斜带石斑鱼对实用饲料中维生素D3的需求量

谢诗玮, 田丽霞, 刘永坚, 张海涛, 牛津, 梁键钧, 方蔚平, 苏积财

谢诗玮, 田丽霞, 刘永坚, 张海涛, 牛津, 梁键钧, 方蔚平, 苏积财. 斜带石斑鱼对实用饲料中维生素D3的需求量[J]. 南方水产科学, 2019, 15(4): 61-67. DOI: 10.12131/20190029
引用本文: 谢诗玮, 田丽霞, 刘永坚, 张海涛, 牛津, 梁键钧, 方蔚平, 苏积财. 斜带石斑鱼对实用饲料中维生素D3的需求量[J]. 南方水产科学, 2019, 15(4): 61-67. DOI: 10.12131/20190029
XIE Shiwei, TIAN Lixia, LIU Yongjian, ZHANG Haitao, NIU Jin, LIANG Jianjun, FANG Weiping, SU Jicai. Vitamin D3 requirement of grouper (Epinephelus coioides) in practical diet[J]. South China Fisheries Science, 2019, 15(4): 61-67. DOI: 10.12131/20190029
Citation: XIE Shiwei, TIAN Lixia, LIU Yongjian, ZHANG Haitao, NIU Jin, LIANG Jianjun, FANG Weiping, SU Jicai. Vitamin D3 requirement of grouper (Epinephelus coioides) in practical diet[J]. South China Fisheries Science, 2019, 15(4): 61-67. DOI: 10.12131/20190029

斜带石斑鱼对实用饲料中维生素D3的需求量

基金项目: 湛江市科技计划项目(2016A02004);国家自然科学基金面上项目(31672665)
详细信息
    作者简介:

    谢诗玮(1989—),男,博士研究生,从事水生动物营养与饲料研究。E-mail: xswzsdx@163.com

    通讯作者:

    刘永坚(1956—),男,教授,从事水生动物营养与饲料研究。E-mail: edls@mail.sysu.edu.cn

  • 中图分类号: S 963.71

Vitamin D3 requirement of grouper (Epinephelus coioides) in practical diet

  • 摘要:

    实验设计了6个不同维生素D3水平(0,1 000 IU·kg−1,2 000 IU·kg−1,4 000 IU·kg−1,8 000 IU·kg−1,100 000 IU·kg−1)的等氮等能饲料(组1、组2、组3、组4、组5和组6)来研究斜带石斑鱼对维生素D3的需求量。结果显示,摄食组3饲料的斜带石斑鱼增重率、特定生长率以及饲料效率显著高于其他组(P<0.05)。不同水平的维生素D3不影响石斑鱼的肥满度和肝体比,添加量大于2 000 IU·kg−1时,石斑鱼肠系膜脂肪和脏体比随着维生素D3水平的升高而降低(P<0.05)。鱼体肌肉和全鱼中蛋白含量随着维生素D3水平的升高而降低,粗脂肪含量各组之间没有显著性差异。维生素D3添加量低于2 000 IU·kg−1时,石斑鱼骨骼中钙(Ca)、磷(P)含量与维生素D3的添加量呈正相关。以增重率以及骨骼Ca、P含量为指标,斜带石斑鱼幼鱼实用饲料中维生素D3的适宜添加量为2 000 IU·kg−1

    Abstract:

    Six isonitrogenous and isoenergetic diets supplemented with different levels of vitamin D3 (0, 1 000 IU·kg−1, 2 000 IU·kg−1, 4 000 IU·kg−1, 8 000 IU·kg−1, 100 000 IU·kg−1) were formulated to evaluate the requirement of vitamin D3 to Epinephelus coioides, namely Diet 1, Diet 2, Diet 3, Diet 4, Diet 5 and Diet 6. Diet 3 obtained higher weight gain rate, specific growth rate and feed efficiency than the other groups (P<0.05). With dietary supplemental vitamin D3 higher than 2 000 IU·kg−1, the intraperitoneal fat ratio (IPF) and viscerosomatic index (VSI) decreased significantly with increasing dietary vitamin D3 levels (P<0.05). The protein contents in whole body and muscle decreased with increasing dietary vitamin D3 levels (P<0.05), but the lipid and ash contents showed no difference in whole body and muscle among all the groups. When the dietary supplemental vitamin D3 was lower than 2 000 IU·kg−1, the calcium (Ca) and phosphorus (P) contents in fish bone were positively correlated with the vitamin D3 levels. Based on Ca and P contents in bones, the optimal supplementation level of vitamin D3 in practical diet should be 2 000 IU·kg−1.

  • 止血敷料常用于伤口的基础治疗,以达到快速止血的目的。然而传统的止血敷料存在很多问题,例如材料来源单一、止血时间较长、易粘连伤口、体内降解性较差、力学性能较差等,已不能满足伤者们的紧急医疗需求[1]。因此,针对传统医用敷料的局限性,开发一种具有良好机械性能、保水性能和止血性能的新型可吸收医用敷料,成为目前生物医学材料领域研究的热点和难点之一[2]。目前,常用的止血材料包含以下几种:1) 沸石类敷料,具有多孔结构,能够迅速吸收血液中的水分促进凝血,但容易引发炎症反应;2) 氧化纤维素类敷料,通过羧基与血红蛋白中的铁离子形成凝胶状物质进行止血,但在过程中产生的酸性环境会引起神经损伤;3) 明胶、胶原和多糖类敷料,生物相容性较高,具有较高的止血活性,是目前研究的热点,但单独使用时存在机械性能较差、易脱落等缺点。因此,本研究考虑将不同的天然高分子材料进行共混交联,改善单一材料的局限性,并发挥其在止血性能中的复配协同作用[3]

    明胶作为一种可吸收的天然生物材料,因具有生物相容性、生物降解性、低免疫原性而受到广泛关注[4]。明胶具有良好的止血活性,能够吸收大量血液,并能激活血小板的附着和凝血因子释放,封闭创面伤口实现快速止血[5]。目前,牛或猪来源的明胶止血海绵已应用于外科手术之中[6]。太平洋鳕 (Gadus macrocephalus) 是世界上重要的经济鱼类,从鳕鱼皮副产物中提取明胶可以避免陆地源疾病和宗教的影响,避免资源浪费和环境污染。但纯明胶海绵存在机械性能较差、易破损、难止住大伤口出血等缺点,所以要获得高性能的明胶止血产品,需将其与其他类型的止血材料复配进行改性[7-9]。褐藻来源的海藻酸钠是一种由β-1,4-d-甘露糖醛酸和α-1,4-d-古洛糖醛酸构成的天然线性共聚物[10],具有生物降解性好、生物相容性高和易于进行化学改性的优点,且具有止血活性以及易于形成凝胶的性质,可以作为明胶复配的良好选择[11]。已研究开发出明胶海藻酸钠水凝胶支架用于骨组织缺损修复[12]和细胞迁移[13],但对其复合材料的止血效果尚未探究。

    本研究将鳕鱼皮源明胶与海藻酸钠进行共混并交联,制备出一种具有良好机械性能和止血活性的可吸收型复合止血敷料。通过测定该复合止血敷料的力学性能、结构特征等指标从而确定其制备的最佳工艺条件,并评价了该敷料的止血性能、生物相容性,初步探究了其止血机制,为新型止血医用材料的开发提供重要参考及理论依据。

    太平洋鳕冷冻鱼皮由青岛浩源有限公司提供;戊二醛和十二烷基硫酸钠 (SDS) 购自Sigma有限公司;其他试剂均为分析纯,购自国药化学试剂有限公司。

    市售鳕鱼皮明胶购自青岛东易科技有限公司;市售明胶海绵购自江西祥恩医疗科技发展有限公司;活化部分凝血酶时间 (Activated partial thromboplastin time, APTT)、凝血酶原时间 (Prothrombin time, PT) 和凝血酶时间 (Thrombin time, TT) 检测试剂盒,血栓烷素B2 (TXB2)、血小板第四因子 (PF4) 和P-选择素检测试剂盒购自南京建成生物工程研究所;Wistar大鼠 (210±10) g购自山东鲁抗医学质量检验中心实验动物中心。

    太平洋鳕鱼皮明胶的制备参考Hou等[14]的方法。解冻清洗后的小块鳕鱼皮经0.1 mol·L−1的氢氧化钠 (NaOH) 溶液 (质量体积比1∶25) 和0.1 mol·L−1的盐酸 (HCl) 溶液 (质量体积比1∶25) 浸泡处理后,冲洗至中性。将充分溶胀的鱼皮放入锥形瓶中,在55 ℃的条件下水浴摇床振荡提取4 h。提取液经过滤、旋转蒸发后冻干得到鳕鱼皮明胶。

    采用Laemmli[15]的方法配置7.5%分离胶和5%浓缩胶,电泳采用直流恒压电源,电压100 V,跑至距离胶边缘约1 cm处。将胶置于考马斯亮蓝R-250中染色10~15 min,随后用脱色液脱色过夜。

    将1、5、10、15、20 mg·mL−1的明胶溶液按体积比15∶8与海藻酸钠溶液混合,在混合溶液中加入戊二醛溶液作为交联剂,于4 ℃静置24 h进行交联。真空脱气15~30 min后,溶液倒入不锈钢平板中,于−40 ℃下预冻12 h,冷冻干燥后得到鳕鱼皮明胶复合止血敷料。

    将敷料剪成1.0 cm3的立方块,准确称量记为w0。室温条件下,浸没于蒸馏水中充分吸水,随后用镊子将其轻轻提出水面,放置在滤网中除去表面多余的水,再次精确称量记为w1。3次测量,取平均值。吸水倍数的计算公式为[16]

    $$ \mathrm{吸}\mathrm{水}\mathrm{倍}\mathrm{数}=\frac{{{w}}_{1}-{{w}}_{0}}{{{w}}_{0}} $$ (1)

    式中:w0为海绵干质量 (g);w1为海绵湿质量 (g)。

    在测定吸水率的基础上,将膨胀状态下的海绵进行离心。离心后海绵的质量为w2。持水力计算公式为[17]

    $$ \mathrm{持}\mathrm{水}\mathrm{力}=\frac{{{w}}_{2}-{{w}}_{0}}{{{w}}_{1}-{{w}}_{0}}\times 100{\text{%}} $$ (2)

    式中:w0为海绵的干质量(g);w1为海绵的湿质量(g);w2为排水后海绵的质量 (g)。

    取敷料3~5 mg加入1 mL 碳酸氢钠 (NaHCO3) 溶液和1 mL 三硝基苯磺酸 (TNBS) 溶液 (5 mg·mL−1),40 ℃反应2 h。随后加入3 mL 6 mol·L−1 的HCl溶液,60 ℃反应90 min。溶液经去离子水稀释至5 mL,测定其在345 nm处的吸光值。吸光值与游离氨基数存在以下关系[18]

    $$ \left[{{\rm{NH}}}_{2}\right]=\frac{A\times V}{\epsilon \times l\times m} $$ (3)

    式中:[NH2]为赖氨酸侧链ε-氨基含量;A为吸光度;V为溶液体积(mL);ε=14.600;l为路径长度 (cm);m为样品的质量 (mg)。

    根据以下公式计算交联度 (%):

    $$ \mathrm{交}\mathrm{联}\mathrm{度}=\frac{{\left[{{\rm{NH}}}_{2}\right]}_{{\rm{n}}}-{\left[{{\rm{NH}}}_{2}\right]}_{{\rm{m}}}}{{\left[{{\rm{NH}}}_{2}\right]}_{{\rm{n}}}}\times 100{\text{%}} $$ (4)

    式中:[NH2]为游离氨基质量摩尔浓度 (mol·g−1),下标m和n分别表示交联和无交联样品。

    将制备好的敷料剪成适当大小,两端固定在拉力机上,初始距离为15 mm,测试速度为60 mm·s−1,力度为300 N[19]。每组样品平行测试9次。

    抗张强度 (MPa)的计算公式为:

    $$ \mathrm{抗}\mathrm{张}\mathrm{强}\mathrm{度}=\frac{{F}_{\max}}{S} $$ (5)

    式中:Fmax为样品断裂瞬间的最大张力 (N);S为样品的横截面积 (mm2)。

    断裂伸长率的计算公式为:

    $$ \mathrm{断}\mathrm{裂}\mathrm{伸}\mathrm{长}\mathrm{率}\hspace{0.25em}=\frac{\Delta L}{L}\times 100{\text{%}} $$ (6)

    式中:ΔL为样品断裂时延伸的位移 (mm);L为标距 (mm)。

    大鼠麻醉后,暴露其右侧股动脉并于相同位置处切开,然后迅速将复合止血敷料覆盖在出血部位,施加连续压力,每15 s观察1次。以无菌纱布和市售明胶海绵作为对照,分别记录止血时间。

    麻醉大鼠后,打开腹腔,暴露出肝脏中叶,从肝脏尖端1 cm处进行切割,制备肝脏出血模型。其余操作同上,分别记录止血时间。

    大鼠的尾部用75%乙醇消毒,在尾部的1/3处拉直并切割。其余操作同上,分别记录止血时间。

    APTT、PT、TT分析分别按照相应检测试剂盒的说明书测定。血小板活化因子检测按照TXB2、PF4和P-选择素检测试剂盒的说明书测定。

    参考GB/T 16886.11—2011《医疗器械生物学评价 第11部分:全身毒性试验》进行全身急性毒性试验;参考GB/T 16886.10—2017《医疗器械生物学评价 第10部分:刺激与皮肤致敏试验》进行刺激性试验;参考GB/T 16886.4—2016《医疗器械生物学评价 第4部分:与血液相互作用试验选择》进行溶血试验。

    数据采用单因素方差分析 (One-way ANOVA) 进行处理,并采用独立样本t检验进行分析。数值数据用“平均值±标准差($\overline { X}\pm { \rm {SD}} $)”表示,P<0.05表示差异有统计学意义。

    采用SDS-PAGE对自提鳕鱼皮明胶样品和市售明胶的亚基成分进行了分析。自提鳕鱼皮明胶由3条α链 (α1,α2和α3) 和1条β链构成,与斑点叉尾鮰 (Ictalurus punctatus)和胡鲶 (Clarias gariepinus) 皮中提取的明胶结构类似[20-21],具有典型的Ⅰ型胶原蛋白电泳条带特征 (图1) 。α链分子量在100~135 kD,由于α1和α3分子量十分接近,所以在SDS-PAGE凝胶上形成一个难以区分的条带。自提鳕鱼皮明胶β链的分子量约为245 kD,但在市售明胶的电泳图谱中没有观察到清晰的条带。根据SDS-PAGE结果推断出鳕鱼皮明胶是由Ⅰ型胶原蛋白变性得到的,与市售明胶对比,自提鳕鱼皮明胶样品条带清晰,几乎没有降解,可以作为医用止血敷料的主要材料。

    图  1  鳕鱼皮明胶的SDS-PAGE电泳图
    Fig. 1  SDS-PAGE patterns of Pacific cod skin gelatin

    不同明胶浓度对复合止血敷料理化性能的影响见表1。随着明胶浓度的增加,复合敷料的抗张强度从 (0.010 0±0.003 7) MPa提高至 (0.085 9±0.003 6) MPa,断裂伸长率从 (7.54±0.37)%下降到 (1.36±0.30)%。明胶质量浓度超过10 mg·mL−1时,其抗张强度间无明显差异 (P>0.05),而断裂伸长率则随着明胶浓度的增大而逐渐减小,说明随着明胶浓度的增大,复合止血敷料的脆性和硬度增加,导致延伸性受到较大影响。如果敷料的机械强度较差则不能抗击血液冲击,容易造成二次出血,因此机械强度是衡量敷料质量的一个重要指标。

    表  1  不同明胶浓度对复合止血敷料理化性能的影响
    Table  1  Physical and chemical properties of composite hemostatic sponge with different gelatin concentration
    明胶质量浓度
    Gelatin mass concentration/
    (mg·mL−1)
    抗张强度
    Tensile
    strength/MPa
    断裂伸长率
    Elongation at
    break/%
    吸水倍数
    Water absorption
    ratio
    持水率
    Water retention
    ratio/%
    交联度
    Degree of
    crosslinking/%
    10.010 0±0.003 7a7.54±0.37a25.47±0.14a21.00±0.20a88.90±0.50a
    50.037 2±0.004 2b7.43±1.31a31.82±0.80b28.03±1.03b63.13±0.63b
    100.082 3±0.002 2c6.81±0.21a49.20±2.24c30.49±2.18b56.68±0.33c
    150.085 9±0.003 6c3.49±0.72b38.15±2.24d37.35±2.37c43.36±2.86d
    200.079 5±0.005 6c1.36±0.30c23.89±0.34a37.99±0.30c44.45±0.57d
    注:同列字母不同者表示显著差异 (P<0.05)。 Note: Values with different letters within the same column have significant difference (P<0.05).
    下载: 导出CSV 
    | 显示表格

    因为敷料需要吸收大量的伤口渗出物,防止细菌入侵伤口,因此吸水性和持水性是其理化性质的重要指标。吸水性的变化趋势与抗张强度相同,明胶质量浓度为10 mg·mL−1时,取得最大倍数 (49.20±2.24),高于王运智[22]通过冷冻干燥法和自组装法得到的鱼皮胶原止血海绵的吸水倍数 (33.6和11.9)。明胶海绵的高吸水性使其在应用时可吸附大量血液,从而对渗血表面造成局部压迫,达到止血目的。持水性则随着明胶浓度的增加从 (21.00±0.20)% 升至  (37.99±0.30)%。当明胶质量浓度低于10 mg·mL−1时,敷料微观结构比较松散,吸水后无法保持较为完整的形状。当明胶质量浓度为20 mg·mL−1时,敷料结构过于紧密,孔隙较小,导致吸水性能下降但持水率较高。

    戊二醛可以与明胶中赖氨酸和羟基赖氨酸残基的自由氨基反应形成席夫碱型化合物,还可以与海藻酸钠阴离子结构表面的羟基发生交联反应。交联度随着明胶浓度的增大而减小,明胶质量浓度超过10 mg·mL−1时变化不大 (P>0.05)。这说明在明胶浓度较低时,暴露出的交联位点能够完全被戊二醛利用,随着明胶浓度的增加,所能交联的位点是有限的,所以交联度逐渐趋于稳定。

    综上所述,明胶质量浓度为10 mg·mL−1时,医用复合止血敷料具有良好的物理性能,有利于快速吸收渗出物和血浆,加速凝血过程。

    断尾止血实验过程见图2-a。与自然止血组的 (485±11) s相比,实验组和市售明胶海绵组均能明显缩短断尾止血所用时间(P<0.01),且实验组止血时间要短于市售明胶海绵组(P<0.05)。肝创面模型的实验过程见图2-b,止血指标的结果表明(图2-d),实验组止血时间为 (108±4) s,短于罗非鱼 (Oreochromis mossambicus) 鱼皮胶原海绵 (131 s)[22]。股动脉模型的实验过程见图2-c,切开动脉,立刻有大量血液涌出且压力较大,对止血敷料的要求较高,自然止血组无法在一定时间完成止血。实验组的止血时间为 (64±9) s,明显优于市售明胶海绵组的 (87±9) s (P<0.01),说明实验组对出血量大、压力强的动脉出血有一定的控制作用。

    图  2  复合止血敷料的止血性能评价
    Fig. 2  Hemostatic evaluation in vivo with different model

    结果表明,明胶复合止血敷料的吸水性和多孔结构有利于血液的吸收,同时明胶与海藻酸钠起到了复配协同止血效果[23]。Wang等[24]制备了含海藻酸钙多孔微球的壳聚糖复合海绵,与纯壳聚糖和凝胶海绵相比,可以缩短止血时间、减少失血量。因此,将海藻酸钠共混到明胶中,可促进血小板黏附和各种凝血因子的活化[25]。复合止血敷料在吸收组织渗出液后转变为凝胶形态,可以持续为伤口提供潮湿环境,促进伤口愈合。

    APTT是内源凝血系统较为敏感和最为常用的筛选指标,PT测定是外源性凝血系统的筛选实验,TT是指在血浆中加入标准化的凝血酶后血液凝固的时间。因此,试验采用APTT、PT和TT分析方法探讨明胶复合止血敷料诱导的凝血途径。与阴性对照组相比,实验组在第5、第15、第30和第60 分钟4个不同浸提时间点的APTT均有极显著降低(P<0.01,图3-a),说明内源性凝血系统是明胶复合止血敷料的主要凝血途径。据报道,海藻酸钠的凝胶网络结构可以为血细胞提供支持,吸收大量的血液,激活伤口附近的凝血因子,诱导凝血的内部通路[25]。复合止血敷料和市售明胶海绵对PT无显著影响 (图3-b),表明它不刺激外源性的凝血途径。明胶复合止血敷料和市售明胶海绵在第5、第15和第60分钟时TT显著降低(P<0.01,图3-c),通过缩短凝血接触活化时间实现快速止血。Li等[26]证实,明胶微球能有效诱导红细胞聚集,改善凝血时间。Zhang等[27]发现壳聚糖/硅藻-生物硅复合海绵通过激活内源性凝血途径加速了凝血。因此,明胶复合止血敷料可激活内源性凝血途径和共同凝血途径,缩短血液凝固接触活化时间,活化Ⅷ、Ⅻ、Ⅺ等凝血因子,达到快速止血的目的。

    图  3  不同样品对活化部分凝血酶时间、凝血酶原时间和凝血酶时间血小板活性释放因子血栓烷素B2、血小板第四因子和P-选择素的影响
    Fig. 3  Effect of different samples on APTT, PT, TT and release of platelet active factors (TXB2, PF4 and P-selection)

    对血小板活性因子TXB2、PF4和P-选择素的含量进行测定,可以判定明胶复合止血敷料对血小板黏附、聚集和活化等生理功能的作用,结果见图3-d—3-f。与对照组相比,其他各组均能显著增加血小板活性因子的释放量 (P<0.05),从而快速有效激活血小板。此外,浸提时间的长短并不影响血小板活性因子的释放。

    综上所述,复合止血敷料在两方面表现出有效的止血能力:1) 复合止血敷料具有适当尺寸和分布均匀的三维网络多孔结构,使其具有快速的液体吸收性和良好的机械性能;2) 明胶海藻酸钠复合敷料能够激发内源性凝血途径和共同凝血途径,加速各种凝血因子的释放从而加速凝血[28]

    急性全身毒性试验是生物安全评价的一个重要指标,通常用于评价生物医学材料或其浸出液对人体的影响[29]。对大鼠注射后的日常活动、存活状况和中毒情况进行观察,发现实验组及阴性对照组的大鼠在观察期72 h内,无任何中毒症状发生,而阳性对照组则在注射后随即出现明显的震颤和惊厥反应,活动量和爬行速度明显下降。注射后72 h内各组大鼠的平均体质量见表2,实验组和阴性对照组的大鼠体质量变化均呈稳步增长趋势,说明制备的鳕鱼皮明胶复合止血敷料无急性毒性,符合医用材料全身急性毒性的评价标准。

    表  2  急性全身毒性试验、皮肤刺激试验和溶血试验结果
    Table  2  Results of acute systemic toxicity assay, dermal irritation test and hemolysis ratio
    实验组
    Experimental group
    阴性对照组
    Negative control group
    阳性对照组
    Positive control group
    急性毒性试验 Acute systemic toxicity assay
     第0小时体质量 Body mass at 0th hour/kg 0.167 7±0.008 2 0.174 0±0.004 6 0.185 3±0.005 0
     第24小时体质量 Body mass at 24th hour/kg 0.172 8±0.007 4 0.177 9±0.009 7 0.186 2±0.004 2
     第48小时体质量 Body mass at 48th hour/kg 0.184 3±0.008 3 0.182 9±0.004 9 0.178 5±0.007 4
     第72小时体质量 Body mass at 72nd hour/kg 0.183 9±0.009 8 0.182 7±0.013 7 0.179 8±0.007 5
    皮肤刺激试验 Dermal irritation test
     第24小时红斑总数 Sum of erythema at 24th hour/个 4 0
     第48小时红斑总数 Sum of erythema at 48th hour/个 0 0
     第72小时红斑总数 Sum of erythema at 72nd hour/个 0 0
     原发性刺激指数 Primary irritation index PII 0.22 0
    溶血试验 Hemolysis test
     溶血率 Hemolysis ratio/% 1.51±0.30 0.00 100.00
    下载: 导出CSV 
    | 显示表格

    采用皮肤刺激试验和皮内刺激试验评价明胶医用敷料的刺激效果。相较于b处阳性对照组出现严重的皮肤变红以及组织肿胀等刺激现象,a、d处的实验组浸提液并未引起任何的皮肤刺激问题,注射后72 h内皮肤状态均表现良好,与c处的阴性对照组结果一致,说明鳕鱼皮明胶复合止血敷料对皮肤无潜在刺激作用 (图4)。受损皮肤刺激实验的结果见表2,实验组部分大鼠出现轻微红斑,但24 h后消失。复合止血敷料的原发性刺激指数 (PII) 为0.22,小于0.5,属于极轻微刺激性,制备的明胶复合止血敷料符合生物材料单次接触皮肤试验标准。

    图  4  注射24 h、48 h和72 h后的皮内刺激情况
    Fig. 4  Intradermal stimulation at 24th, 48th and 72nd hour after injection

    溶血率是血液与材料相互作用的体外评价标准[30]。GB/T 16886指出材料与血液接触时红细胞的破裂率不宜过高,即溶血率低于5%的材料才具备良好的血液相容性。本实验测定的鳕鱼皮明胶复合止血敷料的溶血率为1.51%,低于5% (表2),符合国家生物材料评价规定的安全范围。

    生物材料进入临床的必要评价是生物安全性评价,综上所述,鳕鱼皮明胶复合止血敷料符合国家医疗器械相关标准,为其临床应用提供了安全性理论依据。

    本文以鳕鱼皮为原料提取明胶,并通过SDS-PAGE对其亚基结构进行研究。在交联剂作用下将鳕鱼皮明胶与海藻酸钠进行复配,冷冻干燥得到复合止血敷料。该复合敷料具有良好的机械性能、吸水性、持水性和均一的多孔网络结构,符合伤口海绵的要求。明胶复合止血敷料可以明显缩短APTT和TT,激活内源性凝血途径和共同凝血途径,还可以明显增加TXB2、PF4和P-选择素的释放量,通过激活血小板来加速凝血过程。此外,一系列的生物相容性实验表明,复合止血敷料无全身急性毒性,不会引起红斑、水肿等皮肤刺激现象,溶血率为1.51%,符合国家医疗器械标准 (<5%)。因此,鳕鱼皮源明胶复合止血敷料可作为一种新型可吸收医用敷料应用于组织工程之中。

  • 表  1   实验饲料配方

    Table  1   Experimental diet formulation

    成分
    ingredient
    含量/%
    content
    白鱼粉 white fishmeal43
    豆粕 soybean meal20.2
    小麦面筋蛋白 wheat gluten12.5
    玉米淀粉 corn flour10
    酵母粉 yeast powder2
    玉米油 corn oil7
    维生素预混物1 (${\rm V}_{\rm D_3} $-free) vitamin per-mixture2
    矿物盐预混合物2 mineral per-mixture1
    氯化胆碱 (50%) choline chloride0.8
    诱食剂 attractant0.5
    磷酸二氢钙 CaH2PO41
    饲料组成 dietary composition
     粗蛋白 crude protein44.73
     粗脂肪 crude lipid10.01
     粗灰分 ash8.20
     注:1. 维生素预混物 (mg·g−1):肌醇0.30;维生素A 1;维生素E 20;维生素K 2;维生素B1 2.5;核黄素10;维生素B6 2.5;烟酸37.5;泛酸钙25;生物素0.25;叶酸0.75;维生素B12 0.05;纤维素808.25;2. 矿物盐预混物 (mg·g−1):硫酸镁274;柠檬酸铁73.8;碳酰氯2.1;硫酸锰1.1;碘化钾0.34;三氯化铝0.36;硫酸铜0.41;氯化钾207.2;硫酸锌7.04;亚硒酸钠0.03;纤维素433.7  Note: 1. vitamin prmix (mg·g−1): inositol 0.30; VA 1; VE 20; VK 2; ${\rm{V_{\rm{B_1}}}}$ 2.5; riboflavin 10; ${\rm{V_{\rm{B_6}}}}$ 2.5; nicotinic acid 37.5; calcium pantothenate 25; biotin 0.25; folic acid 0.75; ${\rm{V_{\rm{B_{12}}}}}$ 0.05; cellulose 808.25; 2. mineral premix (mg·g−1): MgSO4·7H2O 274; ferric citrate 73.8; CoCl2·6H2O 2.1; MnSO4·H2O 1.1; KI 0.34; AlCl3·6H2O 0.36; CuSO4·5H2O 0.41; KCl 207.2; ZnSO4·7H2O 7.04; Na2SeO3 0.03; cellulose 433.7
    下载: 导出CSV

    表  2   石斑鱼生长性能

    Table  2   Growth performance of grouper n=3;$ \overline {\mathit{\boldsymbol{X }}} \pm {\bf SEM}$

    组别
    group No.
    维生素D3水平/IU·kg−1
    ${\rm{V_{\rm{D_3}}}}$ level
    起始质量/g
    IBW
    末质量/g
    FBW
    增重率/%
    WG
    特定生长速率
    SGR
    饲料效率/%
    FE
    成活率/%
    survival
    171018.27±0.2355.76±2.39a205.2±13.4a1.99±0.08a76.72±4.23a97±3
    21 32018.33±0.1555.95±3.56a205.3±21.9a1.99±0.13a87.03±5.75b100
    32 25018.54±0.1067.74±1.08d265.3±4.68c2.31±0.02c100.12±4.83c100
    43 87018.36±0.0162.20±1.63bc238.8±8.68b2.18±0.05b92.17±6.41bc100
    57 56018.26±0.0958.94±0.80ab222.9±5.93ab2.09±0.03ab83.66±6.48ab98±2
    683 00018.47±0.1862.62±0.40c239.6±0.473b2.19±0.02b91.15±1.54bc99±2
     注:在每一列数据中不用的字母脚本表示数据之间有显著性差异 (P<0.05);下表同此
     Note: Values in the same line with different letters were significantly different (P<0.05); the same case in the following tables.
    下载: 导出CSV

    表  3   石斑鱼形态数据

    Table  3   Morphometry indices of grouper n=12;$ \overline {\mathit{\boldsymbol{X }}} \pm {\bf SEM}$

    组别
    group No.
    维生素D3水平/IU·kg−1
    ${\rm{V_{\rm{D_3}}}}$ level
    肥满度
    CF
    肝体比
    HSI
    肠系膜系数
    IPF
    脏体比
    VSI
    17102.97±0.191.85±0.213.72±0.41c9.05±0.26b
    21 3202.95±0.081.96±0.183.25±0.34bc8.93±0.89b
    32 2502.86±0.061.93±0.252.96±0.38ab8.81±0.45b
    43 8702.86±0.131.93±0.122.90±0.24ab8.50±0.54ab
    57 5602.79±0.051.60±0.392.74±0.41ab7.58±0.51a
    68 3002.84±0.252.09±0.362.42±0.28a8.02±0.71ab
    下载: 导出CSV

    表  4   石斑鱼体组成

    Table  4   Body composition of grouper %,n=3;$ \overline {\mathit{\boldsymbol{X }}} \pm {\bf SEM}$

    项目
    item
    组别 group No.
    123456
    全鱼 whole body
     粗蛋白 crude protein58.89±1.52ab58.81±1.33ab57.03±2.56a58.74±0.83ab56.66±1.52a57.72±1.85b
     粗脂肪 crude lipid23.5±0.7124.2±0.1725.7±1.526.0±1.7124.8±0.8723.9±2.50
     水分 moisture68.08±0.2467.89±0.5768.47±0.7668.17±0.5167.00±1.1768.20±1.13
     灰分 ash17.5±0.2517.1±0.7216.8±0.2817.2±0.5716.7±0.6317.2±0.34
    肌肉 muscle
     粗蛋白 crude protein86.83±1.62a86.81±0.86a86.82±1.02a88.48±1.18a83.82±2.41b82.40±1.44b
     粗脂肪 crude lipid9.1±1.47.9±1.28.5±0.98.4±0.810.2±1.811.2±2.0
     水分 moisture73.10±0.4273.12±0.2073.90±0.3573.09±0.1373.28±0.3374.19±0.20
     灰分 ash7.7±0.187.7±0.37.7±0.177.8±1.037.4±0.47.5±0.7
    下载: 导出CSV

    表  5   石斑鱼骨骼中钙、磷含量

    Table  5   Calcium and Phosphorus contents in groupers bones %,n=3;$ \overline {\mathit{\boldsymbol{X }}} \pm {\bf SEM}$

    组别
    group No.
    维生素D3测量值/IU·kg−1
    ${\rm{V_{\rm{D_3}}}}$ measurement
    脊椎中钙含量/%
    calcium content in spine
    脊椎中磷含量/%
    phosphorus content in spine
    171018.2±0.38a8.8±0.16a
    21 32020.2±0.33b10.2±0.43ab
    32 25021.1±0.29c10.3±0.17ab
    43 87021.1±0.05c10.1±1.82ab
    57 56021.0±0.48c9.6±0.26ab
    683 00021.1±0.58c10.5±0.24b
    下载: 导出CSV

    表  6   石斑鱼肝脏碱性磷酸酶活性

    Table  6   AKP activity in liver of grouper n=3;$ \overline {\mathit{\boldsymbol{X }}} \pm {\bf SEM}$

    组别
    group No.
    维生素D3/IU·kg−1
    ${\rm{V_{\rm{D_3}}}}$
    碱性磷酸酶活性/U·g−1
    AKP enzyme activity
    171016.43±2.30
    21 32023.13±3.20
    32 25019.13±4.05
    43 87017.63±3.12
    57 56020.29±3.19
    683 00021.52±3.18
    下载: 导出CSV
  • [1]

    LU Z, CHEN T C, ZHANG A, et al. An evaluation of the vitamin D3 content in fish: is the vitamin D content adequate to satisfy the dietary requirement for vitamin D?[J]. J Steroid Biochem Mol Biol, 2007, 103(3/4/5, SI): 642-644.

    [2]

    PRABHU A V, LUU W, SHARPE L J, et al. Cholesterol-mediated degradation of 7-dehydrocholesterol reductase switches the balance from cholesterol to vitamin D synthesis[J]. FASEB J, 2016, 30(1): 8363-8373.

    [3]

    BIKLE D D. Vitamin D metabolism, mechanism of action, and clinical applications[J]. Chem Biol, 2014, 21(3): 319-329. doi: 10.1016/j.chembiol.2013.12.016

    [4] 许友卿, 刘永强, 刘阳, 等. 维生素D3对鱼类的影响及其机理研究进展[J]. 饲料工业, 2014, 35(16): 26-30.
    [5]

    LOVELL R T, LI Y P. Essentiality of vitamin D in diets of channel catfish (Ictalurus punctatus)[J]. Trans Am Fish Soc, 1978, 107(6): 809-811. doi: 10.1577/1548-8659(1978)107<809:EOVDID>2.0.CO;2

    [6]

    ANDREWS J W, MURAI T, CAMPBELL C. Effects of dietary calcium and phosphorus on growth, food conversion, bone ash and hematocrit levels of catfish[J]. J Nutr, 1973, 103(5): 766-771. doi: 10.1093/jn/103.5.766

    [7]

    BROWN P B, ROBINSON E H. Vitamin D studies with channel catfish (Ictalurus punctatus) reared in calcium-free water[J]. Comp Biochem Physiol, 1992, 103(1): 213-219. doi: 10.1016/0300-9629(92)90265-R

    [8]

    SWARUP K, NORMAN A W, SRIVASTAV A K, et al. Dose-dependent vITAMIN-D3 and 1,25-dihydroxyvitamin-D3-induced hypercalcemia and hyperphosphatemia in male catfish Clarias batrachus[J]. Comp Biochem Physiol B, 1984, 78(3): 553-555. doi: 10.1016/0305-0491(84)90096-8

    [9]

    SRIVASTAV A K, SRIVASTAV S P. Corpuscles of stannius of Clarias batrachus in response to 1,25 dihydroxyvitamin D3 administration[J]. Zool Sci, 1988, 5(1): 197-200.

    [10]

    FENWICK J C, SMITH K, SMITH J, et al. Effect of various vitamin D analogs on plasma calcium and phosphorus and intestinal calcium absorption in fed and unfed American eels, Anguilla rostrata[J]. Gen Comp Endocrinol, 1984, 55(3): 398-404. doi: 10.1016/0016-6480(84)90010-8

    [11]

    SWARUP K, DAS V K, NORMAN A W. Dose-dependent vitamin D3 and 1,25-dihydroxyvitamin D3-induced hypercalcemia and hyperphosphatemia in male cyprinoid Cyprinus carpio[J]. Comp Biochem Physiol, 1991, 100(2): 445-447. doi: 10.1016/0300-9629(91)90497-Z

    [12]

    HILTON J W, FERGUSON H W. Effect of excess vitamin D3 on calcium metabolism in rainbow trout Salmo gairdneri Richardson[J]. J Fish Biol, 2010, 21(4): 373-379.

    [13]

    HORVLI O, LIE O, AKSNES L. Tissue distribution of vitamin D3 in Atlantic salmon Salmo salar: effect of dietary level[J]. Aquacult Nutr, 2015, 4(2): 127-131.

    [14]

    ANDREWS J W, MURAI T, PAGE J W. Effects of dietary cholecalciferol and ergocalciferol on catfish[J]. Aquaculture, 1980, 19(1): 49-54. doi: 10.1016/0044-8486(80)90006-X

    [15] 谭正江, 李宴兵, 戴炳龙, 等. 饲料中添加维生素D3对草鱼幼鱼生长性能的影响[J]. 北京农业, 2015(24): 157-158. doi: 10.3969/j.issn.1000-6966.2015.24.094
    [16]

    BARNETT B J, CHO C Y, SLINGER S J. Relative biopotency of dietary ergocalciferol and cholecalciferol and the role of and requirement for vitamin-D in rainbow-trout (Salmo gairdneri)[J]. J Nutr, 1982, 112(11): 2011-2019.

    [17] 段鸣鸣, 王春芳, 谢从新. 维生素D3对黄颡鱼幼鱼抗氧化能力及免疫功能的影响[J]. 淡水渔业, 2014, 34(3): 80-84. doi: 10.3969/j.issn.1000-6907.2014.03.014
    [18]

    SHIAU S Y, SUEN G S. The dietary requirement of juvenile grass shrimp (Penaeus monodon) for niacin[J]. J Nutr, 1994, 124(12): 2445. doi: 10.1093/jn/124.12.2445

    [19]

    WEN M, LIU Y J, TIAN L X, et al. Vitamin D3 requirement in practical diet of white shrimp, Litopenaeus vannamei, at low salinity rearing conditions[J]. J World Aquacult Soc, 2015, 46(5): 531-538. doi: 10.1111/jwas.2015.46.issue-5

    [20] 陈大玮, 邓利, 刘志刚, 等. 斜带石斑鱼抗菌肽hepcidin基因克隆及其成熟肽的原核融合表达[J]. 南方水产科学, 2011, 7(1): 1-7. doi: 10.3969/j.issn.2095-0780.2011.01.001
    [21]

    YE C X, LIU Y J, TIAN L X, et al. Effect of dietary calcium and phosphorus on growth, feed efficiency, mineral content and body composition of juvenile grouper, Epinephelus coioides[J]. Aquaculture, 2006, 255(1/2/3/4): 263-271.

    [22]

    LUO Z, LIU Y J, MAI K S, et al. Effect of dietary lipid level on growth performance, feed utilization and body composition of grouper Epinephelus coioides juveniles fed isonitrogenous diets in floating netcages[J]. Aquacult Int, 2005, 13(3): 257-269. doi: 10.1007/s10499-004-2478-6

    [23] 赵书燕, 林黑着, 黄忠, 等. 不同蛋白质水平下添加小肽对石斑鱼生长、消化酶、血清生化和抗氧化能力的影响[J]. 南方水产科学, 2016, 12(3): 15-23. doi: 10.3969/j.issn.2095-0780.2016.03.003
    [24] 丁明岩. VA、VD对两种规格斜带石斑鱼生长、饲料利用、脂肪代谢及FAS、HL mRNA表达量的影响研究[D]. 湛江: 广东海洋大学, 2015: 18-38.
    [25]

    WILLIAM H, GEORGE W L. Offical methods of analysis of the association of offical analytical hemists[Z]. 18th ed. Arlington, VA, USA: Association of Official Analytical Chemists, 2005.

    [26]

    WANG L S, XU H, WANG Y, et al. Effects of the supplementation of vitamin D3 on the growth and vitamin D metabolites in juvenile Siberian sturgeon (Acipenser baerii)[J]. Fish Physiol Biochem, 2017, 43(3): 901-909. doi: 10.1007/s10695-017-0344-5

    [27] 周歧存, 麦康森. 皱纹盘鲍维生素D营养需要的研究[J]. 水产学报, 2004, 28(2): 155-160.
    [28]

    BARNETT B J, CHO C Y, SLINGER S J. The essentiality of cholecalciferol in the diets of rainbow trout (Salmo gairdneri)[J]. Comp Biochem Physiol, 1979, 63(2): 291-297. doi: 10.1016/0300-9629(79)90162-2

    [29]

    POSTON H A. Effects of massive doses of vitamin D3 on fingerling brook trout[J]. Fish Res Bull, 1969, 32: 48-50.

    [30]

    MIAO L H, XIE J, GE X P, et al. Chronic stress effects of high doses of vitamin D3 on Megalobrama amblycephala[J]. Fish Shellfish Immunol, 2015, 47(1): 205-213. doi: 10.1016/j.fsi.2015.09.012

    [31]

    ZHU Y, DING Q L, CHAN J, et al. The effects of concurrent supplementation of dietary phytase, citric acid and vitamin D3 on growth and mineral utilization in juvenile yellow catfish Pelteobagrus fulvidraco[J]. Aquaculture, 2015, 436: 143-150. doi: 10.1016/j.aquaculture.2014.11.006

  • 期刊类型引用(2)

    1. 孔令霞,桑琳. 化学交联法制备的妇科专用敷料抗菌止血性能研究. 粘接. 2024(04): 105-108 . 百度学术
    2. 沈家成,秦政,周祖浩,许瑞波,刘强,李正夫,李姣姣. 鱼皮中胶原蛋白的药用价值研究进展. 食品与发酵工业. 2023(23): 347-354 . 百度学术

    其他类型引用(2)

推荐阅读
基于reca基因的qpcr与raa-lfd检测鳗败血假单胞菌方法的建立与应用
王一霖 et al., 南方水产科学, 2025
基于底栖生物完整性指数 (b-ibi) 的仁怀市主要河流健康评价
何浩宇 et al., 南方水产科学, 2025
Lh原油和0# 柴油乳化液对凡纳滨对虾肝胰腺抗氧化酶活性及相关功能基因表达的影响
沈楚焰 et al., 南方水产科学, 2025
牡蛎养殖对大鹏澳环境因子与浮游菌落扰动研究
佟飞 et al., 南方水产科学, 2024
凡纳滨对虾白便综合征发生与环境因子、机体免疫酶活性和微生物的相关性
王印庚 et al., 水产学报, 2024
慢性皮肤溃疡的细胞异质性的单细胞转录组测序及临床意义分析
王楚望 et al., 中国普通外科杂志, 2025
Systemic lupus erythematosus
Hoi, Alberta et al., LANCET, 2024
Fusarium head blight on wheat: biology, modern detection and diagnosis and integrated disease management
Alisaac, Elias et al., TOXINS, 2023
Clinical features, treatment, and prognosis of zoledronic acid-induced uveitis
EYE, 2025
Morphological and phylogenetical analyses of pathogenic hypomyces perniciosus isolates from agaricus bisporus causing wet bubble disease in china
PHYTOTAXA, 2021
Powered by
表(6)
计量
  • 文章访问数:  5306
  • HTML全文浏览量:  2190
  • PDF下载量:  46
  • 被引次数: 4
出版历程
  • 收稿日期:  2019-01-30
  • 修回日期:  2019-04-09
  • 录用日期:  2019-04-18
  • 网络出版日期:  2019-04-24
  • 刊出日期:  2019-08-04

目录

/

返回文章
返回