技术。视觉监测技术以视频、图片观察和手工记录为主[1-7],可以在鱼类不受干扰的情况下较好地对其行为进行观察、记录和分析,但后期数据处理难度较大、误差大且监测数据连续性差。早期的研究主要是对鱼类的行为特征进行观察和描述,基本处于“定性”分析阶段,很难得到鱼类运动行为响应的量化指标。声波监测技术分为被动声学法和主动声学法两种[8]:被动声学法是通过鱼类发出的声波特征进行探测和识别[9];主动声学法是通过声波设备接收鱼类的回波信号并进行分析和识别,具有受水域环境影响小、应用范围广泛等优势,是当今国内外研究和应用最为广泛的一种方法[10]。目前,声波监测技术应用最广泛的有鱼探仪,采用鱼探仪对水域鱼类资源的丰度[11-16]、时空分布情况 [17-21]和活动规律[22-23]等方面的研究已取得了很多成果,但该技术仅对鱼群的种类、大小和距离进行探测,无法准确定位到鱼类的位置及其运动轨迹。
声学标签系统 (Acoustic Tag System,ATS) 是声波监测技术的一种被动声学法,根据鱼类个体大小和研究周期选择合适的声学标签 (Acoustic tag,也称声学信号发射器) 类型和参数对鱼类运动轨迹进行监测[24],已逐步成为鱼类行为学研究最主要的手段。目前,国外对声学标签系统的应用研究成果主要有鱼类资源的丰度评估[25]、鱼类的游泳模式[26]、栖息地特征评价[27-29]、鱼类的产卵场地[30]、鱼类的生存情况[31]、鱼类的行为差异[32]、鱼类行为模型[33]等。我国仅有环境变化对鱼类行为的影响[34-35]和水利工程建设对鱼类洄游能力[36-37]等相关方向的研究成果报道。
声学标签系统主要用于江河湖库、海洋、大坝、河口海岸、船闸码头等的鱼类运动轨迹监测,并通过鱼类运动行为响应情况评估鱼类的丰度、种群结构、生理行为、迁徙及栖息地变化等,但应用在水生态环境对鱼类行为产生影响等方面的研究成果相对较少。因此,可将声学标签监测技术在鱼类运动行为学的应用与养殖、生态学、声学、数学模型以及计算机仿真技术等学科相结合,进行多学科的交叉利用与研究。
1. 声学标签监测技术
1.1 声学标签系统的组成
声学标签系统由硬件和软件2个部分组成。硬件部分由声学标签信号接收器、水听器、标签激活器、标签、标签检测器和电脑组成,软件部分包括Tag Programmer (用于激活及休眠标签)、Acoustic Tag (用于原始数据收集及存储) 和Mark Tags (用于原始数据文件中的环境噪音和标签回声信息处理) 3个模块。
1.2 声学标签系统的工作原理
声学标签系统采用4个水听器 (Hydrophone,简写为H1、H2、H3和H4) 接收移植或捆绑于鱼类身上的声学标签发射出来的声波,通过数据线传输到信号终端处理器进行信号处理,最后经计算机终端去噪处理后即可得到鱼类的二维、三维行为轨迹坐标。
1.3 声学标签系统的操作方法
声学标签系统的具体操作方法为:
1) 水听器布设。将水听器下端固定于2个不同平面 (图1),并设置水听器底部的三维坐标及相关参数。水听器的坐标可根据监测目的选择大地坐标或相对坐标进行设置。4个水听器监测的水域范围一般为0.5 km。如监测范围为河流等线状水域可进行多个水听器线状布设;如监测范围为大水域可根据水域情况布设多个水听器,最多可布设16个,或将水听器固定于监测船进行监测,如果监测船更换位置需要重新设置水听器坐标。
2) 采用标签激活器对声学标签进行唯一编码 (即发射频率) 激活,并用标签检测器检测是否激活成功。编码根据声波信号的发射频率进行设置,设置范围一般为1 000~6 000 Hz。可根据实际情况需要选择编码大小,如设置的发射频率为3 000 Hz即每3 s可获得1个声波信号,1个信号代表1个轨迹点。每1 h为一组数据计,一组数据有1 200个轨迹点,一年可监测到的轨迹点约1 051.2 × 104个。
3) 将已激活的声学标签捆绑或移植于试验鱼身上,水听器将接收到声学标签发射出来的声波信号并通过信号线传输至信号处理器,在PC终端便可实时监控鱼类的二维、三维运动轨迹 (图2)。
4) 采用数据处理软件Mark Tags模块对采集的原始信号进行去噪处理即可获得鱼类二维、三维运动轨迹坐标。
2. 鱼类运动轨迹数据处理方法
在数据监测过程中,除了接收到这些具有特定发射频率的标签发射的声波信号之外,还会接收到其他噪声的声波信号 (图3),或者接收的信号不连续,这些信号数据通常被称为“异常数据”。由于异常数据的存在导致监测到的原始轨迹数据杂乱无序 (图2),很难从这些庞大的试验数据中获取隐藏于其中的信息和数据变化规律。如果对这些原始数据直接进行分析,得到的结果将是不准确甚至是错误的。因此,在数据分析,首先要对这些杂乱无序的大数据进行处理,对原始的运动轨迹数据进行去噪、清洗,转换成简洁、高效的鱼类二维、三维行为轨迹数据 (图4),最后加载到数据库中。
监测到的异常数据类型主要有4类:噪声值、缺失值、异常值 (离群值) 和重复值。数据清洗过程通常是将重复和多余的数据筛选后清除、将缺失的数据补充完整、将错误的数据纠正或删除,最后整理可用的数据库,为数据挖掘和分析的准确性奠定基础。以下是根据不同异常数据类型采用不同的数据清洗方法。
2.1 噪声值
在采集声学标签声波信号的同时也会接收到其他噪声声波的信号 (图5),通过数据处理软件Mark Tags模块设置相关的去噪参数,或者添加噪声过滤器即可对采集到的原始信号进行去噪和过滤处理,得到声学标签的声波信号 (图6)。
2.2 缺失值
缺失值的清洗方法有删除法、均值插补法、热卡填补法、最近距离决定填补法、回归填补法、多重填补方法、K-最近邻法、有序最近邻法和基于贝叶斯的方法等。根据数据的缺失程度选择不同的清洗方法,其中删除法方法适用于数据比较多且缺失值的数量占整个数据的比例相对较小的情况,可以直接将缺失值删除掉,是一种最简单有效的方法。
在鱼类运动轨迹数据采集过程中,会出现由于环境客观条件造成信号无法获取而导致轨迹缺失的情况,可通过均值插补法进行插补 (图7),但某个时间段的缺失值较多则不再进行插补。如设置的声波信号发射频率为3 s,若信号中断时间超过10 s时将不再进行插补 (图8)。采用数据处理软件的Mark Tags模块过程中即可实现缺失值的自动插补。
2.3 异常值 (离群点)
异常值清洗方法主要有统计分析法、3∂原则、箱型图分析等,其中统计分析法是一种常用的简单方法。对数据库进行简单的筛选和统计,分别对鱼类运动轨迹三维坐标的x、y、z值进行排序,取数据的最大值和最小值来判断是否超出取值范围,若超出该范围则作删除处理。鱼类运动轨迹坐标应出现在水域内如a点,如果轨迹点如b点出现在水域外则显然不合常理,此为异常值,b点坐标应被删除 (图9)。
2.4 重复值
对于数据重复值的判断主要采用排序与合并的方法。重复值的检测方法主要有2个步骤:首先将数据库的数据按一定规律排序,然后通过比较相邻数据的相似情况来检测数据是否重复。对鱼类的三维运动轨迹重复值进行统计,通过判断鱼类在某处的重现性来获得鱼类的运动行为规律以及对栖息场所的偏好等信息。
要从这些庞大的数据中获得鱼类重现频率较高的轨迹坐标,需要采用数据查询语言对数据进行查询以获取有用的数据信息。数据查询语言Frequency函数是统计各区间段数值频率的一个函数,其结构为Frequency (Data_array和bins_array),其中Data_array是用于判断的数组或者数据区域,而bins_array是用于输出结果数据的分割点。其查询步骤为:输入函数Frequency→设定参数data_array和bins_array→选择输出结果的单元格区域→按F2键输入函数公式→按“Ctrl+Shift+Enter”可返回一个数组。
为获得鱼类的运动轨迹分布情况,可将轨迹坐标分别投影在xy平面和xz平面上即可得到轨迹散点图。散点图在大数据分析中的作用尤为明显,其可以展示数据的分布和聚合情况。通过散点图中散点的疏密程度和变化趋势来获得鱼类运动行为规律,轨迹越密集说明鱼类出现的频率越高。
3. 声学标签系统的应用实例
实测水域为某高校校园的景观湖,水域面积为5.3 × 103 m2,水深为1.6~2.5 m,湖内修建有景观亭 (图10)。湖内水源的主要补给来源为天然降水和校内污水处理站的中水补给,湖中有鲤 (Cyprinus carpio)、鲫 (Carassius auratus) 等湖泊常见鱼种。景观湖为封闭水域,自净能力较差,水中的氮 (N)、磷 (P) 营养元素长期积累容易导致水体的富营养化,尤其是在夏季,气温高容易导致水质恶化,严重影响景观湖的生态功能和景观效果。
由于春、夏季水域生态环境变化较大,因此对鱼类在春、夏季的运动行为轨迹进行了监测。发现春、夏两季鱼类的运动轨迹变化明显 (图11,图12):春季到夏季,在水平方向上鱼类离污染源的距离越大,垂直方向上鱼类由底层往表层迁移。引起鱼类运动行为发生变化的主要原因除了水温外,还与水中溶解氧 (Dissolved oxygen, DO) 含量和藻类死亡释放的毒素如微囊藻毒素的分布有关。夏季水温高,日照充足,加上N、P营养物质的不断输入,湖内藻类及其他浮游生物迅速繁殖并消耗水中大量的氧气 (O2) 导致水中DO含量不断下降,且得不到及时补充,致使O2收支不平衡,藻类死亡并释放衍生污染物。说明鱼类运动行为发生改变主要与水环境因子有关,通过评价鱼类运动行为与水环境因子的相关性,可为养殖水质及水生态健康评价等提供参考依据。
4. 应用前景
目前,鱼类声学标签监测技术多应用于江河湖库和海洋等鱼类丰度、种群结构等方面的研究。采用该技术对自然水域环境中鱼类的运动行为轨迹进行实时监测,可为研究水利工程建设对鱼类洄游能力、产卵以及栖息地的影响,鱼类在生境变化过程的行为响应,鱼类毒理性行为响应,鱼类行为水质监测系统建设,水生态环境健康评价以及水生态修复效果评价等提供科学的依据,是一种实时有效、快速的先进技术。
此外,根据鱼类对不同养殖水质环境的行为响应可为水产养殖提供重要的指导信息[38-39]。目前,该声学标签监测技术在水产养殖业的应用较少,具有广泛的应用前景。如通过研究鱼类的运动轨迹变化规律,掌握鱼类的栖息场所,指导人工繁殖和幼鱼培育,可以提高幼鱼的成活率和质量;此外,鱼食投放和污染物的排入会引起水质的改变,鱼类如果表现出逃避行为,且大多数都集中在洁净水的一端,表明水质遭受到污染。因此,通过连续测定鱼类的运动轨迹,对比鱼类当前运动轨迹与历史运动轨迹的变化,可实现渔业养殖水质环境的实时在线监测和预警,为提高水产养殖的产量和质量提供可靠的科学依据。
利用声学标签监测技术对鱼类运动行为轨迹进行24 h监测,获得鱼类的实时三维运动轨迹坐标并进行相关的数据分析及应用,是一种先进的技术手段。与其他监测技术相比,声学标签监测技术具有原位观察、数据处理方法简单、可24 h实时监控鱼类的二维、三维运动轨迹等优势。但该技术是通过接收鱼类身上声学标签发送的声波信号来确定鱼类的位置,在数据监测过程中可能会出现鱼类死亡、声学标签丢失和标签电量不足等情况,因此需要技术人员及时对监测数据进行实时监控和数据处理分析,以保证监测数据的连续性和准确性。
-
表 1 IPRS苗种放养
Table 1 Fingerlings allocation in IPRS
项目
item面积/m2
area种类
species规格/g
size时间
time密度/(尾·m−2)
density数量/尾
quantity/ind.1#水槽 1# Raceway 110 罗非鱼 36.6±2.8 2018-04-17 183.00 20 220 2#水槽 2# Raceway 110 罗非鱼 36.6±2.8 2018-04-17 274.00 30 090 外池塘 outer pond 12 405 鲢 758.0±85.2 2018-05-10 0.08 1 000 鳙 500.0±36.7 2018-05-10 0.03 400 罗氏沼虾 1.00±0.09 2018-05-06 23.44 300 000 1#水槽 1# Raceway 110 罗非鱼 185.2±15.8 2018-08-23 154.00 16 890 2#水槽 2# Raceway 110 罗非鱼 185.2±15.8 2018-08-23 215.00 23 660 表 2 2种养殖模式养殖结果
Table 2 Farming results of two farming models
项目
item起捕均质量/g
average mass成活率/%
survival rate绝对生长率/(g·d- 1)
absolute growth rate饲料系数
feed coefficient rate收获总量/kg
total harvest单位产量/(kg·hm- 2)
specific yieldIPRS第一造
IPRS first production574.73±74.75 83.38 4.48 1.12 24 107 28 261 IPRS第二造
IPRS second production680.69±88.49 93.35 4.96 1.17 25 730 30 164 传统池塘养殖模式
traditional pond aquaculture630.5±95.25 92.28 3.17 1.32 11 529 24 530 表 3 各流水槽养殖结果
Table 3 Farming results of IPRS
项目
item流水槽编号
runway No.起捕均质量/g
average mass成活率/%
SR绝对生长率/(g·d- 1)
AGR饲料转化率
FCR收获总量/kg
TH单位产量/
(kg·m- 2)
SY第一造
first production1# 635.7±86.60 87.98 4.99 1.17 11 296 102.7 2# 529.9±70.63 80.35 4.11 1.09 12 811 116.5 第二造
second production1# 695.3±94.42 94.25 5.10 1.19 11 065 100.6 2# 670.2±91.88 92.71 4.85 1.16 14 665 133.3 表 4 养殖成本构成
Table 4 Cost structure of tilapia farming
项目
item传统池塘养殖模式
traditional pond aquacultureIPRS 第一造
IPRS first productionIPRS 第二造
IPRS second productionIPRS 外池塘
IPRS rest pond金额/元
sum of money/Yuan占比/%
percentage金额/元
sum of money/Yuan占比/%
percentage金额/元
sum of money/Yuan占比/%
percentage金额/元
sum of money/Yuan占比/%
percentage苗种 fingerling 15 262 7.64 21 323 9.97 63 533 27.73 8 750 91.80 塘租 pond rent 17 811 8.91 8 906 4.16 8 906 3.89 − − 饲料 feed 148 938 74.52 141 265 66.03 120 221 52.48 − − 电费 electricity cost 3 000 1.50 14 909 6.97 10 650 4.65 − − 药品 fishery medicine 1 800 0.90 8 789 4.11 7 031 3.07 − − 人工 labor cost 6 751 3.38 14 063 6.57 14 063 6.14 − − 其他 other cost 6 300 3.15 4 688 2.19 4 688 2.05 781 8.20 总计 total cost 199 862 100.00 213 942 100.00 229 092 100.00 9 531 100.00 表 5 养殖效益
Table 5 Farming profit analysis
项目
item品种
speicies产量/kg
yield价格/(元·kg−1)
price投入/元
input cost/Yuan产出/kg
output利润/元
profit/Yuan回报率/%
return rate传统池塘养殖模式
traditional pond aquaculture吉富罗非鱼 11 529 9.6 93 935 110 679 16 744 17.83 IPRS 第一造
IPRS first production吉富罗非鱼 24 107 9.6 182 564 231 428 48 864 26.77 IPRS 第二造
IPRS second production吉富罗非鱼 25 730 9.0 195 492 231 570 36 078 18.45 IPRS 外池塘
IPRS rest pond鲢 1 789 9.0 1 533 16 101 14 568 950.29 鳙 801 9.0 1 333 7 209 5 876 440.81 罗氏沼虾 2 012 60.0 9 333 120 720 111 387 1 193.45 表 6 实验期间pH、溶解氧、透明度和温度变化
Table 6 Change of water quality during test
项目
item取样时间/月-日
sampling time/Mon-Dat酸碱度
pHρ (溶解氧)/(mg·L−1)
DO透明度/cm
transparency温度/℃
temperature传统池塘养殖模式
traditional pond aquaculture4-17 7.5 7.20 48 26.8 5-17 7.7 7.79 46 30.6 6-17 7.7 5.26 45 31.7 7-17 7.6 3.97 42 32.3 8-17 7.6 3.53 35 32.4 9-17 7.5 4.63 32 32.9 10-17 7.7 5.69 35 27.9 池塘循环水槽养殖模式
IPRS4-17 7.4 8.05 48 26.4 5-17 7.7 5.60 47 30.8 6-17 7.7 4.34 49 31.1 7-17 7.7 6.08 49 31.5 8-17 7.7 5.17 49 31.8 9-17 7.6 6.24 48 32.6 10-17 7.8 6.15 47 27.5 11-17 7.8 7.48 49 24.6 表 7 氨氮和亚硝酸盐质量浓度变化
Table 7 Change in ammonia nitrogen and nitrite concentration
项目
item取样时间/月-日
sampling time/Mon-Dat池塘循环水槽养殖模式
IPRS传统池塘养殖模式
traditional pond aquaculture去除率/%
removal rateρ(氨氮)/(mg·L−1)
ammonia nitrogen4-17 0.47 0.37 − 5-17 0.57 0.56 −2.0 6-17 0.24 0.72 66.7 7-17 0.47 0.67 29.9 8-17 0.71 0.97 26.8 9-17 0.59 1.07 44.9 10-17 0.56 1.35 58.5 11-17 0.88 − − ρ(亚硝酸盐)/(mg·L−1)
nitrite concentration4-17 0.025 0.024 − 5-17 0.018 0.035 48.6 6-17 0.038 0.045 15.6 7-17 0.046 0.058 20.7 8-17 0.052 0.067 22.4 9-17 0.055 0.113 46.6 10-17 0.054 0.164 67.1 11-17 0.095 − − -
[1] 蔡珀, 周恩华译. 美国低碳高效池塘循环流水精养新技术[J]. 海洋与渔业: 上半月, 2012, 30(6): 68-72. [2] 胡军娜. 池塘工程化循环流水养鱼系统养殖斑点叉尾鮰与加州鲈试验[J]. 科学养鱼, 2018(12): 42-43. [3] 陈文华, 聂家凯, 闫磊, 等. 低碳高效池塘循环流水养殖草鱼新技术试验总结[J]. 科学养鱼, 2014(10): 20-22, 30. [4] 李振业, 张林兵, 郜灿, 等. 池塘内气推循环流水集约化养殖大口黑鲈“优鲈1号”试验总结[J]. 科学养鱼, 2015(6): 36-37. [5] 杨志强, 李潇轩, 韩飞, 等. 池塘工程化循环水养殖锦鲤(Cyprinus carpio haematopterus)试验[J]. 水产养殖, 2018, 39(8): 1-3. doi: 10.3969/j.issn.1004-2091.2018.08.001 [6] MASSER M P, LAZUR A. In-pond raceways[M]. Florida: Southern Regional Aquaculture Center, 1997: 1-8.
[7] BROWN T W, BOYD C E, CHAPPELL J A. Approximate water and chemical budgets for an experimental, in-pond raceway system[J]. J World Aquacult Soc, 2012, 43(4): 526-537. doi: 10.1111/j.1749-7345.2012.00576.x
[8] 倪建忠, 袁华, 杨正兵, 等. 池塘循环流水养殖试验[J]. 科学养鱼, 2015(6): 19-20. [9] 陈凡, 王力, 郭水荣, 等. 南美白对虾养殖池塘内循环流水养鱼技术[J]. 科学养鱼, 2016(10): 25-27. [10] 阴晴朗, 罗永巨, 郭忠宝, 等. 罗非鱼池塘循环水槽养殖初探[J]. 渔业现代化, 2018, 45(4): 15-19. doi: 10.3969/j.issn.1007-9580.2018.04.003 [11] 国家环境保护总局. 水和废水监测分析方法[M]. 北京: 中国环境科学出版社, 2002: 268-284. [12] MERINO G E, PIEDRAHITA R H, CONKLIN D E. Effect of water velocity on the growth of California halibut (Paralichthys californicus) juveniles[J]. Aquaculture, 2007, 271(1/2/3/4): 206-215.
[13] CASTRO V, GRISDALE H B, HELLAND S J, et al. Aerobic training stimulates growth and promotes disease resistance in Atlantic salmon (Salmo salar)[J]. Comp Biochem Physiol A, 2011, 160(2): 278-290. doi: 10.1016/j.cbpa.2011.06.013
[14] MARTIN C I, JOHNSTON I A. Endurance exercise training in common carp Cyprinus carpio, L. induces proliferation of myonuclei in fast muscle fibres and slow muscle fibre hypertrophy[J]. J Fish Biol, 2010, 69(4): 1221-1227.
[15] 宋宏, 刘海金, 宋立民, 等. 不同养殖模式下水质及牙鲆生长状况分析[J]. 甘肃农业大学学报, 2015(1): 31-36. doi: 10.3969/j.issn.1003-4315.2015.01.006 [16] 朱华平, 黄樟翰, 卢迈新, 等. 大规格罗非鱼养殖技术[J]. 现代农业科学, 2009(2): 107-109, 119. [17] 袁媛, 袁永明, 代云云, 等. 我国罗非鱼主产区池塘养殖模式生产成本及经济效益分析[J]. 江苏农业科学, 2016, 44(2): 470-474. [18] 刘宝良, 雷霁霖, 贾睿, 等. 养殖密度对鱼类福利影响研究进展[J]. 中国工程科学, 2014, 16(9): 100-105. doi: 10.3969/j.issn.1009-1742.2014.09.015 [19] 黄鸿兵, 陈友明, 刘伟杰, 等. 池塘工程化循环水养殖系统青鱼(Mylopharyngodon piceus)主养效益分析[J]. 水产养殖, 2015, 36(12): 38-41. doi: 10.3969/j.issn.1004-2091.2015.12.015 [20] 陈凌云, 袁杰, 郭水荣, 等. “池塘内循环流水+垂钓”的低碳高效生态养殖经营模式试验[J]. 水产养殖, 2016, 37(9): 8-10. doi: 10.3969/j.issn.1004-2091.2016.09.003 [21] 林海, 夏爱军, 薛晖, 等. 一种池塘生态工业化循环水养殖与净化系统: 107410140[P]. 2017-05-03. [22] 郭忠宝, 吴铁军, 肖俊, 等. 罗非鱼标准化池塘高效生态养殖试验[J]. 科学养鱼, 2014, 291(3): 18-19. [23] 金武, 罗荣彪, 顾若波, 等. 池塘工程化养殖系统研究综述[J]. 渔业现代化, 2015, 42(1): 32-37. doi: 10.3969/j.issn.1007-9580.2015.01.008 [24] 贺艳辉, 袁永明, 张红燕, 等. 海南省罗非鱼产业发展现状、问题及对策[J]. 湖南农业科学, 2018, 394(7): 105-108,112. [25] 杨琼, 谭芸, 王卉, 等. 广西罗非鱼产业现状分析[J]. 科技经济导刊, 2018, 26(13): 247. [26] NARAID S, FANRONGK, DANNY K, et al. Occurrence of rare genotypes of Streptococcus agalactiae in cultured red tilapia Oreochromis sp. and Nile tilapia O. niloticus in Thailand: relationship to human isolates[J]. Aquaculture, 2008, 284(4): 35-40.
[27] 洪磊, 张秀梅. 环境胁迫对鱼类生理机能的影响[J]. 海洋科学进展, 2004, 22(1): 114-121. doi: 10.3969/j.issn.1671-6647.2004.01.017 [28] 卢迈新. 罗非鱼链球菌病研究进展[J]. 南方水产, 2010, 6(1): 75-79. doi: 10.3969/j.issn.1673-2227.2010.01.013 [29] 宋志飞, 温海深, 李吉方, 等. 养殖密度对流水养殖系统中俄罗斯鲟幼鱼生长的影响[J]. 水产学报, 2014, 38(6): 835-842. [30] 本刊讯. 全国水产技术推广总站发文规范“跑道鱼”养殖模式[J]. 中国水产, 2018(9): 22. [31] 何杰, 徐跑, 朱健. 吉富品系尼罗罗非鱼(GIFT)摄食节律初探[J]. 水生态学杂志, 2009, 2(3): 61-64. [32] 蒋艾青. 残饵、死鱼及排泄物腐解对山区精养池养殖水质的影响[J]. 现代农业科技, 2007(10): 143-144, 150. doi: 10.3969/j.issn.1007-5739.2007.10.101 [33] 张志山, 朱树人, 杨玲. 空心菜浮床对东平湖鲤养殖池塘水质的净化作用[J]. 长江大学学报(自然科学版), 2015(15): 39-43. [34] 宋超, 陈家长, 裘丽萍, 等. 中国淡水养殖池塘环境生态修复技术研究评述[J]. 生态学杂志, 2012, 31(9): 2425-2430.