Study on selection and spatial distribution of two kinds of caverns for Procambarus clarkii
-
摘要:
文章通过观察人工养殖环境下,克氏原螯虾 (Procambarus clarkiaii) 在堆积的竹筒和PVC管2种类型洞穴中的分布情况,分析比较了克氏原螯虾对2种洞穴的选择适应性和空间分布占比规律,不同洞穴内外的雌雄比例分布规律,及单一洞穴内虾的数量分布及雌雄比例规律。实验结果表明,克氏原螯虾喜栖息躲藏于洞穴中 (A组83.47%,B组89.87%),尤其喜栖息躲藏于竹筒洞穴中[B组竹筒 (71.80%)和PVC管 (11.63%)]。垂直摆放洞穴的上下位置会影响克氏原螯虾分布,克氏原螯虾更喜欢在中下层和下层洞穴中躲藏,其分布数量由下而上依次降低。克氏原螯虾具有一雄多雌同居一穴的现象,不同垂直空间雌雄分布比例没有明显规律,但雌雄比最高分别出现在A组的最下层 (3.43∶1) 和B组竹筒洞穴的最上层 (2.86∶1)。
Abstract:We investigated the selection adaptability and spatial distribution ratio, distribution of sex ratio inside or outside different caves, as well as the quantity and sex ratio in single cave of Procambarus clarkii in two kinds of caves (staked bamboo tube and PVC tube) during artificial breeding. The results show that P. clarkii tended to hide in caves (Group A: 83.47%, Group B: 89.87%), especially in bamboo cave [Group B: bamboo tube (71.80%) and PVC tube (11.63%)]. Vertical placement of the cave will affect the distribution of P. clarkii which prefered to hide in the caves at middle and lower layers as well at lower layer, and the quantity reduced from bottom to top. P.clarkii had a phenomenon of polygyny cohabitation, but the laws of male and female distribution in different vertical spaces were not obvious, with the highest ratio of male and female in the lowerest layer of Group A (3.43:1) and the uppermost layer of Group B bamboo cave (2.86:1).
-
Keywords:
- Procambarus clarkii /
- bamboo tube /
- PVC tube /
- cave selection /
- distribution rule
-
浮游动物既是初级消费者又是次级消费者,通过对浮游植物和微型浮游动物的摄食,将其固定的能量和物质向高营养层次传递,是联系微食物网和经典食物链的中间环节[1]。生物体氮稳定同位素技术广泛应用于生态系统的研究中。在食物链传递中,氮稳定同位素(15N)通常随着营养等级升高而富集,一般被用于研究生物之间的营养级关系,是一种方便、有效的研究浮游食物网结构的方法[2]。国外学者采用分粒径法对浮游动物稳定同位素展开了研究[3-5],而中国使用稳定同位素技术开展浮游食物网粒级结构的研究较少见。
蔡德陵等[6]研究渤海分粒级浮游动物的碳稳定同位素时发现中型浮游生物的碳稳定同位素随粒径的增大而增加;金鑫[7]对黄东海不同粒级浮游动物的稳定同位素研究发现浮游动物的稳定同位素存在季节差异,稳定同位素随粒径增大而增加且呈线性相关;柯志新等[8]以浮游生物的生物量与氮稳定同位素所构建的大亚湾营养级谱可比较不同区域生态系统结构的稳定性;刘华雪等[9-10]发现南海南部不同粒级浮游动物碳和氮稳定同位素值存在季节差异。
南海是中国最大的边缘海,海底地形自西北向东南方向下倾,西面为宽广的大陆架,并有珠江径流的输入,东面的吕宋海峡则是南海与大洋及邻近边缘海连接通道中的唯一深水通道,物理过程复杂。关于南海北部浮游动物的研究已取得一定进展,但研究区域多集中在珠江河口、海湾以及近岸海域[11-13],研究内容多为浮游动物的某一类群[1, 14]。虽然也有对南海北部大尺度海区浮游动物群落的调查[15],但主要还是对浮游动物优势种和多样性的研究,而对于南海北部分粒级浮游动物氮稳定同位素的研究尚未见报道。笔者根据2015年夏季和冬季采集的南海北部浮游动物样本,探讨了不同粒级浮游动物生物量和氮稳定同位素的时空分布特征,以为南海的生态系统结构研究提供基础材料。
1. 材料与方法
在2015年夏季(7月27日-8月16日)和冬季(12月3日-12月23日)对南海北部海域(112°E~120°E,18.5°N~21.5°N)进行大面调查,采样站位见图 1。由于冬季采样期间受到天气的影响,冬季采样站位与夏季有所不同。夏季有10个采样站位,冬季有8个站位,共同站位5个。其中C1站水深小于200 m,其余站位水深均超过200 m。2个航次均使用中国水产科学研究院南海水产研究所“南锋”号调查船。
1.1 样品采集与处理
浮游动物粒级的划分参考ROLFF[16]、柯志新等[8]和刘华雪等[9]的方法,将浮游生物粒级梯度分为180~380 μm(小型)、380~500 μm(中型)和>500 μm(大型)。使用Ⅱ型浮游生物网(孔径160 μm)自水深200 m处垂直拖至表层(水深小于200 m时,从底层垂直拖至表层),将采集到的浮游动物样品置于盛有已过滤海水的水桶中,阴凉处排空2 h,然后将排空后的样品依次用500 μm、380 μm和180 μm的筛网过滤分离,用蒸馏水反洗之后用GF/F滤膜收集(用于样品富集的GF/F膜预先在马弗炉中450 ℃灼烧4 h以去除可能的有机质影响),滤膜用锡纸包裹后置于-20 ℃冰箱保存。
实验室中将载有浮游动物样品的滤膜于60 ℃下烘干至恒质量。将烘干后的样品研磨成均匀粉末,过筛后放入干燥器中保存。分析仪器为Finnigan delta plus和Flash EA1112联用仪,为了保证测试结果的准确性,每测试10个样品后加测1个标准样,并且对个别样品进行2~3次的复测。
1.2 数据分析
氮稳定同位素δ15N值计算如下[17]:
$ \delta =({{R}_{\rm{sample}}}-{{R}_{\rm{standard}}})/{{R}_{\rm{standard}}}\times 1\rm{ }000 $
式中δ为氮同位素值;Rsample为所测样品的同位素比值(15N/14N);Rstandard为国际上通用的标准物(氮同位素标准物采用大气氮)的重轻同位素丰度之比。使用SPSS 19.0软件进行统计学分析。
2. 结果与分析
2.1 环境参数
南海北部海水物理性质的时空差异非常明显(图 2)。夏季5 m层海水平均温度为29.71 ℃,显著高于冬季(25.31 ℃,P < 0.01)。而夏季200 m层水温的平均值为14.10 ℃,低于冬季(15.36 ℃,P < 0.05),说明夏季水温随深度增加变化显著。冬季5 m和50 m层平均水温分别为25.31 ℃和25.00 ℃,变化不大,表层高温海水出现明显的下沉现象。海水盐度在深度较浅的水层出现明显的季节变化,5 m层和50 m层海水盐度夏季的平均值为33.63和34.32,低于冬季5 m层的34.49(P < 0.01)和50 m层的34.60(P < 0.05),其余水层季节变化不明显。冬季海水盐度随深度增加变化不明显;而夏季表层海水盐度低于盐度稳定的深层海水。
图 2 水温、盐度和叶绿素a的季节和水层比较a.夏季;b.冬季;冬季200 m水层叶绿素a平均质量浓度 < 0.01μg·L-1(未列出)Fig. 2 Seasonal and vertical variation of temperature, salinity and concentration of chlorophyll-aa. summer; b. winter; the average concentration of chlorophyll-a at the depth of 200 meters in winter was below 0.01 μg·L-1 (not shown).夏季5 m层叶绿素a质量浓度的平均值为0.11 μg·L-1,低于冬季(0.34 μg·L-1,P < 0.01);夏季75 m层叶绿素a质量浓度的平均值为0.33 μg·L-1,却高于冬季的0.18 μg·L-1(P < 0.05)。叶绿素a质量浓度存在明显的垂直深度变化,夏季高值多出现在50 m和75 m水层,冬季多出现在5 m和50 m水层。
2.2 南海北部浮游动物生物量
南海北部浮游动物生物量的分布存在明显的空间差异(图 3)。夏季浮游动物生物量的最高值出现在位于珠江口的C1站(13.62 mg·m-3);其次是东沙群岛附近的C8站(7.54 mg·m-3)和C6站(7.09 mg·m-3);台湾海峡南部C5站的生物量也高(6.57 mg·m-3),其他开阔深海区站位的浮游动物生物量均较低(小于5.1 mg·m-3)。冬季浮游动物生物量的分布特征与夏季相同,高值也出现在珠江口(C1站9.01 mg·m-3)和台湾海峡南部海域(C5站6.81 mg·m-3)。
从粒径结构上看,浮游动物生物量存在粒级和空间差异。夏季大型浮游动物生物量比例最高(49.80%,图 4),高于小型(29.09%)和中型浮游动物(21.11%);小型浮游动物高值多出现在开阔的深海区,中型浮游动物是在陆架区和开阔的深海区,而大型浮游动物的高值则主要出现在东沙群岛和台湾海峡南部。冬季大型浮游动物生物量(54.38%)也高于小型和中型浮游动物;小型和中型浮游动物生物量百分含量分布特征与夏季相同,高值也多出现在远海区,大型浮游动物则在台湾海峡南部海域的比例最高。
2.3 南海北部各粒级浮游生物的氮稳定同位素
浮游动物δ15N值在夏季(P < 0.05)和冬季(P < 0.01)都存在显著的粒级差异(图 5)。夏季小型浮游动物δ15N平均值为5.34±1.10,显著低于大型浮游动物δ15N平均值(6.58±0.99);夏季中型浮游动物的δ15N平均值为5.75±1.16,其中大部分站位的δ15N值低于大型浮游动物。冬季大型浮游动物δ15N平均值为6.48±1.53,显著高于中型浮游动物(5.97±0.52)和小型浮游动物(4.64±0.96)。
浮游动物氮稳定同位素出现明显的空间分布变化。夏季各粒级浮游动物δ15N值的空间分布差异相似,高值区都出现在珠江口(C1站)、东沙群岛附近(C6和C8站)和台湾海峡南部海域(C5站),而开阔深海区站位的稳定同位素值均最低。冬季各粒级浮游动物δ15N值的空间差异与夏季相似,高值区大多也出现在珠江口(C1站)、东沙群岛附近(C7和C8站)和台湾海峡南部海域(C5和C11站),尤其是大型浮游动物δ15N值的分布,其中最大值出现于C11站,为7.99。
对共同站位分析可知,浮游动物的氮稳定同位素出现显著的季节变化(P < 0.05),夏季δ15N平均值(6.53±1.02)高于冬季(5.54±1.09)。夏季小型浮游动物δ15N平均值为6.25±0.73,极显著高于冬季(4.45±0.74,P < 0.01),夏季δ15N最高值出现于C1站(7.07)。共同站位各粒级浮游动物δ15N值也出现了明显的空间变化,高值也都分布在珠江口和台湾海峡南部海域。
对浮游动物生物量和δ15N值进行相关性分析可知,小型浮游动物δ15N值与小型浮游动物生物量(P < 0.01)、中型浮游动物生物量(P < 0.05)和浮游动物总体生物量(P < 0.01)都存在明显的相关性,中型浮游动物δ15N值与小型浮游动物生物量(P < 0.05)和浮游动物总体生物量(P < 0.01)也有明显的相关性,大型浮游动物的δ15N值则与生物量的关系不明显。
3. 讨论
受季风、珠江冲淡水、台湾海峡南部上升流和黑潮暖流等水文动力的影响,南海北部海水温度和盐度季节变化明显,海水营养盐也具有明显的空间分布特征[18]。海水营养盐浓度和结构的变化会影响浮游植物的细胞丰度和群落结构[19-20],进而影响到浮游动物的生物量。杜明敏等[21]对中国近海浮游动物的研究就指出水温和盐度是影响浮游动物群落结构最重要的2个环境因子。已有研究表明南海北部浮游植物的细胞丰度通常近岸高于外海,高值区多出现于近岸、珠江口和台湾海峡南部海域[22-23],同时浮游植物生物量的高值也存在垂直变化,浅水区多出现在10 m处,深海区多在次表层(50~75 m)[24]。2015年夏季和冬季该研究海区叶绿素a质量浓度也能反映这一变化特征。文章结果显示南海北部夏季和冬季浮游动物生物量的高值区也都出现在珠江口和台湾海峡南部上升流海域,这与浮游植物生物量的分布特征相似。这说明作为浮游植物主要消费者的浮游动物,它的生物量会受到浮游植物群落结构的影响。
南海北部浮游动物的δ15N值与南沙海域、黄东海和波罗的海相差不大,但明显高于里昂湾,这可能与里昂湾所处的地理位置和复杂的水文条件有关[27-28]。里昂湾位于地中海西北部,而地中海是最大的陆间海,蒸发作用强,海水盐度可高达39,海洋生物也较其他海区稀少。还有研究指出浮游动物夏季δ15N值要高于冬季[5, 29],而表 1中分析的是冬季里昂湾浮游动物稳定同位素特征,这可能也是其δ15N值低的原因之一。
南海北部浮游动物δ15N值与其生物量相关性明显,而浮游动物δ15N值的高值也多分布于珠江口、台湾海峡南部,这说明浮游动物生物量对其氮稳定同位素的空间分布有着明显的影响,同样的结果也出现于南海南部[9]。邻近珠江口站位的各粒级浮游动物δ15N值在夏季和冬季均较高(一些粒级浮游动物δ15N出现最高值,如夏季大型浮游动物的7.99和冬季中型浮游动物的6.53),可能该区域受珠江径流影响,营养盐得到大量补充,刺激了浮游生物的生长[26]。台湾海峡南部海域浮游动物δ15N值也较高,这可能与台湾海峡南部上升流带来底层丰富的营养盐改变了该海区浮游植物的丰度和群落结构有关[30]。PETURSDOTTIR等[31]对北大西洋中脊锋面飞马哲水蚤(Calanus finmarchicus)氮稳定同位素研究也发现浮游植物群落的变化可能是导致δ15N值的区域差异的主要原因。
表 1 不同海域分粒级浮游动物氮稳定同位素Table 1 Different survey areas of stable nitrogen isotope of size-fractionated zooplankton粒径范围/μm
size fraction时间
timeδ15N值
stable nitrogen isotope调查海域
survey area100~200 1994-1995年 2.6~7.7 波罗的海[16] 200~500 1994-1995年 3.0~10.5 波罗的海[16] 500~1 500 1994-1995年 6.4~9.2 波罗的海[16] >160 2002-2003年 6.14±0.51 渤海湾[25] 100~200 2009-2010年 4.71±1.77(秋) 4.24±1.86(春) 黄东海[7] 200~500 2009-2010年 5.25±1.88(秋) 5.39±1.51(春) 黄东海[7] 500~1 000 2009-2010年 7.05±1.08(秋) 6.23±1.04(春) 黄东海[7] 1 000~2 000 2009-2010年 7.48±1.23(秋) 6.32±0.98(春) 黄东海[7] 80~200 2011年1月 2.49±0.59 里昂湾[26] 200~300 2011年1月 2.60±0.69 里昂湾[-26] 300~500 2011年1月 2.75±0.74 里昂湾[26] 500~1 000 2011年1月 3.45±0.92 里昂湾[26] 1 000~2 000 2011年1月 3.78±1.09 里昂湾[26] >2 000 2011年1月 1.18±3.13 里昂湾[26] 180~380 2013年4-7月 3.79~6.76(春) 2.53~6.51(夏) 南沙海域[9] 380~500 2013年4-7月 5.15~9.25(春) 3.12~6.79(夏) 南沙海域[9] < 500 2013年4-7月 4.94~8.18(春) 4.87~10.25(夏) 南沙海域[9] 180~380 2015年7-12月 5.34±1.10(夏) 4.64±0.96(冬) 南海北部 380~500 2015年7-12月 5.75±1.16(夏) 5.97±0.52(冬) 南海北部 < 500 2015年7-12月 6.58±0.99(夏) 6.48±1.53(冬) 南海北部 在海洋浮游食物网中,体型较大的浮游生物会摄食体型较小的浮游生物,存在以个体大小为基础的消费关系[16]。营养级较高的生物其δ15N值也较高。LOICK等[32]研究越南上升流海区浮游生物特征时就指出体型更大的浮游生物会具有更大的δ15N值和更高的营养位置。此结果也显示南海北部夏季和冬季浮游动物δ15N值均有显著的粒径差异,随粒径增大而增加,许多研究也都指出浮游动物δ15N值具有随体型变大而增加的规律[7-9, 26, 33]。
浮游动物δ15N值有季节变化,夏季δ15N值较高,而冬季较低[5, 26, 29]。与之相符,此研究结果也显示南海北部夏季浮游动物δ15N值高于冬季。季节改变会引起浮游植物群落结构和其δ15N值出现变化,进而可能影响浮游动物的δ15N值。马威等[23]研究指出南海北部夏季和冬季浮游植物优势种和平均细胞丰度均有季节差异。同样,季节的改变也会引起浮游动物种群结构的变化,可能影响其δ15N值。FANELLI等[34]研究大陆坡的食物网结构时发现,肉食性浮游动物的δ15N值要高于滤食性浮游动物,柯志新等[8]也认为大亚湾浮游动物δ15N值差异可能是由于浮游动物种类的差异造成的。以后需结合各粒级浮游动物的主要类群来进一步研究。
4. 结论
南海北部浮游动物生物量和氮稳定同位素空间分布差异明显,高值区多分布在珠江河口、东沙群岛和台湾海峡南部海域。浮游动物氮稳定同位素夏季δ15N平均值高于冬季,其中小型浮游动物δ15N平均值显著高于冬季(P < 0.01)。各粒级浮游动物氮稳定同位素随粒径增大而增加。相关性分析显示,小型和中型浮游动物氮稳定同位素与浮游动物生物量有明显的相关性,大型浮游动物氮稳定同位素与浮游动物生物量的相关性则不明显。
-
表 1 克氏原螯虾在洞穴内的分布占比
Table 1 Proportion of distribution of P. clarkii inside cave
% 层次
layerA组
Group AB组 Group B 竹筒型洞穴
bamboo cavePVC管型洞穴
PVC cave上层 upper 7.87±1.10e 4.70±0.46d 1.02±0.08c 中上层
middle and upper9.53±0.29de 8.27±0.86c 0.00±0.00d 中层 middle 17.57±0.64c 9.13±1.50c 0.00±0.00d 中下层
middle and lower33.73±1.40a 23.07±2.13b 2.00±0.09b 下层 lower 21.17±0.58b 26.63±2.87a 8.61±0.77a 注:同列数据中上标不同字母者之间差异显著 (P<0.05);下表同此 Note: Values within the same row with different superscript letters are significantly different (P<0.05). The same case in the following tables. 表 2 克氏原螯虾在不同空间的雌雄比例分布
Table 2 Proportion of ratio of male and female of P. clarkii in different spaces
层次
layerA组
Group AB组 Group B 竹筒型洞穴
bamboo cavePVC管型洞穴
PVC cave上层 upper 1.81±0.20c 2.86±0.13a 1.08±0.14b 中上层
middle and upper0.78±0.12d 1.73±0.06b 0.00±0.00c 中层 middle 2.25±0.14b 1.11±0.10c 0.00±0.00c 中下层
middle and lower1.64±0.20c 1.55±0.82b 1.25±0.25b 下层 lower 3.43±0.01a 1.73±0.10b 1.17±0.14b 洞穴外
outside cave1.62±0.06c 2.76±0.26a 2.76±0.26a 表 3 克氏原螯虾在洞穴内虾数量占比比较
Table 3 Comparison of proportion of number of P. clarkii in cave
% 尾数
numberA组
Group AB组 Group B 竹筒型洞穴
bamboo cavePVC管型洞穴
PVC cave0 16.65±1.02c 25.54±0.87b 61.00±3.61a 1 40.52±1.07a 36.64±0.94a 36.00±4.00b 2 19.79±0.45b 20.58±1.03c 3.00±1.00c 3 10.75±1.50d 6.63±0.74d 0.00±0.00c 4 5.36±1.10e 6.36±0.51d 0.00±0.00c 5~7 6.94±0.47e 4.24±0.74e 0.00±0.00c -
[1] 于沛民, 于航盛, 王丹, 等. 中国渔业统计年鉴[M].北京:中国农业出版社, 2018: 21-38. [2] 朱杰, 徐维娜, 张微微, 等. 克氏原螯虾的适宜蛋氨酸需求量[J]. 中国水产科学, 2014, 21(2): 300-309. [3] DAI L S, CHU S H, YU X M, et al. A role of cathepsin L gene in innate immune response of crayfish (Procambarus clarkii)[J]. Fish Shellfish Immunol, 2017, 71: 246-254. doi: 10.1016/j.fsi.2017.10.021
[4] LIU Q N, XIN Z Z, LIU Y, et al. A ferritin gene from Procambarus clarkii, molecular characterization and in response to heavy metal stress and lipopolysaccharide challenge[J]. Fish Shellfish Immunol, 2017, 63: 297-303. doi: 10.1016/j.fsi.2017.02.025
[5] 李京昊, 成永旭, 王海锋, 等. 不同条件对克氏原螯虾幼虾摄食生物絮凝的影响[J]. 南方水产科学, 2018, 14(3): 58-64. doi: 10.3969/j.issn.2095-0780.2018.03.007 [6] SOUTYGROSSET C, ANASTÁCIO P M, AQUILONI L, et al. The red swamp crayfish Procambarus clarkii in Europe: impacts on aquatic ecosystems and human well-being[J]. Limnologica (Online), 2016, 58: 78-93. doi: 10.1016/j.limno.2016.03.003
[7] PACE B T, HAWKE J P, SUBRAMANIAN R, et al. Experimental inoculation of Louisiana red swamp crayfish Procambarus clarkii with white spot syndrome virus (WSSV)[J]. Dis Aquat Organ, 2016, 120(2): 143-150. doi: 10.3354/dao03018
[8] WEI K, YANG J. Copper-induced oxidative damage to the prophenoloxidase-activating system in the freshwater crayfish Procambarus clarkii[J]. Fish Shellfish Immunol, 2016, 52: 221-229. doi: 10.1016/j.fsi.2016.03.151
[9] MUELLER K W. Reproductive habits of non-native red swamp crayfish (Procambarus clarkii) at Pine Lake, Sammamish, Washington[J]. Northw Sci, 2016, 81: 246-250.
[10] 徐增洪, 周鑫, 水燕, 等. 克氏原螯虾繁殖行为生态学的实验研究[J]. 中国水产科学, 2014, 21(2): 382-389. [11] 陈忱.克氏原螯虾幼虾消化系统发育及饥饿复投喂对其的影响[D]. 武汉: 华中农业大学, 2015: 11-19. [12] 宋光同, 丁凤琴, 武松, 等. 光照度、去单侧眼柄、盐度对克氏原螯虾繁殖效果的影响[J]. 水产科学, 2013(8): 482-484. doi: 10.3969/j.issn.1003-1111.2013.08.010 [13] 张家宏, 寇祥明, 王守红, 等. 克氏原螯虾高效养殖模式及其经济效益[J]. 水产科技, 2010(2): 19-21. doi: 10.3969/j.issn.1004-6755.2010.02.005 [14] 徐增洪, 赵朝阳, 周鑫. 克氏原螯虾两种稻田养殖模式的生物学比较研究[J]. 华北农学报, 2011, 26(S1): 248-251. doi: 10.7668/hbnxb.2011.S1.050 [15] 刘其根, 李应森, 陈蓝荪. 克氏原螯虾的生态养殖④ 稻田养殖克氏原螯虾[J]. 水产科技情报, 2008, 35(4): 186-189. doi: 10.3969/j.issn.1001-1994.2008.04.014 [16] 刘军, 谢祥林, 严维辉, 等. 克氏原螯虾稻田高效生态养殖试验总结[J]. 水产养殖, 2011, 32(5): 37-38. doi: 10.3969/j.issn.1004-2091.2011.05.017 [17] 唐建清, 宋胜磊, 潘建林, 等. 克氏原螯虾对几种人工洞穴的选择性[J]. 水产科学, 2004, 23(5): 26-28. doi: 10.3969/j.issn.1003-1111.2004.05.008 [18] 王亮根, 李亚芳, 杜飞雁, 等. 大亚湾人工鱼礁区和岛礁区浮游动物群落特征及对仔稚鱼的影响[J]. 南方水产科学, 2018, 14(2): 41-50. doi: 10.3969/j.issn.2095-0780.2018.02.006 [19] 马霖. 水产养殖病害的发生特点与防治措施研究[J]. 农业工程技术, 2017, 37(11): 68-68. [20] 殷悦. 克氏原螯虾不同养殖模式的特点和养殖方法[D]. 南京: 南京农业大学, 2010: 3-9. [21] 刘红征, 王新洲, 李延军, 等. 竹筒无裂纹展平生产技术[J]. 林产工业, 2018(5): 40-44. [22] MUNARI C. Organism responses to habitat fragmentation in two shallow-water brackish environments: the Goro Lagoon (Adriatic Sea) and the Padrongiano Delta (Tyrrhenian Sea)[J]. J Mar Biol Assoc UK, 2008, 88(7, SI): 1309-1317. doi: 10.1017/S0025315408001896
[23] WANG E, BAO T, LIU X, et al. Divergence analysis of the temperatures measured in different material vertical buried pipes in cold regions[J]. J Glaciol Geocryol, 2016, 38(5): 1308-1316.
[24] 张剑桥, 袁媛, 迟惠中, 等. 管材对氯/二氧化氯消毒过程中氯衰减的影响及机理[J]. 中国给水排水, 2018, 34(13): 71-75. [25] 严维辉, 黄成, 唐建清, 等. 克氏原螯虾雌雄分池对比养殖试验总结[J]. 水产养殖, 2015, 36(2): 15-16. doi: 10.3969/j.issn.1004-2091.2015.02.005 [26] MORROW D R. Wants and needs in mitigation policy[J]. Climatic Change, 2015, 130(3): 335-345. doi: 10.1007/s10584-014-1132-1
[27] YI S, LI Y, SHI L, et al. Characterization of population genetic structure of red swamp crayfish, Procambarus clarki, in China[J]. Sci Rep, 2018, 8(1): 5586. doi: 10.1038/s41598-018-23986-z
[28] 刘其根, 李应森, 陈蓝荪. 克氏原螯虾的生物学[J]. 水产科技情报, 2008, 35(1): 21-23. doi: 10.3969/j.issn.1001-1994.2008.01.011 [29] TOMANEK L. The importance of physiological limits in determining biogeographical range shifts due to global climate change: the heat-shock response[J]. Physiol Biochem Zool, 2008, 81(6): 709-717. doi: 10.1086/590163
[30] EL Q I, FEKHAOUI M, EL A A, et al. Biometry and demography of Procambarus clarkii in Rharb Region, Morocco[J]. Aacl Bioflux, 2015, 8(5): 751-760.
[31] 宋光同, 丁凤琴, 陈静, 等. 亲虾规格、隐蔽物、光照度及密度对克氏原螯虾繁殖效果的影响[J]. 水产科学, 2012, 31(9): 549-553. doi: 10.3969/j.issn.1003-1111.2012.09.009 [32] 杨若蒙, 赵欣, 黄成, 等. 交配前克氏原螯虾格斗行为差异研究[J]. 水产科技情报, 2013, 40(6): 289-293. [33] 杨若蒙. 不同性别和婚配状态的克氏原螯虾格斗行为差异的研究[D]. 南京: 南京大学, 2014: 3-8. [34] 刘琦.克氏原螯虾对两种环境异质性的响应及对隐蔽所的选择[D]. 南京: 南京大学, 2017: 1-7. [35] 邢鸿飞. 安东尼·马丁. 穴居动物的进化优势[J]. 世界科学, 2017(10): 11-16. doi: 10.3969/j.issn.1000-0968.2017.10.006 [36] 张年国, 潘桂平, 周文玉, 等. 口虾蛄对人工洞穴选择性的初步研究[J]. 水产科技情报, 2018, 45(4): 192-196. [37] MACCORD F, AZEVEDO F A, ESTEVES F A, et al. Regulation of bacterioplankton density and biomass in tropical shallow coastal lagoons[J]. Acta Limnologica Brasiliensia, 2013, 25(3): 224. doi: 10.1590/S2179-975X2013000300003
[38] BEGUM F, NAKATANI I, TAMOTSU S, et al. Reproductive characteristics of the albino morph of the crayfish, Procambarus clarkii (Girard, 1852) (Decapoda, Cambaridae)[J]. Crustaceana, 2010, 83(2): 169-178. doi: 10.1163/001121609X12530988607515
[39] 郑方东, 王彦武, 刘西, 等. 黑眶蟾蜍的两性异形与选型配对模式[J]. 动物学杂志, 2018, 53(3): 360-367. -
期刊类型引用(6)
1. 张文博,黄洪辉,巩秀玉,刘华雪. 南海西部不同粒级浮游动物碳氮稳定同位素研究. 海洋环境科学. 2025(01): 89-96 . 百度学术
2. 贡艺,梁茜,李云凯,刘必林,牛成功. 西北太平洋桡足类稳定同位素特征及其影响因素. 生态学杂志. 2024(02): 505-513 . 百度学术
3. 严淋露,庞博,查穆哈,陈星瑶,康振坤,王强. 湿地食物网研究中基线物种及分馏因子的可变性对营养级评估的影响. 湿地科学. 2024(02): 291-302 . 百度学术
4. 王开立,龚玉艳,陈作志,许友伟,孙铭帅,蔡研聪,李佳俊,徐姗楠. 基于稳定同位素技术的南海北部蓝圆鲹的营养生态位. 生态学杂志. 2022(04): 724-731 . 百度学术
5. 庄康,胡晓娟,曹煜成,许云娜,张建设,文国樑. 不同寡营养培养条件下南海水体细菌群落结构及其对碳源的利用特征. 微生物学通报. 2020(09): 2697-2710 . 百度学术
6. 刘华雪,张文博,徐军,李纯厚,黄洪辉. 南海北部不同粒级浮游动物碳稳定同位素研究. 南方水产科学. 2018(02): 36-40 . 本站查看
其他类型引用(8)