Effects of dietary carbohydrate to lipid ratio on growth performance, body composition and serum biochemical indices of adult GIFT Oreochromis niloticus
-
摘要:
为确定吉富罗非鱼(GIFT Oreochromis niloticus)成鱼饲料中适宜的碳水化合物与脂肪比例(C/L),实验设计了6组等氮等能的半纯化饲料,饲料C/L比例分别为1.53、2.36、3.55、5.58、9.85、21.82。投喂初始质量为(218.33±11.03) g的吉富罗非鱼成鱼56 d。结果显示,增重率和特定生长率在C/L比例为3.55时最高,显著高于C/L比例1.53、9.85和21.82组 (P<0.05);饲料效率和蛋白质效率在C/L比例介于2.36~5.58时无显著差异,显著高于1.53和21.82组(P<0.05)。随着饲料C/L比例的升高,肝体比和脏体比呈显著下降趋势(P<0.05),成活率各组无显著差异(P>0.05)。全鱼和肝脏的粗脂肪含量随饲料C/L比例的增加显著降低(P<0.05)。血清甘油三酯(TG)和高密度脂蛋白胆固醇(HDL-C)含量随C/L比例升高而下降,低密度脂蛋白胆固醇(LDL-C)和血糖(GLU)含量则呈显著上升趋势(P<0.05)。分别利用二次多项式回归分析增重率、蛋白质效率和饲料效率与碳水化合物水平及脂肪水平的相关性,得到饲料中适宜的C/L比例分别是4.19、4.15和4.11。研究表明吉富罗非鱼成鱼饲料中适宜的C/L比例为4.11~4.19。
Abstract:To determine the optimal dietary carbohydrate to lipid (C/L) ratio for GIFT Oreochromis niloticus, we formulated six isonitrogenous and isoenergetic diets with C/L ratios of 1.53, 2.36, 3.55, 5.58, 9.85 and 21.82, respectively. Each diet had been randomly fed to the fish with initial average body mass of (218.33±11.03) g for 56 d. The weight gain rate (WGR) and specific growth rate (SGR) were the highest in group of 3.55, significantly higher than those in groups of 1.53, 9.85 and 21.82 (P<0.05). The feed efficiency (FE) and protein efficiency ratio (PER) in groups of 2.36−5.58 had insignificant difference, but were significantly higher than those in groups of 1.53 and 21.82. The viscerosomatic index (VSI) and hepatosomatic index (HSI) decreased significantly as the dietary C/L ratios increased (P<0.05), but the survival rate (SR) showed insignificant difference among different treatments (P>0.05). The whole body and liver lipid content decreased significantly as C/L ratios increased (P<0.05). The serum triglyceride (TG) and high-density lipoprotein cholesterol (HDL-C) levels decreased as dietary C/L ratios increased, whereas the low-density lipoprotein cholesterol (LDL-C) and glucose (GLU) contents showed an opposite trend (P<0.05). Based on the second-order polynomial regression analysis of WGR, PER and FE against dietary carbohydrate and lipid levels, the optimal C/L ratios were 4.19, 4.15 and 4.11, respectively. In conclusion, the diet with C/L ratio of 4.11−4.19 is optimal for adult GIFT O. niloticus.
-
罗非鱼 (Oreochromis spp.) 因其肉质鲜美、无肌间刺而成为我国主要的养殖经济鱼类之一,以往多被用于制成冻鱼片和冰鲜鱼片等产品[1]。随着预制菜市场的发展,以鱼肉为原料加工而成的酸菜鱼[2]、罗非鱼香肠[3]、鱼糜制品[4]等产品相继出现,罗非鱼加工业呈现多元化的发展趋势。
油炸作为我国传统饮食烹饪模式之一,也是预制菜产业关注的热点。它是以油为介质,通过热传递的方式对原料进行加热的行为。油炸过程中产品外壳形成的特有脆性对消费者在咬或食用时产生的声音感知具有积极影响,这是油炸类产品受消费者喜爱的关键驱动因素之一[5]。油炸也是用于改善产品质地和感官特性最常见的技术之一,油炸过程中食材在高温环境下会发生一系列物理和化学变化,如淀粉糊化、蛋白质变性、焦糖化反应、水分蒸发等,促使产品形成内核柔软多汁、外壳酥脆、金黄的质感特征[6]。
裹糊是油炸肉制品常见的加工方法,根据需求外层裹或不裹面包屑。裹糊主要是以面粉基类为主要原料,配合淀粉、膨胀剂等组成的多组分体系。产品质量直接取决于煎炸油和面糊成分之间的作用[7],而面粉基差异对产品酥脆品质影响较大[8]。目前对油炸膨化类食品的研究主要集中在减油工艺、特色风味等方面,关于影响裹糊脆性主要因素的研究较少,但油炸类食品普遍存在脆性不佳、质地硬、脆性维持时间短等亟需解决的问题[9]。因此,本研究探究了不同类型面粉对外裹糊的黏度及持水性等物理特性,结合油炸鱼块的感官、质构、色泽及油脂渗透情况,筛选适合油炸裹糊鱼块的面粉种类,为油炸食品生产原料的筛选提供了理论依据和科学指导。
1. 材料与方法
1.1 材料与试剂
罗非鱼片 [(140±10) g·片−1] (海南翔泰渔业股份有限公司);高、中、低、无筋面粉 (广州福正东海食品有限公司);土豆淀粉 (新乡良润全谷物食品有限公司);泡打粉 (安琪酵母股份有限公司);糯米粉 (新乡良润全谷物食品有限公司);吉士粉 (广东佳隆食品股份有限公司);麦芽糊精 (河南万邦实业有限责任公司);花生油 (山东鲁花集团有限责任公司);苏丹红B (上海源叶生物科技有限公司)。
1.2 仪器与设备
XJ-7K115型油炸锅 (中山斯乐得科技有限公司);ZG-L74A型料理均质机 (广东志高科技有限公司);CT3-4500型质构仪 (美国Brookfield有限公司);CR-400型色差仪 (日本柯尼卡美能达公司);NDJ-8S型黏度仪 (邦西仪器科技有限公司);H175R型离心机 (湖南湘仪实验室器材开发有限公司);光学显微镜 (日本奥林巴斯科技有限公司)。
1.3 方法
1.3.1 鱼块制作
将罗非鱼片用流水解冻,取其背部肌肉切成大小厚薄基本一致的小块 (40 mm×30 mm×15 mm),用厨房纸擦干表面水分备用。
1.3.2 裹糊的制备
将60 g面粉、12 g淀粉、20 g糯米粉、5 g泡打粉、2 g吉士粉、1 g麦芽糊精和120 mL水混和。以总粉量为基准加水制成糊液,粉水质量体积比为5∶6,用均质机以1 000 r·min−1搅拌10 min形成均匀的面糊,静止30 min待气泡全部消失后使用。
1.3.3 裹糊鱼块油炸
把鱼块放入面糊中完全浸没5 s后取出静止10 s,待裹浆不再成股滴落时放入面包糠中,使面包糠均匀覆盖在鱼块表面。待油温升至160 ℃时,放入裹糠鱼块炸制5 min,油炸过程中不断用筷子翻动鱼块,使其受热均匀,炸制结束后,取出鱼块沥油备用。
1.3.4 糊液黏度测定
参考姬恒慧等[10]的方法并稍作修改,采用数显黏度计进行测定。将糊液倒入测试容器至转子标位线,使用3号转子在30 r·min−1转速下检测黏度,待数据稳定15 s后开始记录,做3个平行实验。
1.3.5 糊液持水率
参考林楠等[11]的方法并作修改,取20 mL糊液置于已称质量的50 mL试管中,在25 ℃、 7 500 r·min−1的条件下离心15 min,弃去上清液。裹糊液持水率计算公式为:
$$ \mathrm{持}\mathrm{水}\mathrm{率}{\mathrm{=}} \frac{{m}_{2}{\text{−}}{m}_{0}}{{m}_{1}{\text{−}}{m}_{0}}\times 100 {\text{%}} $$ (1) 式中:m0为空白离心管质量;m1和m2分别为离心前后离心管和糊液总质量。
1.3.6 裹糊挂糠率测定
参考马雯雯等[12]的方法并作修改,称取裹糊挂糠前后样品质量,裹糊挂糠率计算公式为:
$$ \mathrm{裹}\mathrm{糊}\mathrm{挂}\mathrm{糠}\mathrm{率}{\mathrm{=}}\frac{{{m}}_{1}{\text{−}}{{m}}_{0}}{{{m}}_{0}}\times 100 {\text{%}} $$ (2) 式中:m0 为鱼块基质的质量;m1为裹糊挂糠后的质量。
1.3.7 膨胀率测定
参考张立彦等[13]和纪蕾等[14]的方法并作修改。将炸制前后鱼块产品置于50 mL圆锥型量筒中,用小米覆盖,振荡摇匀直至小米完全浸没鱼块,记录相应体积数值。膨胀率计算公式为:
$$ 膨胀率{\mathrm{=}} \frac{{{v}}_{1}{\text{−}}{{v}}_{0}}{{{v}}_{0}}\times 100{\text{%}} $$ (3) 式中:$ v $1为炸后体积;$ v $0为鱼块体积。
1.3.8 质构测定
参考潘薇娜[15]的方法,采用质构分析 (Texture profile analysis, TPA) 质地剖析模式,使用直径为5 mm的圆柱形探头,测前速度、测试速度和测后速度分别为 2.0、1.0和2.0 mm·s−1,压缩比为20%,触发力为10 g,触发类型自动,压缩距离为10 mm,每组做6个平行实验。
1.3.9 色泽的测定
参考Jin等[16]的方法,将待测样品置于载样台上,使用色差计测定样品亮度 (L*)、红绿度 (a*) 和黄蓝度 (b*) 值,测前矫正色差计L*、a*和b*值。试样选择3个不同位置进行检测,每组做3个平行,取平均值。
1.3.10 感官评价
评价小组由10名 (男女各5名) 经过培训的人员组成。评价员需在日光灯下进行独立盲评,相互之间无接触交谈。评定不同样品前用清水漱口防止味觉受到干扰,从色泽、形态、风味、滋味、咀嚼感5个方面对产品进行感官评价,评分标准见表1。
表 1 感官评分表Table 1. Sensory evaluation criteria色泽
Color形态
Form风味
Flavor滋味
Taste咀嚼感
Chewing sensation颜色金黄、均匀、无焦糊 (2.0分) 裹糊完整,厚薄一致,无
变形 (1.5分)面包鱼香味明显,无焦味 (2.0分) 肉嫩、香鲜可口(2.0分) 硬度适中,酥松质脆,有明显的咔嚓声 (2.5分) 颜色淡黄或黄褐色,基本均匀,略有焦糊 (1.5分) 裹糊基本完整,厚薄基本一致,略变形 (1.0分) 有油炸香味,有稍许焦味 (1.5分) 肉鲜嫩不足,略有香鲜味 (1.5分) 硬度稍大,略有咔嚓声 (2.0分) 颜色淡黄或暗褐,不均匀,
焦糊明显 (0.5分)裹糊不完整,厚薄不一致,变形明显 (0.5分) 油炸香味不明显,有焦味 (1.0分) 肉不鲜嫩,香鲜味差 (1.0分) 无酥脆感,咀嚼无咔嚓声 (1.0分) 1.3.11 苏丹红染色
参考冯佳奇等[17]的方法,将苏丹红加入油中,苏丹红与油的比例为425 mg·L−1,加热至60 ℃维持4 h,使染料和油充分均匀混合。然后按照1.3.3的油炸步骤对裹糊鱼块进行炸制,冷却后将鱼块样品剖开,用手术刀片切成3 mm×2 mm×1 mm的薄片,用光学显微镜放大4倍,观察染色结果并拍照记录。
1.4 数据处理与分析
采用Microsoft Excel® 2019MSO软件进行数据分析,结果以“平均值±标准差 (x —±s)”表示。采用IBM SPSS Statistics 26软件进行单因素方差分析 (Analysis of variance, ANOVA)和最小显著性差异分析 (Least-significant difference, LSD);采用Duncan's法进行组间多重比较,显著性水平设为p<0.05;使用Origin 2021软件绘图。
2. 结果与分析
2.1 面粉类型对裹糊物理性状的影响
面粉类型对裹糊黏度影响较大。高、中筋粉形成的裹糊黏度显著高于低、无筋粉 (表2,p<0.05),其中无筋粉裹糊黏度仅为119 m.pa.s,约为低筋粉组的1/10。持水率为面糊系统在离心力作用下水分保留的能力[18],反映不同面粉类型的糊液体系中水分的排出能力,是糊液体系中一个重要的物理性状。结果显示,高、中、低和无筋粉的持水率分别为72.5%、70%、69.9%和72%,其中高、无筋粉显著高于中、低筋粉 (p<0.05)。
表 2 不同面粉类型裹糊液的物理性状Table 2. Physical properties of batter of different flour types指标
Index高筋粉
High-gluten flour中筋粉
Medium-gluten flour低筋粉
Low-gluten flour无筋粉
Gluten-free flour黏度Viscosit/(m.pa.s) 2 132±45a 2 067±70a 1 256±12b 119±4c 持水率Water retention/% 72.5±0.02a 70.0±0.73b 69.9±0.13b 72.1±1.07a 注:同行不同小写字母表示显著性差异 (p<0.05)。 Note: Different lowercase letters within the same line represent significant differences (p<0.05). 淀粉和面筋蛋白是面粉中最重要的2种物质,二者存在复杂的相互作用。本研究所用面粉均为小麦粉,在生活中会根据面粉所含面筋含量对面粉类型加以区分。高筋粉的面筋质 (以湿基计)≥30%,而低筋粉面筋质 (以湿基计)≤24%;丰琴和王建国[19]认为无明确的中筋粉的概念,一般将蛋白含量介于高筋和低筋之间的统称为“中筋小麦粉”;无筋粉则为小麦粉洗去面筋蛋白的产物。大量研究表明麦谷蛋白和麦醇溶蛋白作为面粉中主要的蛋白质,约占面粉蛋白质总量的80%,是面筋蛋白的主要成分[20]。小麦粉水化和混合后,麦醇溶蛋白和麦谷蛋白相互作用形成一个连续的黏弹性网络结构,麦醇溶蛋白赋予面团黏度,麦谷蛋白则具有弹性功能[21]。本实验所用的4种面粉表现出的黏性特征与其面筋组成呈一定的正相关,实验结果与Korompokis和Delcour[22]的研究结果一致。
2.2 面粉类型对裹糊挂糠率和膨胀率的影响
裹糊挂糠率与鱼块黏附糊液及挂糠的能力关系密切。裹糊挂糠率越高,相同情况下裹糊越饱满[23]。据市场调查显示,消费者更喜爱裹糊挂糠率高的产品。中筋粉裹糊挂糠率最高为47%,其后依次为高、低和无筋粉 (图1)。膨胀率是面制相关食品关注的热点,反映物体受热水分蒸发体积膨胀的能力。不同面粉类型对膨胀率影响的趋势与裹糊挂糠率一致,均以中筋粉效果最好,膨胀率高达85.5% (图1)。本实验误差较大可能与糊液在受热糊化膨胀过程中内部气室不规则膨胀有关。
图 1 不同面粉类型对油炸裹糊鱼块裹糊挂糠率和膨胀率的影响注:不同小写和大写字母分别表示裹糊挂糠率和膨胀率差异显著 (p<0.05)。Figure 1. Effects of flour types on coating ratio and swelling rate of fried fish meat coated with batterNote: Different lowercase and capital letters represent significant differences in coating and swelling rates, respectively (p<0.05).一定的黏度有利于糊液包裹于鱼块表面。董行等[24]研究认为黏度偏低时,糠粒黏附力弱,导致较低的裹糊挂糠率;但黏度过高可能造成鱼块裹糊困难且不均匀,同样会导致裹糊率偏低[25]。此外,糊液持水率也可能影响其裹糊挂糠效果,持水率低说明糊液的自由水含量高。在裹糊挂糠过程中糊液释放更多水分,有利于提升挂糠效果,从而增加产品裹糊挂糠率。糊液是由淀粉、蛋白质、水及泡打粉等组成的混和体系,在受热过程中水分蒸发,裹糊膨胀形成海绵状的空间结构[26]。对同体积的鱼块而言,裹糊挂糠率越高,其膨胀率也越高。以高筋面粉为基料的裹糊液具有高持水性,与面筋蛋白竞争性吸水,也可能限制面筋蛋白网络的形成,这也是导致高筋粉膨胀率弱于中筋粉的原因之一[27]。
2.3 面粉类型对裹糊鱼块油炸的感官影响
由表3可见,中、高筋粉对产品色泽、形态、风味及滋味影响差异不显著 (p>0.05),但均明显优于低、无筋粉。中筋粉赋予产品较好的咀嚼感,综合评分也明显高于其他3组 (p<0.05),这可能与其糊化形成的空间质构有关[28];高筋粉得分偏低可能是其硬度较大,在一定程度上弱化了其酥脆效果。色泽上,低、无筋组外表金黄色泽偏弱,且咀嚼评分低,可能是由于其裹糊率低或裹糊不足,难以形成致密的外壳。
表 3 不同面粉类型裹糊鱼块油炸感官评价得分Table 3. Score of sensory evaluation of fried fish meat coated with batter of different flour types面粉类型
Flour type色泽
Color (2.0分)形态
Form (1.5分)风味
Flavor (2.0分)滋味
Taste (2.0分)咀嚼感
Chewy (2.5分)总分
Score (10.0分)高筋粉 High-gluten flour 1.54±0.06a 1.36±0.05ab 1.51±0.03ab 1.54±0.07ab 2.03±0.08b 7.98±0.29b 中筋粉 Medium-gluten flour 1.60±0.07a 1.41±0.02a 1.67±0.05a 1.61±0.02a 2.23±0.07a 8.52±0.23a 低筋粉 Low-gluten flour 1.35±0.06b 1.30±0.06b 1.42±0.04b 1.47±0.04b 1.87±0.10c 7.41±0.30c 无筋粉 Gluten-free flour 1.37±0.04b 1.17±0.04c 1.24±0.04c 1.34±0.04c 1.71±0.05d 6.83±0.21d 注:同列不同字母表示具有显著性差异(p<0.05)。Note: Different lowercase letters within the same row represent significant differences (p<0.05). 2.4 面粉类型对裹糊鱼块油炸咀嚼特性的影响
应力-形变曲线是采用质构仪在TPA质地剖析模式下,模拟口腔咀嚼咬合动作,提供与咀嚼相关的感官参数[29]。图2反映了探头下降过程中油炸鱼块应力的感知情况。通常认为脆性是使固态食品破裂所需的力,为应力-形变曲线第1个明显断裂处的峰值[7],而硬度则是使食品变形所需的力,通常为应力-形变曲线图最大力的峰值[30]。由图2可见,中筋粉在探头行进2 mm处出现首个断裂点,此时应力为170 g,随后应力值继续增加,最大应力为238 g。高筋粉裹糊产品则于0.4 mm处形成首个断裂点,其应力值为144 g,最大应力为315 g。有研究认为应力-形变曲线中的正峰数量可能与食品酥脆性有关[31-32],样品在压缩过程中产生的突变峰,反映了咀嚼时可闻噪声的强度,可感觉为悦耳干脆的声音[33]。由图2可见,油炸裹糊挂糠鱼块在模拟咀嚼过程中出现多个断裂点。低、无筋粉制成的产品在应力上升过程中的断裂点不明显;中筋粉有22个断裂点且正峰值普遍高于低、无筋粉,继第1个断裂点后,其制成的产品应力值呈锯齿状上升趋势;高筋粉断裂峰数23个,与中筋粉相近,但其断裂点与中筋粉差异较大,特别是前期断裂点的应力均呈断崖式下降趋势,且在应力上升期间断裂点较少。由此可判定中筋粉制成的产品酥脆特点更突出,而高筋粉制成的产品则表现出较明显的硬度。
2.5 面粉类型对裹糊鱼块油炸脆度和硬度的影响
由图3可见,脆性与硬度呈正相关性。在硬度方面,不同组别有显著性差异 (p<0.05)。高筋粉的硬度值为305 g,中筋粉为275 g (p<0.05),这与感官评价上高筋粉制成的产品口感偏硬、咀嚼感略差相一致。低、无筋粉制成的产品硬度值分别为225、200 g,相较于中筋粉制成的产品显著降低 (p<0.05)。在脆性方面,高、中筋粉制成的产品其脆性值差异不显著 (p>0.05)。鉴于消费者更倾向于选择硬度适中、酥脆口感更明显的食品[34-35],中筋粉制成的产品效果更佳。这可能与不同面粉类型营养组分不同有关。在受热糊化时,面液混合物中的水分 (粉水质量体积比为5∶6) 受热蒸发,水分子在蒸发运动过程中气室膨胀,面筋网络拉伸形成海绵或纤维状空间网状结构[36]。不同面粉类型具有的结构抵抗强度不同,高筋粉因具有较高的面筋质和蛋白,经高温膨化后,蜂窝状的空间网状结构会更密实、牢固;而低筋面粉具有较低的面筋质和蛋白,经高温淀粉膨化后,蜂窝网状结构强度相对较弱[37]。
2.6 不同面粉类型对裹糊鱼块油炸色泽的影响
裹糊鱼块在高温油炸过程中会发生焦糖化、美拉德反应,赋予产品表面特有色泽[37]。国内外常用Lab色彩模型 (由L*、a*和b*值组成) 来表征颜色。L*的值域从0到100表示颜色从深 (黑) 到浅 (白)。由图4可见,产品色泽从高筋组到无筋组发生了微妙变化,由深黄逐渐向浅黄过渡,其中高、中筋粉的裹糊鱼块色泽较深,黄中带淡淡的红褐色,且无筋粉裹糊的鱼块体积较其他3组小。低筋粉组鱼块裹糊和挂糠率低,油炸后可见其内部鱼肉的白色,这也是无筋粉组样品L*值较高的主要原因。除无筋粉a*值较低外,其他3组裹糊鱼块油炸后的a*值差异不明显 (表4,p<0.05),与实拍的视觉差异基本相符。张令文等[38]认为高温导致的褐变和氧化反应是物料色泽变化的主要原因。本研究的原料鱼块表面裹有面包糠,因此淀粉糊化是色泽变化的第一诱因。
表 4 不同面粉类型裹糊鱼块油炸色泽Table 4. Color of fried fish meat coated with batter of different flour types色度
Color高筋粉
High-gluten flour中筋粉
Medium-gluten flour低筋粉
Low-gluten flour无筋粉
Gluten-free flour亮度 L* 70.58±1.94b 71.6±2.43ab 71.3±1.19ab 74.44±0.10a 红绿度 a* 9.28±2.43a 9.05±0.81a 8.28±0.95a 5.92±0.38b 黄蓝度b* 37.90±2.75a 33.87±1.81b 35.42±0.60b 38.02±1.63a 注:同行不同字母表示差异显著 (p<0.05)。Note: Different letters within the same line represent significant differences (p<0.05). 2.7 面粉类型对裹糊鱼块油炸后油脂吸收的影响
苏丹红B是脂溶性物质,与食用油均匀混合后可随油一同进入物料中起到颜色标记的作用,宏观上可反映油脂的吸收状况[39]。如图5所示,裹糊鱼块油炸后油脂主要分布在裹糊及裹糊与肉的交界处,少量油脂可渗入鱼肉。油脂的渗透情况与裹糊淀粉类型有关,低、无筋粉组的裹糊层存在很多大小不等、肉眼可见的气孔,鱼肉部位油脂渗透较明显。高、中筋粉组的裹糊层结构界面交接较紧密,油脂主要集中在裹糊层;中筋粉组的苏丹红染色幅度较小,内部孔隙较少,组织形态较好,说明其裹糊黏附效果较好,这与舒静等[40]的研究结果较一致。翟金玲等[41]认为油炸加工过程,实质是油脂同物料相互之间发生质量交换和热量传递的动态平衡过程。初期物料表面温度逐渐上升,热交换以自然对流传热为主,物料吸油率低;当表面温度达到水的沸点时,热交换过程被食品与油脂的热传导和强制对流共同主导,此阶段食品吸油率增加,其内部蛋白质部分变性、淀粉也开始糊化。中筋粉裹糊在油炸过程中形成致密的凝胶层 (图5),有效减小了外壳形成的孔隙,抑制了水分的蒸发和油脂的渗透,在一定程度上起到控油的作用。
3. 结论
面粉基裹糊黏度特性与原料筋性有一定的相关性。中、高筋面粉的高黏度赋予裹糊较好的裹糊能力和油炸膨胀性能,使裹糊挂糠鱼块油炸后形态更饱满。中筋粉裹糊油炸鱼块的酥脆品质更突出,高筋粉裹糊则使得裹糊油炸鱼块具更明显的硬度特质。苏丹红染色实验表明,中筋粉裹糊在一定程度上能起到控油的作用,但油炸裹糊是以面粉为主要成分,辅以淀粉、泡打粉及其他原料组成的复杂体系,各组分在裹糊中的作用及合理配比还有待进一步的研究。
-
表 1 实验饲料配方及营养组成
Table 1 Composition and proximate analysis of the experimental diets
% 成分
ingredient饲料碳脂比 dietary C/L ratio 1.53 2.36 3.55 5.58 9.85 21.82 酪蛋白 casein 20.00 20.00 20.00 20.00 20.00 20.00 明胶 gelatin 5.00 5.00 5.00 5.00 5.00 5.00 鱼粉 fish meal 14.00 14.00 14.00 14.00 14.00 14.00 糊精 dextrine 22.00 28.00 34.00 40.00 46.00 52.00 玉米油 corn oil 5.65 4.65 3.65 2.65 1.65 0.65 大豆油 soybean oil 5.65 4.65 3.65 2.65 1.65 0.65 维生素预混料1 vitamin premix 1.00 1.00 1.00 1.00 1.00 1.00 无机盐预混料1 mineral premix 2.00 2.00 2.00 2.00 2.00 2.00 磷酸二氢钙 monocalcium phosphate 2.00 2.00 2.00 2.00 2.00 2.00 氯化胆碱 choline chloride 0.50 0.50 0.50 0.50 0.50 0.50 微晶纤维素 micro-cellulose 22.20 18.20 14.20 10.20 6.20 2.20 总计 total 100.00 100.00 100.00 100.00 100.00 100.00 近似成分 proximate composition 干物质 dry matter 90.68 90.43 90.51 90.24 90.36 90.29 粗蛋白质 crude protein 30.95 30.78 30.86 30.91 30.64 30.71 粗脂肪 crude lipid 12.24 10.09 8.15 6.12 3.98 2.03 灰分 crude ash 5.23 5.12 5.17 5.08 4.96 5.01 碳水化合物 carbohydrate 18.67 23.83 28.96 34.15 39.22 44.31 总能/kal·g–1 gross energy 3.56 3.59 3.58 3.61 3.60 3.63 注:1. 维生素预混料和无机盐预混料配方参照许霄霄等[13]的实验 Note: 1. The formulas of vitamin premix and mineral premix are based on previous study by Xu, et al[13]. 表 2 饲料C/L比例对吉富罗非鱼成鱼生长性能和饲料利用的影响
Table 2 Effect of dietary C/L ratio on growth performance and feed utilization of adult GIFT O. niloticus
指标
index饲料碳脂比 dietary C/L ratio 1.53 2.36 3.55 5.58 9.85 21.82 初始质量/g initial mass 220.25±10.44 214.25±15.13 215.50±11.21 219.00±7.16 219.50±12.71 221.50±14.25 终末质量/g final mass 499.50±19.12a 543.35±24.21b 565.79±15.93b 569.11±18.40b 541.80±22.12b 488.65±21.67a 增重率/% WGR 126.94±7.30a 153.96±6.83bc 162.83±8.16c 159.91±5.54c 147.05±5.83b 120.84±4.69a 特定生长率/%·d–1 SGR 1.46±0.06a 1.66±0.05bc 1.73±0.06c 1.71±0.04c 1.61±0.04b 1.41±0.04a 饲料效率/% FE 66.94±3.11ab 76.21±6.10c 78.16±6.68c 81.20±5.10c 72.76±5.75bc 62.62±4.44a 蛋白质效率/% PER 216.28±10.04ab 247.62±19.83c 253.28±21.65c 262.71±16.52c 237.47±18.76bc 203.92±14.46a 脏体比/% VSI 10.06±0.35d 9.79±0.48d 9.52±0.35d 8.78±0.21c 7.92±0.11b 7.21±0.51a 肝体比/% HSI 3.12±0.20c 2.95±0.04c 2.74±0.08b 2.66±0.03b 2.69±0.13b 2.28±0.10a 成活率/% SR 96.25±4.79 95.00±4.08 97.50±2.89 98.75±2.50 97.50±2.89 97.50±5.00 注:同一行上标不同字母代表有显著差异(P<0.05),下表同此 Note: Values within the same row with different letters have significant difference (P<0.05). The same case in the following tables. 表 3 饲料C/L比例对吉富罗非鱼成鱼全鱼和肝脏营养成分的影响
Table 3 Effect of dietary C/L ratio on whole body and liver composition of adult GIFT O. niloticus
% 成分
composition饲料碳脂比 dietary C/L ratio 1.53 2.36 3.55 5.58 9.85 21.82 全鱼 whole body 水分 moisture 67.76±1.89 67.35±0.96 68.21±3.61 68.04±0.86 67.71±1.05 67.33±1.70 粗蛋白 crude protein 16.08±0.24 16.65±0.37 16.14±0.50 16.68±0.79 16.67±0.86 16.84±0.52 粗脂肪 crude lipid 10.93±0.62d 10.51±0.59cd 9.64±0.75bc 9.79±0.28bc 9.30±0.67ab 8.73±0.33a 粗灰分 crude ash 2.64±0.23 2.89±0.14 2.77±0.21 2.75±0.17 2.82±0.21 2.90±0.18 肝脏 liver 水分 moisture 64.58±1.45 65.18±0.90 66.17±0.79 65.44±0.82 66.09±2.40 65.56±1.70 粗蛋白 crude protein 8.93±0.58 9.31±0.44 9.48±0.53 9.21±0.43 8.85±0.74 9.59±0.36 粗脂肪 crude lipid 7.61±0.46d 7.32±0.36cd 7.00±0.26bc 6.62±0.25b 5.82±0.29a 6.03±0.18a 粗灰分 crude ash 1.33±0.07 1.43±0.09 1.40±0.08 1.37±0.06 1.39±0.05 1.44±0.08 表 4 饲料碳脂比对吉富罗非鱼成鱼血清生化指标的影响
Table 4 Effect of dietary C/L ratios on serum biochemical indices of adult GIFT O. niloticus
mmol·L−1 指标
index饲料碳脂比 dietary C/L ratio 1.53 2.36 3.55 5.58 9.85 21.82 总胆固醇 TCHO 5.46±0.42 5.15±0.49 5.29±0.44 5.04±0.26 4.96±0.78 4.77±0.36 甘油三酯 TG 8.25±0.76d 7.62±0.63d 6.21±0.38c 5.53±0.47bc 4.78±0.32b 3.76±0.29a 高密度脂蛋白胆固醇 HDL-C 1.75±0.14b 1.67±0.08b 1.63±0.11b 1.45±0.06a 1.46±0.08a 1.39±0.07a 低密度脂蛋白胆固醇 LDL-C 0.92±0.09a 1.14±0.13b 1.33±0.15bc 1.44±0.07cd 1.62±0.08d 2.04±0.15e 葡萄糖 GLU 1.79±0.11a 2.55±0.10b 2.74±0.11bc 2.85±0.15c 3.21±0.21d 4.17±0.26e -
[1] JOHNSTON D J, CALVERT K A, CREAR B J, et al. Dietary carbohydrate/lipid ratios and nutritional condition in juvenile southern rock lobster, Jasus edwardsii[J]. Aquaculture, 2003, 220(1): 667-682.
[2] LIN Y H, SHIAU S Y. Dietary lipid requirement of grouper, Epinephelus malabaricus, and effects on immune responses[J]. Aquaculture, 2003, 225(1/2/3/4): 243-250.
[3] 胡毅, 陈云飞, 张德洪, 等. 不同碳水化合物和蛋白质水平膨化饲料对大规格草鱼生长、肠道消化酶及血清指标的影响[J]. 水产学报, 2018, 42(5): 156-165. [4] TAN Q, XIE S, ZHU X, et al. Effect of dietary carbohydrate-to-lipid ratios on growth and feed utilization in Chinese longsnout catfish (Leiocassis longirostris Gunther)[J]. J Appl Ichthyol, 2007, 23(5): 605-610. doi: 10.1111/jai.2007.23.issue-5
[5] CUI X, ZHOU Q, LIANG H, et al. Effects of dietary carbohydrate sources on the growth performance and hepatic carbohydrate metabolic enzyme activities of juvenile cobia (Rachycentron canadum Linnaeus)[J]. Aquacult Res, 2010, 42(1): 99-107. doi: 10.1111/are.2010.42.issue-1
[6] National Research Council (NRC). Nutrient requirement of fish and shrimp[M]. Washington, D.C.: National Academy Press, 2011: 135.
[7] LI X F, LIU W B, LU K L, et al. Dietary carbohydrate/lipid ratios affect stress, oxidative status and non-specific immune responses of fingerling blunt snout bream, Megalobrama amblycephala[J]. Fish Shellfish Immun, 2012, 33(2): 316-323. doi: 10.1016/j.fsi.2012.05.007
[8] 刘峰, 谢新民, 郑艳红. 罗非鱼优良品系——吉富罗非鱼的育成始末[J]. 水产科技情报, 2006, 33(1): 8-10, 12. doi: 10.3969/j.issn.1001-1994.2006.01.001 [9] 王爱民, 韩光明, 封功能, 等. 饲料脂肪水平对吉富罗非鱼生产性能、营养物质消化及血液生化指标的影响[J]. 水生生物学报, 2011, 35(1): 80-87. [10] TIAN J, WU F, YANG C G, et al. Dietary lipid levels impact lipoprotein lipase, hormone-sensitive lipase, and fatty acid synthetase gene expression in three tissues of adult gift strain of Nile tilapia, Oreochromis niloticus[J]. Fish Physiol Biochem, 2015, 41(1): 1-18. doi: 10.1007/s10695-014-0001-1
[11] 孙育平, 王国霞, 胡俊茹, 等. 不同种类碳水化合物对吉富罗非鱼生长性能、体组成和血清生化指标的影响[J]. 水产学报, 2014, 38(9): 1486-1493. [12] 吴凡, 文华, 蒋明, 等. 饲料碳水化合物水平对吉富罗非鱼幼鱼生长性能和血液主要生化指标的影响[J]. 西北农林科技大学学报: 自然科学版, 2012, 40(12): 8-14. [13] 许霄霄, 刘伟, 文华, 等. 高糖饲料对吉富罗非鱼生长性能、饲料利用和糖脂代谢的影响[J]. 南方水产科学, 2017, 13(5): 94-102. doi: 10.3969/j.issn.2095-0780.2017.05.013 [14] Association of Official Analytical Chemists (AOAC). Official methods of analysis of official analytical chemists international[S]. 17th ed. Gaithersburg, MD: AOAC International, 2000.
[15] ZEITOUN I H, ULLREY D E, MAGEE W T, et al. Quantifying nutrient requirements of fish[J]. J Fish Res Bd Can, 1976, 33(1): 167-172. doi: 10.1139/f76-019
[16] LI X F, WANG Y, LIU W B, et al. Effects of dietary carbohydrate/lipid ratios on growth performance, body composition and glucose metabolism of fingerling blunt snout bream Megalobrama amblycephala[J]. Aquacult Nutr, 2013, 19(5): 701-708. doi: 10.1111/anu.2013.19.issue-5
[17] 付世建, 谢小军. 饲料碳水化合物水平对南方鲇生长的影响[J]. 水生生物学报, 2005, 29(4): 393-398. doi: 10.3321/j.issn:1000-3207.2005.04.007 [18] Li X T, YONG J L, HUI J Y, et al. Effects of different dietary wheat starch levels on growth, feed efficiency and digestibility in grass carp (Ctenopharyngodon idella)[J]. Aquacult Int, 2012, 20(2): 283-293. doi: 10.1007/s10499-011-9456-6
[19] ALI M Z, JAUNCEY K. Optimal dietary carbohydrate to lipid ratio in African catfish Clarias gariepinus (Burchell 1822)[J]. Aquacult Int, 2004, 12(2): 169-180. doi: 10.1023/B:AQUI.0000032065.28059.5b
[20] CATACUTAN M R, COLOSO R M. Growth of juvenile Asian seabass, Lates calcarifer, fed varying carbohydrate and lipid levels[J]. Aquaculture, 1997, 149(1/2): 137-144.
[21] GAO W, LIU Y J, TIAN L X, et al. Effect of dietary carbohydrate-to-lipid ratios on growth performance, body composition, nutrient utilization and hepatic enzymes activities of herbivorous grass carp (Ctenopharyngodon idella)[J]. Aquacult Nutr, 2010, 16(3): 327-333.
[22] HU Y H, LIU Y J, TIAN L X, et al. Optimal dietary carbohydrate to lipid ratio for juvenile yellowfin seabream (Sparus latus)[J]. Aquacult Nutr, 2007, 13(4): 291-297. doi: 10.1111/anu.2007.13.issue-4
[23] JANTRAROTAI W, SITASIT P, RAJCHAPAKDEE S. The optimum carbohydrate to lipid ratio in hybrid clarias catfish (Clarias macrocephalus×C. gariepinus) diets containing raw broken rice[J]. Aquaculture, 1994, 127(1): 61-68. doi: 10.1016/0044-8486(94)90192-9
[24] 张世亮, 艾庆辉, 徐玮, 等. 饲料中糖/脂肪比例对瓦氏黄颡鱼生长、饲料利用、血糖水平和肝脏糖酵解酶活力的影响[J]. 水生生物学报, 2012, 36(3): 466-473. [25] 刘襄河, 叶超霞, 沈碧端, 等. 饲料中糖/脂肪比对暗纹东方鲀幼鱼生长、血液指标、肝代谢酶活性及PEPCK基因表达的影响[J]. 水产学报, 2014, 38(8): 1149-1158. [26] 王菲, 李向飞, 李贵锋, 等. 不同糖脂比对建鲤幼鱼生长、体组成、消化及糖酵解能力的影响[J]. 水产学报, 2015, 39(9): 1386-1394. [27] LEE S M, KIM K D. Effects of dietary carbohydrate to lipid ratios on growth and body composition of juvenile and grower rockfish, Sebastes schlegeli[J]. Aquacult Res, 2010, 40(16): 1830-1837.
[28] BRAUGE C, MEDALE F, CORRAZE G. Effect of dietary carbohydrate levels on growth, body composition and glycaemia in rainbow trout, Oncorhynchus mykiss, reared in seawater[J]. Aquaculture, 1994, 123(1/2): 109-120.
[29] 张颂, 蒋明, 文华, 等. 饲料碳、脂比例对胭脂鱼幼鱼生长及糖代谢的影响[J]. 华南农业大学学报, 2014, 35(3): 1-7, 23. [30] KAUSHIK S J, CRAVEDI J P, LALLES J P, et al. Partial or total replacement of fish meal by soybean protein on growth, protein utilization, potential estrogenic or antigenic effects, cholesterolemia and flesh quality in rainbow trout, Oncorynchus mykiss[J]. Aquaculture, 1995, 133(3): 257-274.
[31] 程汉良, 夏德全, 吴婷婷. 鱼类脂类代谢调控与脂肪肝[J]. 动物营养学报, 2006, 18(4): 294-298. doi: 10.3969/j.issn.1006-267X.2006.04.013 [32] REGOST C, ARZEL J, CARDINAL M, et al. Dietary lipid level, hepatic lipogenesis and flesh quality in turbot (Psetta maxima)[J]. Aquaculture, 2001, 193(3/4): 291-309.
[33] 涂玮, 田娟, 文华, 等. 尼罗罗非鱼幼鱼饲料的适宜脂肪需要量[J]. 中国水产科学, 2012, 19(3): 436-444. [34] 张春暖, 王爱民, 刘文斌, 等. 饲料脂肪水平对梭鱼脂肪沉积、脂肪代谢酶及抗氧化酶活性的影响[J]. 中国水产科学, 2013, 20(1): 108-115. [35] 朱婷婷, 李琦, 朱浩拥, 等. 饲料脂肪水平对俄罗斯鲟幼鱼生长、血液生化指标及抗氧化性能的影响[J]. 海洋渔业, 2017, 39(1): 58-67. doi: 10.3969/j.issn.1004-2490.2017.01.007 [36] HEMRE G, MOMMSEN T P, KROGDAHL Å. Carbohydrates in fish nutrition: effects on growth, glucose metabolism and hepatic enzymes[J]. Aquacult Nutr, 2015, 8(3): 175-194.