饲料中添加螺旋藻对花鲈生长性能、消化酶活性、血液学指标及抗氧化能力的影响

虞为, 杨育凯, 陈智彬, 林黑着, 黄小林, 周传朋, 杨铿, 曹煜成, 黄忠, 马振华, 李涛, 王珺, 王芸, 荀鹏伟, 黄倩倩, 于万峰

虞为, 杨育凯, 陈智彬, 林黑着, 黄小林, 周传朋, 杨铿, 曹煜成, 黄忠, 马振华, 李涛, 王珺, 王芸, 荀鹏伟, 黄倩倩, 于万峰. 饲料中添加螺旋藻对花鲈生长性能、消化酶活性、血液学指标及抗氧化能力的影响[J]. 南方水产科学, 2019, 15(3): 57-67. DOI: 10.12131/20190002
引用本文: 虞为, 杨育凯, 陈智彬, 林黑着, 黄小林, 周传朋, 杨铿, 曹煜成, 黄忠, 马振华, 李涛, 王珺, 王芸, 荀鹏伟, 黄倩倩, 于万峰. 饲料中添加螺旋藻对花鲈生长性能、消化酶活性、血液学指标及抗氧化能力的影响[J]. 南方水产科学, 2019, 15(3): 57-67. DOI: 10.12131/20190002
YU Wei, YANG Yukai, CHEN Zhibin, LIN Heizhao, HUANG Xiaolin, ZHOU Chuanpeng, YANG Keng, CAO Yucheng, HUANG Zhong, MA Zhenhua, LI Tao, WANG Jun, WANG Yun, XUN Pengwei, HUANG Qianqian, YU Wanfeng. Dietary effect of Spirulina platensis on growth performance, digestive enzymes, haematological indices and antioxidant capacity of Chinese sea bass (Lateolabrax maculatus)[J]. South China Fisheries Science, 2019, 15(3): 57-67. DOI: 10.12131/20190002
Citation: YU Wei, YANG Yukai, CHEN Zhibin, LIN Heizhao, HUANG Xiaolin, ZHOU Chuanpeng, YANG Keng, CAO Yucheng, HUANG Zhong, MA Zhenhua, LI Tao, WANG Jun, WANG Yun, XUN Pengwei, HUANG Qianqian, YU Wanfeng. Dietary effect of Spirulina platensis on growth performance, digestive enzymes, haematological indices and antioxidant capacity of Chinese sea bass (Lateolabrax maculatus)[J]. South China Fisheries Science, 2019, 15(3): 57-67. DOI: 10.12131/20190002

饲料中添加螺旋藻对花鲈生长性能、消化酶活性、血液学指标及抗氧化能力的影响

基金项目: 中国水产科学研究院南海水产研究所中央级公益性科研院所基本科研业务费专项资金资助 (2018ZD01,2016YD03);深圳市科技计划知识创新基础研究项目 (JCYJ20170817103947002);公益性行业(农业)科研专项经费项目 (201403011);现代农业(虾蟹)产业技术体系建设专项 (CARS-48)
详细信息
    作者简介:

    虞 为(1986—),男,硕士,助理研究员,从事动物营养与饲料科学研究。E-mail: 540749772@qq.com

    通讯作者:

    林黑着(1965—),男,博士,研究员,从事动物营养与饲料科学研究。E-mail: linheizhao@163.com

  • 中图分类号: S 963.7

Dietary effect of Spirulina platensis on growth performance, digestive enzymes, haematological indices and antioxidant capacity of Chinese sea bass (Lateolabrax maculatus)

  • 摘要:

    采用螺旋藻(Spirulina platensis)添加量分别为0 (对照组)、1% (T1)、2% (T2)、3% (T3)、4% (T4)和5% (T5)的6组实验饲料,养殖均质量为(25.49±0.20) g的花鲈(Lateolabrax maculatus) 8周,研究其对花鲈生长、消化酶、血液学指标及抗氧化能力的影响。结果显示,添加螺旋藻可显著提高花鲈特定生长率和增重率,并显著降低饲料系数(P<0.05);螺旋藻可以提高花鲈肠道蛋白酶活性(P<0.05),但对淀粉酶和脂肪酶活性均无显著影响;T3、T4和T5组的白细胞数和血红蛋白浓度、T4和T5组的红细胞数均显著高于对照组(P<0.05);T4和T5组的总胆固醇、甘油三酯和低密度脂蛋白胆固醇浓度显著低于对照组(P<0.05);T4和T5组的溶菌酶活性、免疫球蛋白M和补体4浓度显著高于其他组(P<0.05),T3、T4和T5组的总抗氧化能力、过氧化氢酶、超氧化物歧化酶和谷胱甘肽过氧化物酶活性显著高于对照组(P<0.05),T3、T4和T5组的丙二醛浓度显著低于对照组(P<0.05)。综上,花鲈饲料中螺旋藻的适宜添加量为4%~5%。

    Abstract:

    Chinese sea bass (Lateolabrax maculatus) with initial body mass of (25.49±0.20) g were fed for eight weeks with six diets containing 0 (control), 1% (T1), 2% (T2), 3% (T3), 4% (T4) and 5% (T5) Spirulina platensis, so as to investigate the effect of S. platensis on the growth performance, digestive enzymes, haematological indices and antioxidant capacity of L. maculatus. The results show that the dietary supplementation with S. platensis improved the weight gain rate (WGR) and specific growth rate (SGR) of L. maculates (P<0.05) significantly. The feed conversion ratio (FCR) decreased significantly (P<0.05). The protease activities in S. platensis supplemented groups were significantly higher than that of the control (P<0.05), while no significant change was observed in lipase and amylase activities among different groups. Compared with the control, the levels of red blood cell (RBC) increased in T4 and T5 groups significantly (P<0.05), and levels of white blood cell (WBC) and hemoglobin (Hb) in T3, T4 and T5 groups were significantly higher than those of the control (P<0.05). The levels of triglyceride, cholesterol, low-density lipoprotein cholesterol (LDL-C) in T4 and T5 groups decreased significantly than those of the control (P<0.05). The total antioxidant capacity (T-AOC), superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) activities in T3, T4 and T5 groups were significantly higher than those of the control (P<0.05). The malondialdehyde (MDA) contents in T3, T4 and T5 groups were significantly lower than those of the control (P<0.05). It is suggested that the suitable S. platensis supplementation level in diet of L. maculates is 4%−5%.

  • 鳗弧菌(Vibrio anguillarum)是水产养殖中最常见的致病菌之一[1]。当养殖环境恶化或机体受创时,养殖水产品极易感染鳗弧菌,进而导致体表“出血”,甚至全身性组织病变,最终死亡[2]。近年来,随着养殖技术不断提高,水产养殖向高密度、集约化发展的同时,养殖水产品弧菌病的爆发也日趋严重,给水产养殖业带来巨大损失[3]。由于鳗弧菌可对水产养殖造成严重危害,大量抗生素被用于防治该致病菌[4-5],这不仅导致细菌耐药性的产生,还给水产品质量安全带来巨大风险和隐患[6]

    丁香酚是一种天然产物,广泛存在于丁香、月桂和罗勒等植物的茎、叶和花蕾中[7]。研究表明丁香酚具有良好的杀菌、抑菌效果[8-12],其不仅是一种传统口腔治疗剂,还被用于水产食品防腐以延长货架期[13-14]。同时,丁香酚还是一种良好的渔用麻醉剂,可以缓解转运过程的应激反应,大幅提高养殖生产和流通环节鲜活水产品的成活率[15-16]。近年来,有研究发现丁香酚对水产致病菌有一定的抑菌作用[17-18]。由于毒性低、消除快,有学者认为丁香酚有望替代抗生素成为一种安全、绿色的新型抗菌剂,用于防治水产养殖中的细菌性疾病[19]

    随着人民生活水平的不断提高,水产品质量安全日益受到重视。近年来水产品中的违禁药物添加屡禁不止,给水产业造成巨大冲击。因此,亟需一种安全、有效的渔用药物为水产养殖业的健康发展保驾护航。本文以鳗弧菌为研究对象,探索丁香酚对水产养殖业典型致病菌的抑菌效果,为水产养殖业中鱼类细菌性疾病的防控提供研究基础。

    生化培养箱(IC612C,日本Yamato);酶标仪(VERSMAX,美国MD);可见分光光度计(L2,上海仪电分析仪器有限公司);生物安全柜(MSC1.8,美国Thermo);多轨道恒温培养振荡器(ZHWY-200D,上海智诚分析仪器制造有限公司);比浊仪(WGZ-2XJ,上海昕瑞仪器仪表有限公司);天平(XS603S,瑞士梅特勒);移液枪(10~100 μL,100~1 000 μL,1~10 mL);中央纯水系统(Centra R-200/purilab classia,ELGA)。

    鳗弧菌ATCC43308 (广东环凯微生物科技有限公司);丁香酚(纯度≥99%,上海医疗器械有限公司);无水乙醇(广州化学试剂厂,99%);2216E琼脂(美国BD公司);2216液体培养基(美国BD公司);MH肉汤(青岛高科技园海博生物技术有限公司);游标卡尺(广陆数字测控股份有限公司);牛津杯(Φ 6 mm×8 mm×10 mm,上海精密仪器仪表有限公司);细菌培养板(96孔,海门市海克拉斯实验器材有限公司);生理盐水(广东环凯微生物科技有限公司)。实验所用试剂与耗材均作灭菌处理。

    称取0.64 mg丁香酚于烧杯中,以5 mL无水乙醇助溶后,转移至容量瓶中,超纯水稀释定容至100 mL,储备液质量浓度为6 400 μg·mL–1。实验所需系列浓度均用此储备液稀释配制。

    挑取一环鳗弧菌接种至2216液体培养基,30 ℃振荡培养24 h增菌。测定增菌液麦氏浊度值(McFarland,MCF),用生理盐水稀释至MCF值约为0.5 (0.5 MCF的菌液浓度相当于108 CFU·mL–1),继续稀释至菌液浓度为105 CFU·mL–1,备用。

    将牛津杯置于培养皿中央,吸取3 mL浓度为105 CFU·mL–1的菌液于90 mL的2216E培养基中混合均匀,倾注平板(约20 mL·平板–1),静置待平板凝固。凝固后用镊子将牛津杯轻轻拔出,吸取质量浓度为6 400 μg·mL–1的丁香酚150 μL注入孔中。丁香酚抑菌平板实验设置9个平行。由于丁香酚溶液配制过程中用到乙醇,故于平板孔中注入150 μL体积分数为5%的乙醇为背景比较。为比较分析丁香酚与抗生素的抑菌差异性,于平板孔中注入150 μL质量浓度为200 μg·mL–1的氯霉素溶液进行对比实验。平板孔中药物注入完成后,将平板置于培养箱中30 ℃培养24 h。培养完毕,以游标卡尺用十字交叉法测量抑菌圈直径。

    根据微量二倍稀释法,采用96孔微孔板(8行×12列)进行抑菌实验[17]。抑菌实验设实验组4平行(A、B、C、D行)、空白对照(E行)、阳性对照(F行)和阴性对照(G行)。预先于所有微孔中加入100 μL的MH肉汤,各组操作如下。

    实验组:于第1列微孔中加入100 μL质量浓度为6 400 μg·mL–1的丁香酚溶液,与预先添加的MH肉汤充分混合后,吸取100 μL混合液注入第2列,充分混合后再次吸取100 μL混合液注入第3列,逐级稀释至最后1列,吸取100 μL混合液弃去,最后于各微孔中添加100 μL菌液。

    空白对照:第1列加入100 μL体积分数为5%的乙醇溶液,与预先添加的MH肉汤充分混合后,与实验组操作类似,逐级稀释,最后于各微孔中添加100 μL菌液。

    阴性对照:第1列加入6 400 μg·mL–1丁香酚溶液,逐级稀释后,于各微孔中添加100 μL生理盐水。

    阳性对照:各微孔中添加100 μL菌液,与预先添加的MH肉汤充分混合。

    最后将微孔板置于培养箱中30 ℃培养24 h。培养结束后,将微孔板置于酶标仪中于560 nm波长下读取吸光值,并根据吸光值确定丁香酚对鳗弧菌的MIC值。

    吸取MIC所在列及其之前两列微孔中的培养液100 μL于预先添加2216E培养基的平板上均匀涂布,随后置于培养箱中30 ℃培养24 h。培养结束后根据细菌生长情况判定MBC值。

    取1 mL鳗弧菌菌液分别接种到丁香酚质量浓度为0 μg·mL–1(空白对照组)、400 μg·mL–1(MIC组)和800 μg·mL–1(MBC组)的2216培养液中,每组双平行。30 ℃振荡培养36 h。在培养过程中,每隔2 h于波长为560 nm处测定培养液的吸光值。

    抑菌圈直径≥20 mm为极敏,15~20 mm为高敏;10~15 mm为中敏;小于10 mm为低敏[20]。结果显示,丁香酚质量浓度为6 400 μg·mL–1时,抑菌圈直径为 (21.13±0.74) mm,相对标准偏差为3.50% (表1)。表明鳗弧菌对丁香酚极敏,此浓度丁香酚具有良好的抑菌活性。5%的乙醇溶液抑菌圈直径为8 mm,即鳗弧菌对其不敏感,证明丁香酚溶液助溶剂背景对其抑菌敏感性几乎没有影响。从氯霉素的抑菌圈直径 [(44.38±0.75) mm] 看,鳗弧菌对其极敏,相对标准偏差为1.69%,抑菌效果明显强于丁香酚,这也可能是氯霉素禁而不绝的原因之一。

    表  1  丁香酚对鳗弧菌的抑菌圈直径
    Table  1.  Inhibition zone diameter of eugenol on V. anguillarum mm
    直径
    diameter
    平均
    mean
    标准差
    tandard deviation
    相对标准偏差/%
    relative standard deviation
    丁香酚 eugenol21.0622.2420.8620.6420.5621.6320.0520.9422.1621.130.743.50
    氯霉素 (200 μg·mL–1) chloramphenicol44.3245.2343.2643.3444.6445.2843.8644.8844.6244.380.751.69
    5%乙醇 ethanol8.008.008.008.008.008.008.008.008.008.000.000.00
    下载: 导出CSV 
    | 显示表格

    丁香酚对鳗弧菌的MIC实验结果显示(图1),当丁香酚质量浓度≥400 μg·mL–1时,30 ℃条件下培养24 h实验组吸光值与阴性对照基本一致,表明鳗弧菌没有生长;当丁香酚质量浓度<400 μg·mL–1时,实验组吸光值与阳性对照基本一致,表明鳗弧菌的生长没有受到抑制。因此,丁香酚对鳗弧菌的MIC值为400 μg·mL–1。从空白对照组结果来看,丁香酚溶液助溶剂背景对鳗弧菌生长基本没有影响。

    图  1  丁香酚对鳗弧菌的MIC
    Figure  1.  Minimum inhibitory concentration of eugenol against V. anguillarum

    丁香酚对鳗弧菌的MBC实验结果显示(图2),涂抹丁香酚质量浓度为400 μg·mL–1的菌液的平板上,鳗弧菌生长良好,而涂抹丁香酚质量浓度为800 μg·mL–1和1 600 μg·mL–1的菌液的平板上,无鳗弧菌生长。根据《食品中抗菌药物残留的化学分析》[21],以无菌生长的最低浓度为丁香酚对鳗弧菌的MBC值。即该实验条件下丁香酚对鳗弧菌的MBC为800 μg·mL–1

    图  2  30 ℃培养24 h平板上鳗弧菌的生长状况
    Figure  2.  Growth of V. anguillarum on plate incubated at 30 ℃ for 24 h

    丁香酚对鳗弧菌的抑菌时效实验结果显示(图3),与空白对照相比,MIC组中鳗弧菌的生长状况存在较大差异。4~18 h鳗弧菌基本没有生长(OD560 nm为0.05~0.06),18~32 h鳗弧菌开始缓慢生长(OD560 nm为0.06~0.39),32 h后处于稳定生长(OD560 nm为0.37~0.39)。各阶段相应时间MIC组中培养液的吸光值远小于空白对照组。MIC组中鳗弧菌在18 h后开始生长,但是与空白对照相比十分缓慢,32~36 h的吸光值仅为空白对照组的1/5。即使鳗弧菌开始生长,但是丁香酚对其生长依然存在较大的抑制作用。相对于空白对照组和MIC组,MBC组培养液所测吸光值极小(0.003~0.01),表明鳗弧菌基本没有生长。

    图  3  丁香酚对鳗弧菌的抑菌时效
    Figure  3.  Antibacterial aging effect of eugenol on V. anguillarum

    随着养殖池塘的老化以及种质资源的退化,水产养殖病害日趋严重[22-23]。因此,大量抗生素类药物被用于鱼病防治[24]。然而,随着研究的不断深入,抗生素的危害也逐渐被人们认识。研究表明,一些抗生素如氯霉素、呋喃西林等对人体产生“三致”作用,严重危害人体健康[25]。抗生素能持久存在于养殖环境中,使得细菌产生耐药性,不仅使得药物对鱼病的治疗效力降低,也使得人体的抗病能力下降[19,26]。为确保水产品质量安全,保护人体健康,近年来多种抗生素药物已被禁止用于水产养殖业。研究发现多种中草药具有抑菌作用[27-28],但从中草药抑菌效果来看,难以在水产养殖业中广泛应用[29]。丁香酚作为一种天然的植物提取物,因其具有良好的抑菌效果,且毒副作用小、不易产生耐药性且价格低廉受到研究者的广泛关注。

    目前,在食品领域丁香酚已被广泛用于食品贮藏保鲜,以延长货架期[13]。并且在水产领域十分重视丁香酚对鲜活水产品的麻醉效果,但是关于丁香酚对养殖和流通环节鲜活水产品致病菌的抑菌作用的研究甚少[15-16]。本研究显示丁香酚对鳗弧菌的MIC和MBC分别为400 μg·mL–1和800 μg·mL–1,表明其对水产养殖环境中广泛存在的主要致病菌鳗弧菌具有良好的抑菌效果。且抑菌时效实验表明(图3),400 μg·mL–1的丁香酚在18 h内基本抑制了鳗弧菌的生长。即使在18 h后鳗弧菌开始缓慢生长,但是与空白对照组相比,对应时间(32~36 h)的吸光值仅为空白对照组的1/5,表明丁香酚依然对鳗弧菌的生长存在较大的抑制作用。

    与食源性致病菌研究结果相比(表2),鳗弧菌对丁香酚的敏感性与金黄色葡萄球菌 (Staphylococcus aureus)、沙门氏菌(Salmonella anatum)、李斯特菌(Listeria monocytogenes)、大肠杆菌(Escherichia coli)相似,表明丁香酚不仅可以应用于食品领域贮藏保鲜,也可应用于水产行业细菌性疾病防控。与水产致病菌研究结果相比(表2),鳗弧菌对丁香酚的敏感性高于嗜水气单胞菌(Aeromonas hydrophila)、维氏气单胞菌(A. veronii)、弗氏柠檬酸杆菌(Citrobacter freundii),低于格氏乳球菌(Lactococcus garvieae),由此可见鳗弧菌对丁香酚的敏感性相对较高,具有较高的研究价值。

    表  2  丁香酚对不同细菌MIC和MBC
    Table  2.  Minimum inhibitory concentration and minimum bactericidal concentration of eugenol against different bacteria
    细菌种类
    bacterial species
    最低抑菌浓度/μg·mL–1
    MIC
    最小杀菌浓度/μg·mL–1
    MBC
    文献
    Reference
    金黄色葡萄球菌 Staphylococcus aureus600700[30]
    128~512[31]
    400600[32]
    李斯特菌 Listeria monocytogenes500800[33]
    弯曲空肠杆菌 Campylobacter jejunni1.25[34]
    沙门氏菌 Salmonella anatum400600[32]
    大肠杆菌 Escherichia coli400600[32]
    嗜水气单胞菌 Aeromonas hydrophila8001 600[18]
    800~3 2001 600~3 200[17]
    维氏气单胞菌 Aeromonas veronii8001 600[18]
    格氏乳球菌 Lactococcus garvieae30[35]
    弗氏柠檬酸杆菌 Citrobacter freundii1 6001 600[18]
    鳗弧菌 Vibrio anguillarum400800本研究
    下载: 导出CSV 
    | 显示表格

    从本研究结果与相关研究结果的差异性来看(表2),不同水产致病菌对丁香酚的敏感性差异明显,这可能与丁香酚的抑菌机理有关。目前关于丁香酚抑菌机制的说法尚不统一。有研究认为丁香酚通过作用于细菌细胞内酶系统或功能蛋白,进而抑制细胞新陈代谢,从而起到抑菌作用[30];还有研究认为丁香酚通过改变细菌毒力达到抑菌效果[31];然而普遍接受的理论是丁香酚通过破坏细菌细胞膜产生抑菌作用[10-11,36]。因此,深入了解丁香酚对鳗弧菌的抑菌机理,对其未来应用于水产养殖业细菌性疾病防控和在鲜活水产品流通环节中如何起到麻醉和抑菌双重作用至关重要。

    由于丁香酚具有广泛的药理和生物学特性[37],用丁香酚防控水产养殖细菌性疾病已成为新兴的研究热点。但在实验室得出的体外抑菌实验结果应用于实际生产时,要考虑到水产动物对该药的承受能力,正确的用药范围应是既能防控细菌性疾病又不超过水产动物对该药的耐受力。本研究进行了丁香酚对鳗弧菌的体外抑菌实验,其结果可作为防控水产养殖和鲜活水产品流通过程中鳗弧菌感染的依据,但在实际生产中的应用效果有待进一步验证。

    作为一种高效、安全的渔用麻醉剂,丁香酚已在许多国家和地区广泛应用,在中国也已用于鲜活水产品的转移和运输环节[38-39]。本研究表明丁香酚对水产养殖业典型致病菌鳗弧菌具有抑菌和杀菌效果,存在防止活体感染和降低违禁药物使用的潜力。但如何充分发挥丁香酚的麻醉效果,深入发掘丁香酚对水产致病菌的抑菌潜力,还有待进一步的研究。

  • 表  1   基础饲料组成及营养水平 (干物质基础)

    Table  1   Composition and nutrient levels of basal diet (dry mass basis) %

    原料
    ingredient
    质量分数
    mass fraction
    原料
    ingredient
    质量分数
    mass fraction
    鱼粉 fish meal 40 维生素预混料b vitamin premix 0.5
    大豆浓缩蛋白 soy protein concentrate 17 氯化胆碱 choline chloride (50%) 0.3
    豆粕 soybean meal 3 维生素C vitamin C 0.5
    啤酒酵母 brewer's yeast 3 总和 total 100
    面粉 wheat flour 26 营养水平 nutrient levels
    鱼油 fish oil 8 水分 moisture 9.97
    大豆卵磷脂 soy lecithin 1 粗蛋白 crude protein 44.34
    甜菜碱 betaine 0.5 粗脂肪 crude fat 11.87
    矿物质预混料a mineral premix 0.2 灰分 ash 8.43
     注:a. 矿物质预混料 (mg·kg–1饲料): NaF 4,KI 1.6,CoCl2·6H2O (1%) 100,CuSO4·5H2O 20,FeSO4·H2O 160,ZnSO4·H2O 100,MnSO4·H2O 120,MgSO4·7H2O 2 400,Ca(H2PO4)2·H2O 6 000,NaCl 200; b. 维生素预混料 (mg·kg–1饲料):VB1 25, VB2 45, VB12 0.1, VK3 10, 纤维醇 800, 烟酸200,叶酸1.2,生物素 32,VD3 5,VE 120,乙氧喹 150,泛酸 500,微晶纤维素 14.52  Note: a. mineral premix (mg·kg–1 diet): NaF 4, KI 1.6, CoCl2·6H2O (1%) 100, CuSO4·5H2O 20, FeSO4·H2O 160, ZnSO4·H2O 100, MnSO4·H2O 120, MgSO4·7H2O 2 400, Ca(H2PO4)2·H2O 6 000, NaCl 200; b. Vitamin premix (mg·kg–1 diet): VB1 25, VB2 45, VB12 0.1, VK3 10, inositol 800, nicotinic acid 200, folic acid 1.2, biotin 32, VD3 5, VE 120, ethoxyquin 150, pantothenic acid 500, avicel 14.52
    下载: 导出CSV

    表  2   实验饲料组分及营养水平 (干物质基础)

    Table  2   Formulation and nutrient levels of experimental diet (dry mass basis) %

    项目
    item
    组别 group
    对照组 control T1 T2 T3 T4 T5
    基础饲料 basal diet 100 99 98 97 96 95
    螺旋藻 S. platensis 0 1 2 3 4 5
    营养水平 nutrient level
    水分 moisture 9.97 9.93 9.89 9.88 9.84 9.83
    粗蛋白 crude protein 44.34 44.43 44.52 44.61 44.65 44.71
    粗脂肪 crude fat 11.87 11.83 11.79 11.72 11.66 11.62
    灰分 ash 8.43 8.41 8.39 8.37 8.34 8.32
    下载: 导出CSV

    表  3   饲料中添加螺旋藻对花鲈生长性能的影响

    Table  3   Effects of dietary S. platensis on growth performance of L. maculatus

    指标
    index
    组别 group
    对照组 control T1 T2 T3 T4 T5
    初始均质量/g initial mean mass 25.60±0.16 25.55±0.15 25.47±0.14 25.54±0.05 25.50±0.12 25.29±0.16
    终末均质量/g final mean mass 92.93±1.76a 94.38±1.01ab 96.25±0.85b 98.94±0.16c 106.25±0.22d 107.15±1.59d
    增重率/% weight gain rate 262.99±4.59a 269.49±5.09a 277.99±4.03b 287.48±4.72c 316.72±3.03d 323.61±4.54d
    特定生长率/%·d–1 SGR 2.15±0.02a 2.18±0.02a 2.22±0.02b 2.26±0.02c 2.38±0.01d 2.41±0.02d
    饲料系数 FCR 1.56±0.05b 1.51±0.12b 1.46±0.09b 1.45±0.06b 1.28±0.03a 1.21±0.01a
    成活率/% survival rate 98.89±1.92 100±0.00 100±0.00 100±0.00 100±0.00 100±0.00
    肝体比/% HSI 0.55±0.02 0.52±0.04 0.49±0.04 0.47±0.01 0.53±0.03 0.55±0.02
    脏体比/% VSI 8.06±0.54 7.82±0.23 7.43±0.36 7.55±0.16 7.60±0.16 7.53±0.58
    肥满度/g·cm–3 CF 1.73±0.03 1.74±0.03 1.78±0.01 1.75±0.04 1.82±0.05 1.84±0.06
     注:表中同一行数据上标字母不同,表示差异显著 (P<0.05),下表同此
     Note: Different superscript letters within the same row indicate significant difference (P<0.05). The same case in the following tables.
    下载: 导出CSV

    表  4   饲料中添加螺旋藻对花鲈全鱼营养成分的影响

    Table  4   Effects of dietary S. platensis on whole body proximate composition of L. maculatus %

    指标
    index
    组别 group
    对照组 control T1 T2 T3 T4 T5
    水分 moisture 71.17±1.81 71.73±0.22 70.90±0.18 70.25±1.72 70.75±0.41 70.89±0.11
    粗蛋白质 crude protein 16.38±0.62a 16.44±0.43a 16.83±0.52ab 17.34±0.26ab 17.40±0.21b 17.42±0.22b
    粗脂肪 crude lipid 7.99±0.35b 7.67±0.21b 7.56±0.32ab 7.36±0.23a 7.09±0.24a 6.91±0.37a
    粗灰分 ash 4.45±0.39 4.54±0.25 4.82±0.11 4.61±0.27 4.78±0.21 4.59±0.32
    下载: 导出CSV

    表  5   饲料中添加螺旋藻对花鲈肠道消化酶活性的影响

    Table  5   Effects of dietary S. platensis on intestinal digestive enzyme activity of L. maculatus

    指标
    index
    组别 group
    对照组 control T1 T2 T3 T4 T5
    蛋白酶/U·mg–1 protease 75.27±0.27a 78.41±0.51a 79.14±0.57a 82.05±0.45ab 86.37±0.48b 88.43±0.61b
    脂肪酶/U·g–1 lipase 22.41±0.58 23.12±0.57 21.51±0.41 24.58±0.58 23.62±0.53 25.42±0.34
    淀粉酶/U·mg–1 amylase 0.13±0.02 0.14±0.03 0.13±0.04 0.15±0.02 0.16±0.04 0.15±0.05
    下载: 导出CSV

    表  6   饲料中添加螺旋藻对花鲈血液生理指标的影响

    Table  6   Effects of dietary S. platensis on blood physiological parameters of L. maculatus

    指标
    index
    组别 group
    对照组 control T1 T2 T3 T4 T5
    红细胞数/109 mL–1 RBC 1.73±0.22a 1.76±0.12a 1.82±0.12a 1.92±0.31ab 2.35±0.35b 2.46±0.28b
    白细胞数/106 mL–1 WBC 9.27±0.12a 9.33±0.13a 9.56±0.17ab 9.64±0.16b 9.84±0.17c 10.03±0.22c
    血红蛋白/g·100 mL–1 Hb 5.52±0.13a 5.55±0.12a 5.61±0.05ab 5.77±0.11b 5.84±0.13c 5.95±0.11c
    红细胞积压/% Ht 43.32±1.22 42.45±1.32 43.37±1.11 43.21±1.28 43.51±1.33 43.39±1.49
    下载: 导出CSV

    表  7   饲料中添加螺旋藻对花鲈血清生化指标的影响

    Table  7   Effects of dietary S. platensis on serum biochemical parameters of L. maculatus

    指标
    index
    组别 group
    对照组 control T1 T2 T3 T4 T5
    总胆固醇/mmol·L–1 TCHO 4.05±0.08b 3.70±0.13ab 3.52±0.22ab 3.41±0.05ab 3.26±0.08a 3.21±0.05a
    甘油三酯/mmol·L–1 TG 3.46±0.17c 3.12±0.42bc 3.10±0.12bc 2.75±0.34ab 2.56±0.50ab 2.39±0.22a
    低密度脂蛋白胆固醇/mmol·L–1 LDL-C 0.75±0.08c 0.65±0.02bc 0.59±0.08bc 0.53±0.04ab 0.47±0.03ab 0.38±0.24a
    高密度脂蛋白胆固醇/mmol·L–1 HDL-C 2.64±0.03 2.62±0.02 2.56±0.03 2.52±0.04 2.50±0.05 2.49±0.03
    谷丙转氨酶/U·L–1 ALT 38.21±2.11 37.82±1.62 38.31±1.21 37.21±1.57 39.31±1.52 39.14±1.36
    谷草转氨酶/U·L–1 AST 55.21±2.25 53.15±3.12 54.68±1.36 53.28±1.54 54.21±1.32 54.41±1.87
    血糖/mmol·L–1 GLU 9.89±1.05c 6.62±0.32b 5.82±0.16b 4.67±0.37ab 4.07±0.27a 3.83±0.15a
    皮质醇/ng·mL–1 cortisol 68.32±1.21 66.13±1.26 67.13±2.25 68.14±1.43 69.81±1.21 68.32±1.23
    下载: 导出CSV

    表  8   饲料中添加螺旋藻对花鲈血清免疫指标的影响

    Table  8   Effects of dietary S. platensis on serum immune indices of L. maculatus

    指标
    index
    组别 group
    对照组 control T1 T2 T3 T4 T5
    溶菌酶/U·mL–1 LZM 82.82±2.14a 84.31±1.54a 88.39±1.56ab 89.21±2.53ab 93.11±1.27b 95.24±2.16b
    免疫球蛋白M/mg·mL–1 IgM 12.98±0.36a 13.29±0.26a 15.64±0.74ab 18.69±0.62b 21.89±0.26b 22.63±0.34b
    补体4/g·L–1 C4 0.31±0.02a 0.34±0.02a 0.37±0.02ab 0.45±0.02b 0.47±0.01b 0.50±0.03b
    下载: 导出CSV

    表  9   饲料中添加螺旋藻对花鲈肝脏抗氧化状态的影响

    Table  9   Effects of dietary S. platensis on hepatic T-AOC, SOD, CAT, GSH-Px activities and MDA contents of L. maculatus

    指标
    index
    组别 group
    对照组 control T1 T2 T3 T4 T5
    总抗氧化能力/U·mg–1 T-AOC 0.53±0.01a 0.55±0.02a 0.61±0.04ab 0.66±0.02b 0.82±0.04c 0.86±0.03c
    超氧化物歧化酶/U·mg–1 SOD 61.21±1.26a 64.25±1.32a 68.23±1.34ab 74.19±1.21b 79.46±1.02c 81.12±2.12c
    过氧化氢酶/U·mg–1 CAT 25.12±0.13a 25.82±0.54a 26.91±0.76a 27.26±1.48ab 29.83±0.73b 31.47±1.24b
    谷胱甘肽过氧化物酶/U·mg–1 GSH-Px 116.19±2.15a 121.67±2.42a 139.67±3.21ab 148.78±2.11b 157.32±3.21c 162.23±3.01c
    丙二醛/nmol·mg–1 MDA 9.63±1.31c 9.25±1.93bc 9.06±1.02b 8.53±1.54ab 8.13±1.44a 7.85±1.54a
    下载: 导出CSV
  • [1] 曹俊明, 吴春玉, 黄燕华, 等. β-葡聚糖对花鲈免疫和抗氧化指标的影响[J]. 水产科学, 2018, 34(1): 1-7. doi: 10.3969/j.issn.20950780.2018.01.001
    [2] 温海深, 张美昭, 李吉方, 等. 我国花鲈养殖产业现状与种子工程研究进展[J]. 渔业信息与战略, 2016, 31(2): 105-111.
    [3] 农业部渔业渔政管理局. 中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2018: 26.
    [4] 李富祥, 王鹏飞, 闫路路, 等. 花鲈irak4基因cDNA的克隆与表达分析[J]. 南方水产科学, 2018, 14(5): 70-79.
    [5] 吴春玉, 曹俊明, 黄燕华, 等. 饲料中添加β-葡聚糖对花鲈生长性能、体成分、血清生化指标和抗氨氮应激能力的影响[J]. 动物营养学报, 2013, 25(12): 3033-3040. doi: 10.3969/j.issn.1006-267x.2013.12.034
    [6]

    Da COSTA P M, LOUREIRO L, MATOS A J. Transfer of multidrug-resistant bacteria between intermingled ecological niches: the interface between humans, animals and the environment[J]. Int J Environ Res Publ Health, 2013, 10(1): 278-294. doi: 10.3390/ijerph10010278

    [7]

    REKECKI A, DIERCKENS K, LAUREAU S, et al. Effect of germ-free rearing environment on gut development of larval sea bass (Dicentrarchus labrax L.)[J]. Aquaculture, 2009, 293(1/2): 8-15.

    [8]

    MAYNARD C L, ELSON C O, HATTON R D, et al. Reciprocal interactions of the intestinal microbiota and immune system[J]. Nature, 2012, 489(7415): 231-241. doi: 10.1038/nature11551

    [9] 谢少林, 陈平原, 吕子君, 等. 饲料中添加螺旋藻对改良鲫生长和肌肉营养成分的影响[J]. 仲恺农业工程学院学报, 2015, 28(2): 9-13. doi: 10.3969/j.issn.1674-5663.2015.02.003
    [10] 龚洋洋, 黄艳青, 陆建学, 等. 螺旋藻粉在水产饲料中的应用研究进展[J]. 海洋渔业, 2018, 40(4): 504-512. doi: 10.3969/j.issn.1004-2490.2018.04.014
    [11]

    YU W, WEN G L, LIN H Z, et al. Effects of dietary Spirulina platensis on growth performance, hematological and serum biochemical parameters, hepatic antioxidant status, immune responses and disease resistance of coral trout Plectropomus leopardus (Lacepede, 1802)[J]. Fish Shellfish Immun, 2018, 74: 649-655. doi: 10.1016/j.fsi.2018.01.024

    [12] 杨为东. 螺旋藻对锦鲤生长和养分消化率的影响[J]. 饲料工业, 2011, 32(8): 23-25. doi: 10.3969/j.issn.1001-991X.2011.08.007
    [13]

    PROMYA J, CHITMANAT C. The effects of Spirulina platensis and cladophora algae on the growth performance, meat quality and immunity stimulating capacity of the African sharptooth catfish (Clarias gariepinus)[J]. Int J Agric Biol, 2011, 13(1): 77-82.

    [14]

    LIN H Z, CHEN X, YANG Y, et al. Effect of different levels of Spirulina platensis dietary supplementation on the growth, body color, digestion, and immunity of Trachinotus ovatus[J]. Isr J Aquacult-Bamidgeh, 2016, 68: 1285.

    [15] 张晓红, 吴锐全, 王海英, 等. 虾青素与螺旋藻对血鹦鹉体色的影响[J]. 大连水产学院学报, 2009, 24(1): 79-82. doi: 10.3969/j.issn.1000-9957.2009.01.016
    [16] 姜志强, 石洪玥, 崔培, 等. 不同蛋白水平的螺旋藻饲料对锦鲤体色、生长及免疫的影响[J]. 东北农业大学学报, 2012, 43(3): 95-103. doi: 10.3969/j.issn.1005-9369.2012.03.019
    [17]

    MAI D, MOHAMED F, MARWA A. The role of Spirulina platensis (Arthrospira platensis) in growth and immunity of Nile tilapia (Oreochromis niloticus) and its resistance to bacterial infection[J]. J Agr Sci, 2013, 5(6): 109-117.

    [18]

    KIM S, SHIN S, HAN H, et al. Effects of dietary Spirulina platensis on innate immunity and disease resistance against Edwardsiella tarda in Olive flounder Paralichthys olivaceus[J]. Isr J Aquacult-Bamid, 2010, 2015(1152): 1-9.

    [19]

    ADEL M, YEGANEH S, DADAR M, et al. Effects of dietary Spirulina platensis on growth performance, humoral and mucosal immune responses and disease resistance in juvenile great sturgeon (Huso huso Linnaeus, 1754)[J]. Fish Shellfish Immun, 2016, 56: 436-444. doi: 10.1016/j.fsi.2016.08.003

    [20] 吕子君. 钝顶螺旋藻对海南长臀生长, 营养, 消化和免疫的影响[D]. 广州: 华南农业大学, 2016: 28.
    [21] 刘立鹤, 郑石轩, 徐焕新, 等. 饲料中添加螺旋藻对凡纳滨对虾生长、体组分的影响[J]. 水产学报, 2005, 29(6): 791-797.
    [22] 曹申平, 韩冬, 解绶启, 等. 螺旋藻粉替代饲料中鱼粉对异育银鲫幼鱼生长、饲料利用和蛋白沉积的影响[J]. 水生生物学报, 2016, 40(4): 647-654.
    [23] 荀鹏伟, 林黑着, 黄忠, 等. 卵形鲳鲹对饲料中泛酸的需求量[J]. 南方水产科学, 2018, 14(5): 81-87.
    [24] 董学兴, 吕林兰, 刘海宁, 等. 螺旋藻对异育银鲫夏花内源酶、消化率和体成分的影响[J]. 水产科学, 2008, 27(5): 243-246. doi: 10.3969/j.issn.1003-1111.2008.05.007
    [25] 林浩然. 鱼类生理学[M]. 广州: 广东教育出版社, 1999: 82-108.
    [26] 许品诚, 曹苹禾. 湖泊围养鱼类血液学指标的初步研究[J]. 水产学报, 1989, 13(4): 346-352.
    [27] 王文博, 高俊莲, 孙建光, 等. 螺旋藻的营养保健价值及其在预防医学中的应用[J]. 中国食物与营养, 2009(1): 48-51. doi: 10.3969/j.issn.1006-9577.2009.01.015
    [28]

    KAPOOR R, MEHTA U. Iron bioavailability from Spirulina platensis, whole egg and whole wheat[J]. Ind J Exp Biol, 1992, 30: 904-907.

    [29]

    TALPUR A D, IKHWANUDDIN M. Dietary effects of garlic (Allium sativum) on haemato-immunological parameters, survival, growth, and disease resistance against Vibrio harveyi infection in Asian sea bass, Lates calcarifer (Bloch)[J]. Aquaculture, 2012, 364: 6-12.

    [30]

    DAWOOD M A, KOSHIO S, ISHIKAWA M A. Interaction effects of dietary supplementation of heat-killed Lactobacillus plantarum and beta-glucan on growth performance, digestibility and immune response of juvenile Red Sea bream, Pagrus major[J]. Fish Shellfish Immun, 2015, 45(1): 33-42. doi: 10.1016/j.fsi.2015.01.033

    [31]

    LI M, WU W, ZHOU P, et al. Comparison effect of dietary astaxanthin and Haematococcus pluvialis on growth performance, antioxidant status and immune response of large yellow croaker Pseudosciaena crocea[J]. Aquaculture, 2014, 434: 227-232. doi: 10.1016/j.aquaculture.2014.08.022

    [32]

    KHALIL S R, REDA R M, AWAD A. Efficacy of Spirulina platensis diet supplements on disease resistance and immune-related gene expression in Cyprinus carpio L. exposed to herbicide atrazine[J]. Fish Shellfish Immun, 2017, 67: 119-128. doi: 10.1016/j.fsi.2017.05.065

    [33]

    ZHANG C. The effects of polysaccharide and phycocyanin from Spirulina platensis variety on peripheral blood and hematopoietic system of bone marrow in mice[C]//Second Asia-Pacific Conference on Alga Biotechnology, Singapore: National University of Singapore, 1994: 58.

    [34]

    RUMSEY G L, SIWICKI A K, ANDERSON D P, et al. Effect of soybean protein on serological response, non-specific defense mechanisms, growth, and protein utilization in rainbow trout[J]. Vet Immunol Immunopathol, 1994, 41(3/4): 323-339.

    [35]

    FAZLOLAHZADEH F, KERAMATI K, NAZIFI S, et al. Effect of garlic (Allium sativum) on hematological parameters and plasma activities of ALT and AST of rainbow trout in temperature stress[J]. Aust J Basic Appl Sci, 2011, 5(9): 84-90.

    [36]

    YEGANEH S, TEIMOURI M, AMIRKOLAIE A K. Dietary effects of Spirulina platensis on hematological and serum biochemical parameters of rainbow trout (Oncorhynchus mykiss)[J]. Res Vet Sci, 2015, 101: 84-88. doi: 10.1016/j.rvsc.2015.06.002

    [37]

    ABDEL M, AHMAD M, KHATTAB Y, et al. Effect of dietary protein level, initial body weight, and their interaction on the growth, feed utilization and physiological alterations of Nile tilapia, Oreochromis niloticus(L.)[J]. Aquaculture, 2010, 298: 267-274. doi: 10.1016/j.aquaculture.2009.10.027

    [38] 周玉, 郭文场, 杨振国, 等. 鱼类血液学指标研究的进展[J]. 上海水产大学学报, 2001, 10(2): 163-165.
    [39] 吕子君, 陈平原, 李正光, 等. 螺旋藻对海南长臀抗氧化和脂代谢指标的影响[J]. 饲料工业, 2015, 36(14): 24-27.
    [40] 杨翔, 何舒宁, 曾令柯, 等. 螺旋藻(Spirulina maxima)对降低高血脂大鼠血清甘油三酯浓度的量效分析[J]. 南京大学学报(自然科学版), 2002, 38(2): 182-186. doi: 10.3321/j.issn:0469-5097.2002.02.008
    [41] 胡冬雪, 马季, 王成强, 等. 拟微绿球藻粉替代鱼粉对大菱鲆幼鱼(Scophthalmus maximus L.)生长性能、体组成和血清生化指标的影响[J]. 渔业科学进展, 2018, 39(6): 97-105.
    [42] 黄倩倩, 林黑着, 周传朋, 等. 卵形鲳鲹幼鱼对维生素B2 的需要量[J]. 南方水产科学, 2019, 15(1): 69-76.
    [43] 王琨. 氨氮对鲤(Cyprinus carpio Linnaeus)幼鱼部分组织及血液指标的影响[D]. 哈尔滨: 东北农业大学, 2007: 33.
    [44] 吕子君, 王超, 谢少林, 等. 不同添加水平螺旋藻对乌鬃鹅免疫器官和血液生化指标的影响[J]. 中国饲料, 2015(1): 36-40.
    [45] 张侃, 徐鲁峰, 梁义德. 螺旋藻粉降血糖作用的初步研究[J]. 中国医药导报, 2009, 6(26): 13-14. doi: 10.3969/j.issn.1673-7210.2009.26.007
    [46] 艾庆辉, 麦康森. 鱼类营养免疫研究进展[J]. 水生生物学报, 2007, 31(3): 425-430. doi: 10.3321/j.issn:1000-3207.2007.03.019
    [47]

    DAWOOD M A, KOSHIO S. Recent advances in the role of probiotics and prebiotics in carp aquaculture: a review[J]. Aquaculture, 2016, 454: 243-251. doi: 10.1016/j.aquaculture.2015.12.033

    [48] 隋虎辰, 谢国驷, 边慧慧, 等. 两种多糖作为迟缓爱德华氏菌(Edwardsiella tarda)灭活疫苗佐剂对大菱鲆(Scophthalmus maximus)的免疫保护效果[J]. 海洋与湖沼, 2012, 43(5): 1001-1007.
    [49]

    SHIMAA A. Effect of Spirulina platensis as feed supplement on growth performance, immune response and antioxidant status of mono-sex Nile Tilapia (Oreochromis niloticus)[J]. J Vet Medical, 2016, 1: 1-10.

    [50]

    Chen Y Y, Chen J C, Tayag C M, et al. Spirulina elicits the activation of innate immunity and increases resistance against Vibrio alginolyticus in shrimp[J]. Fish Shellfish Immun, 2016, 55: 690-698.

    [51]

    ABDEL-TAWWAB M, AHMAD M H. Live Spirulina (Arthrospira platensis) as a growth and immunity promoter for Nile tilapia, Oreochromis niloticus (L.), challenged with pathogenic Aeromonas hydrophila[J]. Aquacult Res, 2009, 40(9): 1037-1046. doi: 10.1111/are.2009.40.issue-9

    [52] 谭连杰, 林黑着, 黄忠, 等. 当归多糖对卵形鲳鲹生长性能、抗氧化能力、血清免疫和血清生化指标的影响[J]. 南方水产科学, 2018, 14(4): 72-79. doi: 10.3969/j.issn.2095-0780.2018.04.009
    [53] 崔红红, 刘波, 戈贤平, 等. 肌醇对氨氮应激下团头鲂幼鱼免疫的影响[J]. 水产学报, 2014, 38(2): 228-236.
    [54] 林春榕, 左绍远, 张翠香. 螺旋藻对幼兔生长、免疫功能及血液生化指标的影响[J]. 饲料工业, 2013, 34(2): 14-18.
    [55] 盛清凯, 刘雪, 韩红, 等. 螺旋藻对仔猪生长性能、免疫性能及粪便菌群的影响[J]. 动物营养学报, 2017, 29(3): 843-849. doi: 10.3969/j.issn.1006-267x.2017.03.014
    [56]

    CHEN C, SUN X, LIAO L, et al. Antigenic analysis of grass carp reovirus using single-chain variable fragment antibody against IgM from Ctenopharyngodon idella[J]. Sci China Life Sci, 2013, 56(1): 59-65. doi: 10.1007/s11427-012-4425-5

    [57] 王桢璐, 李正光, 谢少林, 等. 饲料中添加螺旋藻对三角鲤肌肉营养及部分免疫指标的影响[J]. 饲料工业, 2017, 38(6): 7-11.
    [58] 王芸, 李正, 段亚飞, 等. 红景天提取物对凡纳滨对虾抗氧化系统及抗低盐度胁迫的影响[J]. 南方水产科学, 2018, 14(1): 9-19. doi: 10.3969/j.issn.20950780.2018.01.002
    [59]

    HANY M, RIAD H. Evaluation of two phytobiotics, Spirulina platensis and Origanum vulgare extract on growth, serum antioxidant activities and resistance of Nile tilapia (Oreochromis niloticus) to pathogenic Vibrio alginolyticus[J]. Int J Fish Aquat Stud, 2014, 1(5): 250-255.

    [60]

    NAKAGAWA H, SATO M, Gatlin D III, ed. Dietary supplements for the health and quality of cultured fish[M]. Cambridge: Cabi Publishing, 2007: 133-167.

    [61]

    SIMSEK N, KARADENIZ A, KARACA T. Effects of the Spirulina platensis and Panax ginseng oral supplementation on peripheral blood cells in rats[J]. Revue Méd Vét, 2007, 158(10): 483-488.

    [62]

    AMIN K A, HASHEM K S. Deltamethrin-induced oxidative stress and biochemical changes in tissues and blood of catfish (Clarias gariepinus): antioxidant defense and role of alpha-tocopherol[J]. BMC Vet Res, 2012, 8: 45-49. doi: 10.1186/1746-6148-8-45

    [63]

    FIRAT O, COGUN H, YUZEREROGLU T, et al. A comparative study on the effects of a pesticide (cypermethrin) and two metals (Copper, Lead) to serum biochemistry of Nile tilapia, Oreochromis niloticus[J]. Fish Physiol Biochem, 2011, 37: 657-666. doi: 10.1007/s10695-011-9466-3

    [64] 曹颖莉, 崔荣军, 赵璇. 螺旋藻多糖对老龄小鼠脑和肝中SOD、MDA的影响[J]. 中国初级卫生保健, 2003, 17(4): 68-69. doi: 10.3969/j.issn.1001-568X.2003.04.042
    [65]

    LIU B, XIE J, GE X, et al. effects of anthraquinone extract from rheum officinale bail on the growth performance and physiological responses of macrobrachium rosenbergii under high temperature stress[J]. Fish Shellfish Immun, 2010, 29(1): 49-57. doi: 10.1016/j.fsi.2010.02.018

    [66] 罗萍. 螺旋藻对建鲤生长发育的影响[J]. 水利渔业, 2006, 26(4): 41-42. doi: 10.3969/j.issn.1003-1278.2006.04.020
  • 期刊类型引用(8)

    1. 欧利国,蓝振峰,刘必林,陈新军,陈勇. 基于计算机视觉的鱼类形态轮廓特征自动提取. 水产学报. 2024(12): 63-73 . 百度学术
    2. 李伟畅,朱国平,王雪辉,林龙山,李渊,杜飞雁. 南海中南部金带细鲹与长体圆鲹矢耳石外型比较分析. 生物学杂志. 2023(05): 54-60 . 百度学术
    3. 庄文鑫,吴荔生,刘巧红,柳淑芳,丁少雄. 基于地标点法的3种眶灯鱼耳石形态种间差异性. 海洋学报. 2023(09): 119-127 . 百度学术
    4. 欧利国,顾心雨,王冰妍,刘必林. 6种大型海洋掠食性鱼类胃含物角质颚分类研究. 渔业科学进展. 2022(04): 105-115 . 百度学术
    5. 欧利国,力清影,刘必林. 中国南海东沙群岛海域7种鲹科鱼类矢耳石形态特征. 上海海洋大学学报. 2021(01): 155-162 . 百度学术
    6. 刘梦娜,王雪辉,刘玉,邱永松,何映霖,贝伟烈,朱江峰,杜飞雁. 汕头—台湾浅滩渔场中国枪乌贼形态学初步分析. 应用海洋学学报. 2021(02): 208-219 . 百度学术
    7. 欧利国,王冰妍,刘必林,陈新军,陈勇,吴峰,刘攀. 基于计算机视觉的3种金枪鱼属鱼类形态指标自动测量研究. 海洋学报. 2021(11): 105-115 . 百度学术
    8. 欧利国,刘必林. 基于地标点法的4种鲹科鱼类矢耳石形态分类. 大连海洋大学学报. 2020(01): 114-120 . 百度学术

    其他类型引用(7)

表(9)
计量
  • 文章访问数:  5726
  • HTML全文浏览量:  2816
  • PDF下载量:  76
  • 被引次数: 15
出版历程
  • 收稿日期:  2019-01-01
  • 修回日期:  2019-02-18
  • 录用日期:  2019-03-03
  • 网络出版日期:  2019-03-20
  • 刊出日期:  2019-06-04

目录

/

返回文章
返回