基于Ecopath模型的珠江口6种增殖放流种类生态容纳量估算

刘岩, 吴忠鑫, 杨长平, 单斌斌, 刘胜男, 孙典荣

刘岩, 吴忠鑫, 杨长平, 单斌斌, 刘胜男, 孙典荣. 基于Ecopath模型的珠江口6种增殖放流种类生态容纳量估算[J]. 南方水产科学, 2019, 15(4): 19-28. DOI: 10.12131/20180265
引用本文: 刘岩, 吴忠鑫, 杨长平, 单斌斌, 刘胜男, 孙典荣. 基于Ecopath模型的珠江口6种增殖放流种类生态容纳量估算[J]. 南方水产科学, 2019, 15(4): 19-28. DOI: 10.12131/20180265
LIU Yan, WU Zhongxin, YANG Changping, SHAN Binbin, LIU Shengnan, SUN Dianrong. Ecological carrying capacity of six species of stock enhancement in Pearl River estuary based on Ecopath model[J]. South China Fisheries Science, 2019, 15(4): 19-28. DOI: 10.12131/20180265
Citation: LIU Yan, WU Zhongxin, YANG Changping, SHAN Binbin, LIU Shengnan, SUN Dianrong. Ecological carrying capacity of six species of stock enhancement in Pearl River estuary based on Ecopath model[J]. South China Fisheries Science, 2019, 15(4): 19-28. DOI: 10.12131/20180265

基于Ecopath模型的珠江口6种增殖放流种类生态容纳量估算

基金项目: 中国-东盟海上合作基金中越北部湾渔业资源增殖放流与养护项目;公益性行业(农业)科研专项经费项目(201303048)
详细信息
    作者简介:

    刘 岩(1988—),男,硕士,助理研究员,从事渔业资源保护有关研究。E-mail: 365830796@qq.com

    通讯作者:

    孙典荣(1973—),男,硕士,研究员,从事渔业资源调查利用与生态修复研究。E-mail: drsun73@163.com

  • 中图分类号: S 937.3

Ecological carrying capacity of six species of stock enhancement in Pearl River estuary based on Ecopath model

  • 摘要:

    增殖放流是渔业资源养护的重要方式。放流前对放流海域进行生态容纳量评估,有计划地实施增殖放流活动,可避免对原有生态系统造成破坏。文章根据2016年珠江口渔业资源数据,构建了由29个功能组组成的基于珠江口的生态系统通道(Ecopath)模型,利用该模型分析了生态系统的总体特征、食物网结构与混合营养效应,估算了适宜于该水域的6种不同增殖放流种类的生态容纳量。结果表明,功能组营养级范围为1~4.2级,6种适宜放流种类营养级介于2.2~3.7,最高营养级功能组为哺乳动物,系统总流量9 092.447 t·(km2·a)–1,系统总能量转化效率12.23%,连接指数0.370,系统杂食指数0.287。食物链通道主要有2类,以碎屑食物链为主。花鲈(Lateolabrax japonicus)、黑鲷(Acanthopagrus schlegelii)、黄鳍鲷(A. latus)、长毛对虾(Penaeus penicillatus)、墨吉对虾(P. monodon)和波纹巴非蛤(Paphia undulata)的最大容纳量分别为0.094 t·km–2、0.500 t·km–2、0.650 t·km–2、1.580 t·km–2、1.610 t·km–2和75.870 t·km–2

    Abstract:

    Stock enhancement is important for conservation of exploitable resources. Assessment of ecological capacity of the discharged sea area before discharge and planned implementation of proliferation and discharge activities can avoid damage to the original ecosystem. Based on the survey data of the fishery resources of Pearl River estuary in 2016, an Ecopath mass-balance model of the Pearl River estuary ecosystem consisting of 29 functional groups was constructed. Thus, the overall characteristics of the ecosystem, the food-web structure and the mixed trophic impact were analyzed. The ecological carrying capacities of six species of stock enhancement which were suitable for this area were estimated. The results show that the fractional trophic levels ranged from 1 to 4.2, and those of the six species ranged from 2.2 to 3.7, with marine mammals occupying the highest trophic level. The total system throughput of the ecosystem was 9 092.447 t·(km2·a)–1, and the total energy transfer efficiency was 12.23%. The connectance index and system omnivory index were 0.370 and 0.287, respectively. There were two main channels of food chain in the ecsystem, and the energy flow was dominated by grazing food chain. The ecological carrying capacities of biomass for Lateolabrax japonicus, Acanthopagrus schlegelii, A. latus, Penaeus penicillatus, P. monodon and Paphia undulata were 0.094 t·km–2, 0.500 t·km–2, 0.650 t·km–2, 1.580 t·km–2, 1.610 t·km–2 and 75.870 t·km–2, respectively.

  • 鳗弧菌(Vibrio anguillarum)是水产养殖中最常见的致病菌之一[1]。当养殖环境恶化或机体受创时,养殖水产品极易感染鳗弧菌,进而导致体表“出血”,甚至全身性组织病变,最终死亡[2]。近年来,随着养殖技术不断提高,水产养殖向高密度、集约化发展的同时,养殖水产品弧菌病的爆发也日趋严重,给水产养殖业带来巨大损失[3]。由于鳗弧菌可对水产养殖造成严重危害,大量抗生素被用于防治该致病菌[4-5],这不仅导致细菌耐药性的产生,还给水产品质量安全带来巨大风险和隐患[6]

    丁香酚是一种天然产物,广泛存在于丁香、月桂和罗勒等植物的茎、叶和花蕾中[7]。研究表明丁香酚具有良好的杀菌、抑菌效果[8-12],其不仅是一种传统口腔治疗剂,还被用于水产食品防腐以延长货架期[13-14]。同时,丁香酚还是一种良好的渔用麻醉剂,可以缓解转运过程的应激反应,大幅提高养殖生产和流通环节鲜活水产品的成活率[15-16]。近年来,有研究发现丁香酚对水产致病菌有一定的抑菌作用[17-18]。由于毒性低、消除快,有学者认为丁香酚有望替代抗生素成为一种安全、绿色的新型抗菌剂,用于防治水产养殖中的细菌性疾病[19]

    随着人民生活水平的不断提高,水产品质量安全日益受到重视。近年来水产品中的违禁药物添加屡禁不止,给水产业造成巨大冲击。因此,亟需一种安全、有效的渔用药物为水产养殖业的健康发展保驾护航。本文以鳗弧菌为研究对象,探索丁香酚对水产养殖业典型致病菌的抑菌效果,为水产养殖业中鱼类细菌性疾病的防控提供研究基础。

    生化培养箱(IC612C,日本Yamato);酶标仪(VERSMAX,美国MD);可见分光光度计(L2,上海仪电分析仪器有限公司);生物安全柜(MSC1.8,美国Thermo);多轨道恒温培养振荡器(ZHWY-200D,上海智诚分析仪器制造有限公司);比浊仪(WGZ-2XJ,上海昕瑞仪器仪表有限公司);天平(XS603S,瑞士梅特勒);移液枪(10~100 μL,100~1 000 μL,1~10 mL);中央纯水系统(Centra R-200/purilab classia,ELGA)。

    鳗弧菌ATCC43308 (广东环凯微生物科技有限公司);丁香酚(纯度≥99%,上海医疗器械有限公司);无水乙醇(广州化学试剂厂,99%);2216E琼脂(美国BD公司);2216液体培养基(美国BD公司);MH肉汤(青岛高科技园海博生物技术有限公司);游标卡尺(广陆数字测控股份有限公司);牛津杯(Φ 6 mm×8 mm×10 mm,上海精密仪器仪表有限公司);细菌培养板(96孔,海门市海克拉斯实验器材有限公司);生理盐水(广东环凯微生物科技有限公司)。实验所用试剂与耗材均作灭菌处理。

    称取0.64 mg丁香酚于烧杯中,以5 mL无水乙醇助溶后,转移至容量瓶中,超纯水稀释定容至100 mL,储备液质量浓度为6 400 μg·mL–1。实验所需系列浓度均用此储备液稀释配制。

    挑取一环鳗弧菌接种至2216液体培养基,30 ℃振荡培养24 h增菌。测定增菌液麦氏浊度值(McFarland,MCF),用生理盐水稀释至MCF值约为0.5 (0.5 MCF的菌液浓度相当于108 CFU·mL–1),继续稀释至菌液浓度为105 CFU·mL–1,备用。

    将牛津杯置于培养皿中央,吸取3 mL浓度为105 CFU·mL–1的菌液于90 mL的2216E培养基中混合均匀,倾注平板(约20 mL·平板–1),静置待平板凝固。凝固后用镊子将牛津杯轻轻拔出,吸取质量浓度为6 400 μg·mL–1的丁香酚150 μL注入孔中。丁香酚抑菌平板实验设置9个平行。由于丁香酚溶液配制过程中用到乙醇,故于平板孔中注入150 μL体积分数为5%的乙醇为背景比较。为比较分析丁香酚与抗生素的抑菌差异性,于平板孔中注入150 μL质量浓度为200 μg·mL–1的氯霉素溶液进行对比实验。平板孔中药物注入完成后,将平板置于培养箱中30 ℃培养24 h。培养完毕,以游标卡尺用十字交叉法测量抑菌圈直径。

    根据微量二倍稀释法,采用96孔微孔板(8行×12列)进行抑菌实验[17]。抑菌实验设实验组4平行(A、B、C、D行)、空白对照(E行)、阳性对照(F行)和阴性对照(G行)。预先于所有微孔中加入100 μL的MH肉汤,各组操作如下。

    实验组:于第1列微孔中加入100 μL质量浓度为6 400 μg·mL–1的丁香酚溶液,与预先添加的MH肉汤充分混合后,吸取100 μL混合液注入第2列,充分混合后再次吸取100 μL混合液注入第3列,逐级稀释至最后1列,吸取100 μL混合液弃去,最后于各微孔中添加100 μL菌液。

    空白对照:第1列加入100 μL体积分数为5%的乙醇溶液,与预先添加的MH肉汤充分混合后,与实验组操作类似,逐级稀释,最后于各微孔中添加100 μL菌液。

    阴性对照:第1列加入6 400 μg·mL–1丁香酚溶液,逐级稀释后,于各微孔中添加100 μL生理盐水。

    阳性对照:各微孔中添加100 μL菌液,与预先添加的MH肉汤充分混合。

    最后将微孔板置于培养箱中30 ℃培养24 h。培养结束后,将微孔板置于酶标仪中于560 nm波长下读取吸光值,并根据吸光值确定丁香酚对鳗弧菌的MIC值。

    吸取MIC所在列及其之前两列微孔中的培养液100 μL于预先添加2216E培养基的平板上均匀涂布,随后置于培养箱中30 ℃培养24 h。培养结束后根据细菌生长情况判定MBC值。

    取1 mL鳗弧菌菌液分别接种到丁香酚质量浓度为0 μg·mL–1(空白对照组)、400 μg·mL–1(MIC组)和800 μg·mL–1(MBC组)的2216培养液中,每组双平行。30 ℃振荡培养36 h。在培养过程中,每隔2 h于波长为560 nm处测定培养液的吸光值。

    抑菌圈直径≥20 mm为极敏,15~20 mm为高敏;10~15 mm为中敏;小于10 mm为低敏[20]。结果显示,丁香酚质量浓度为6 400 μg·mL–1时,抑菌圈直径为 (21.13±0.74) mm,相对标准偏差为3.50% (表1)。表明鳗弧菌对丁香酚极敏,此浓度丁香酚具有良好的抑菌活性。5%的乙醇溶液抑菌圈直径为8 mm,即鳗弧菌对其不敏感,证明丁香酚溶液助溶剂背景对其抑菌敏感性几乎没有影响。从氯霉素的抑菌圈直径 [(44.38±0.75) mm] 看,鳗弧菌对其极敏,相对标准偏差为1.69%,抑菌效果明显强于丁香酚,这也可能是氯霉素禁而不绝的原因之一。

    表  1  丁香酚对鳗弧菌的抑菌圈直径
    Table  1.  Inhibition zone diameter of eugenol on V. anguillarum mm
    直径
    diameter
    平均
    mean
    标准差
    tandard deviation
    相对标准偏差/%
    relative standard deviation
    丁香酚 eugenol21.0622.2420.8620.6420.5621.6320.0520.9422.1621.130.743.50
    氯霉素 (200 μg·mL–1) chloramphenicol44.3245.2343.2643.3444.6445.2843.8644.8844.6244.380.751.69
    5%乙醇 ethanol8.008.008.008.008.008.008.008.008.008.000.000.00
    下载: 导出CSV 
    | 显示表格

    丁香酚对鳗弧菌的MIC实验结果显示(图1),当丁香酚质量浓度≥400 μg·mL–1时,30 ℃条件下培养24 h实验组吸光值与阴性对照基本一致,表明鳗弧菌没有生长;当丁香酚质量浓度<400 μg·mL–1时,实验组吸光值与阳性对照基本一致,表明鳗弧菌的生长没有受到抑制。因此,丁香酚对鳗弧菌的MIC值为400 μg·mL–1。从空白对照组结果来看,丁香酚溶液助溶剂背景对鳗弧菌生长基本没有影响。

    图  1  丁香酚对鳗弧菌的MIC
    Figure  1.  Minimum inhibitory concentration of eugenol against V. anguillarum

    丁香酚对鳗弧菌的MBC实验结果显示(图2),涂抹丁香酚质量浓度为400 μg·mL–1的菌液的平板上,鳗弧菌生长良好,而涂抹丁香酚质量浓度为800 μg·mL–1和1 600 μg·mL–1的菌液的平板上,无鳗弧菌生长。根据《食品中抗菌药物残留的化学分析》[21],以无菌生长的最低浓度为丁香酚对鳗弧菌的MBC值。即该实验条件下丁香酚对鳗弧菌的MBC为800 μg·mL–1

    图  2  30 ℃培养24 h平板上鳗弧菌的生长状况
    Figure  2.  Growth of V. anguillarum on plate incubated at 30 ℃ for 24 h

    丁香酚对鳗弧菌的抑菌时效实验结果显示(图3),与空白对照相比,MIC组中鳗弧菌的生长状况存在较大差异。4~18 h鳗弧菌基本没有生长(OD560 nm为0.05~0.06),18~32 h鳗弧菌开始缓慢生长(OD560 nm为0.06~0.39),32 h后处于稳定生长(OD560 nm为0.37~0.39)。各阶段相应时间MIC组中培养液的吸光值远小于空白对照组。MIC组中鳗弧菌在18 h后开始生长,但是与空白对照相比十分缓慢,32~36 h的吸光值仅为空白对照组的1/5。即使鳗弧菌开始生长,但是丁香酚对其生长依然存在较大的抑制作用。相对于空白对照组和MIC组,MBC组培养液所测吸光值极小(0.003~0.01),表明鳗弧菌基本没有生长。

    图  3  丁香酚对鳗弧菌的抑菌时效
    Figure  3.  Antibacterial aging effect of eugenol on V. anguillarum

    随着养殖池塘的老化以及种质资源的退化,水产养殖病害日趋严重[22-23]。因此,大量抗生素类药物被用于鱼病防治[24]。然而,随着研究的不断深入,抗生素的危害也逐渐被人们认识。研究表明,一些抗生素如氯霉素、呋喃西林等对人体产生“三致”作用,严重危害人体健康[25]。抗生素能持久存在于养殖环境中,使得细菌产生耐药性,不仅使得药物对鱼病的治疗效力降低,也使得人体的抗病能力下降[19,26]。为确保水产品质量安全,保护人体健康,近年来多种抗生素药物已被禁止用于水产养殖业。研究发现多种中草药具有抑菌作用[27-28],但从中草药抑菌效果来看,难以在水产养殖业中广泛应用[29]。丁香酚作为一种天然的植物提取物,因其具有良好的抑菌效果,且毒副作用小、不易产生耐药性且价格低廉受到研究者的广泛关注。

    目前,在食品领域丁香酚已被广泛用于食品贮藏保鲜,以延长货架期[13]。并且在水产领域十分重视丁香酚对鲜活水产品的麻醉效果,但是关于丁香酚对养殖和流通环节鲜活水产品致病菌的抑菌作用的研究甚少[15-16]。本研究显示丁香酚对鳗弧菌的MIC和MBC分别为400 μg·mL–1和800 μg·mL–1,表明其对水产养殖环境中广泛存在的主要致病菌鳗弧菌具有良好的抑菌效果。且抑菌时效实验表明(图3),400 μg·mL–1的丁香酚在18 h内基本抑制了鳗弧菌的生长。即使在18 h后鳗弧菌开始缓慢生长,但是与空白对照组相比,对应时间(32~36 h)的吸光值仅为空白对照组的1/5,表明丁香酚依然对鳗弧菌的生长存在较大的抑制作用。

    与食源性致病菌研究结果相比(表2),鳗弧菌对丁香酚的敏感性与金黄色葡萄球菌 (Staphylococcus aureus)、沙门氏菌(Salmonella anatum)、李斯特菌(Listeria monocytogenes)、大肠杆菌(Escherichia coli)相似,表明丁香酚不仅可以应用于食品领域贮藏保鲜,也可应用于水产行业细菌性疾病防控。与水产致病菌研究结果相比(表2),鳗弧菌对丁香酚的敏感性高于嗜水气单胞菌(Aeromonas hydrophila)、维氏气单胞菌(A. veronii)、弗氏柠檬酸杆菌(Citrobacter freundii),低于格氏乳球菌(Lactococcus garvieae),由此可见鳗弧菌对丁香酚的敏感性相对较高,具有较高的研究价值。

    表  2  丁香酚对不同细菌MIC和MBC
    Table  2.  Minimum inhibitory concentration and minimum bactericidal concentration of eugenol against different bacteria
    细菌种类
    bacterial species
    最低抑菌浓度/μg·mL–1
    MIC
    最小杀菌浓度/μg·mL–1
    MBC
    文献
    Reference
    金黄色葡萄球菌 Staphylococcus aureus600700[30]
    128~512[31]
    400600[32]
    李斯特菌 Listeria monocytogenes500800[33]
    弯曲空肠杆菌 Campylobacter jejunni1.25[34]
    沙门氏菌 Salmonella anatum400600[32]
    大肠杆菌 Escherichia coli400600[32]
    嗜水气单胞菌 Aeromonas hydrophila8001 600[18]
    800~3 2001 600~3 200[17]
    维氏气单胞菌 Aeromonas veronii8001 600[18]
    格氏乳球菌 Lactococcus garvieae30[35]
    弗氏柠檬酸杆菌 Citrobacter freundii1 6001 600[18]
    鳗弧菌 Vibrio anguillarum400800本研究
    下载: 导出CSV 
    | 显示表格

    从本研究结果与相关研究结果的差异性来看(表2),不同水产致病菌对丁香酚的敏感性差异明显,这可能与丁香酚的抑菌机理有关。目前关于丁香酚抑菌机制的说法尚不统一。有研究认为丁香酚通过作用于细菌细胞内酶系统或功能蛋白,进而抑制细胞新陈代谢,从而起到抑菌作用[30];还有研究认为丁香酚通过改变细菌毒力达到抑菌效果[31];然而普遍接受的理论是丁香酚通过破坏细菌细胞膜产生抑菌作用[10-11,36]。因此,深入了解丁香酚对鳗弧菌的抑菌机理,对其未来应用于水产养殖业细菌性疾病防控和在鲜活水产品流通环节中如何起到麻醉和抑菌双重作用至关重要。

    由于丁香酚具有广泛的药理和生物学特性[37],用丁香酚防控水产养殖细菌性疾病已成为新兴的研究热点。但在实验室得出的体外抑菌实验结果应用于实际生产时,要考虑到水产动物对该药的承受能力,正确的用药范围应是既能防控细菌性疾病又不超过水产动物对该药的耐受力。本研究进行了丁香酚对鳗弧菌的体外抑菌实验,其结果可作为防控水产养殖和鲜活水产品流通过程中鳗弧菌感染的依据,但在实际生产中的应用效果有待进一步验证。

    作为一种高效、安全的渔用麻醉剂,丁香酚已在许多国家和地区广泛应用,在中国也已用于鲜活水产品的转移和运输环节[38-39]。本研究表明丁香酚对水产养殖业典型致病菌鳗弧菌具有抑菌和杀菌效果,存在防止活体感染和降低违禁药物使用的潜力。但如何充分发挥丁香酚的麻醉效果,深入发掘丁香酚对水产致病菌的抑菌潜力,还有待进一步的研究。

  • 图  1   珠江口调查站位图

    Figure  1.   Sampling sites in Pearl River estuary

    图  2   珠江口生态系统食物网

    Ⅰ~Ⅳ表示营养级等级;数字1~29表示功能组序号,序号所具体代表的功能组见表1;后图同此

    Figure  2.   Food web of Pearl River estuary ecosystem

    Ⅰ−Ⅳ. trophic grades; 1−29. functional groups serial numbers, and the functional group specifically represented by the serial number is shown in Tab.1. The same case in the following figure.

    图  3   珠江口生态系统功能组的混合营养效应

    Figure  3.   Mixed trophic impact of functional groups in Pearl River Estuary ecosytem

    表  1   珠江口生态系统Ecopath模型的功能群及主要种类

    Table  1   Functional groups and main species in Pearl River estuary

    序号
    No.
    功能组
    functional group
    种类
    species
    1海洋哺乳动物中华白海豚 Sousa chinensis
    2鲨鳐类何氏鳐 Raja hollandi、尖头斜齿鲨 Scoliodon sorrakowah
    3其他大型中上层鱼类长颌宝刀鱼 Chirocentrus nudus、四指马鲅 Eleutheronema tetradactylus、鮻鱼 Liza haematocheila、带鱼 Trichiurus haumela、短带鱼 Trichiurus brevis、二长棘鲷 Paerargyrops edita
    4花鲈花鲈 Lateolabrax maculatus
    5其他小型中上层鱼类前鳞骨鲻 Mugilophuyseni、白氏银汉鱼 Allanetta bleekeri、六指马鲅 Polynemus sextarius、丽叶鲹 Syngnathus acus Linnaeus 等
    6其他鲱形目鱼类裘氏小沙丁鱼 Sardinella jussieu、斑鰶 Clupanodon punctatus、鳓 Ilisha elongate、康氏小公鱼 Stolephorus commersoni、赤鼻棱鳀 Thrissa kammalensis、杜氏棱鳀 Thrissa dussumieri、汉氏棱鳀 Thrissa hamiltonii、七丝鲚 Coilia grayii
    7凤鲚凤鲚 Coilia mystus
    8花鰶花鰶 Clupanodon thrissa
    9其他大型底栖鱼类长蛇鲻 Saurida elongata、尖吻鳗 Uroconger lepturus、海鳗 Muraenesox cinereus、龙头鱼 Harpodon nehereus、中华海鲶 Arius sinensis、多鳞鱚 Sillago sihama、黄斑篮子鱼 Siganus oramin、斑点鸡笼鲳 Drepane punctata、广东鲂 Megalobrama hoffmanni、大鳞舌鳎 Cynoglossus macrolepidotus、半滑舌鳎 Cynoglossus semilaevis
    10石首鱼科棘头梅童鱼 Collichthys lucidus、皮氏叫姑鱼 Johnius belengeri、截尾白姑鱼 Argyrosomus aneus、勒氏短须石首鱼 Umbrina russelli
    11黑鲷黑鲷 Acanthopagrus schlegelii
    12黄鳍鲷黄鳍鲷 Acanthopagrus latus
    13小型底层鱼类眶棘双边鱼 Ambassis gymnocephalus、白肌银鱼 Leucosoma chinensis、鹿斑鲾 Leiognathus ruconius、短吻鲾 Leiognathus brevirostris
    14鲀形目鱼类斑纹东方鲀 Fugu ocellatus、棕腹刺鲀 Gastrophysus spadiceus、黑鳃兔头鲀 Lagocephalus inermis
    15鰕虎鱼类矛尾鰕虎鱼 Chaeturichthys stigmatias、钟馗鰕虎鱼 Triaenopgon barbatus、红狼牙鰕虎鱼 Odontamblyopus rubicundus、孔鰕虎鱼 Trypauchen vagina
    16头足类短蛸 Octopus ocellatus、中国枪乌贼 Loligo chinensis、曼氏无针乌贼 Sepiella japonica
    17其他无脊椎动物毛海参类等
    18蟹类锯缘青蟹 Scylla serrata、红星梭子蟹 Portunus sanguinolentus、日本蟳 Charybdis japonica、锈斑蟳 Charybdis feriatus、字纹弓蟹 Varuna litterata、直额绒螯蟹 Eriocheir rectus、字纹弓蟹 Varuna litterata
    19其他虾类近缘新对虾 Metapenaeus affinis、周氏新对虾 Metapenaeus joyneri、墨吉对虾 Banana prawn、脊尾白虾 Exopalaemon carinicauda、鲜明鼓虾 Alpheus distinguendus、细螯沼虾 Macrobrachium superbum、广东长臂虾 Palaemon guangdongensis、亨氏仿对虾 Parapenaeopsis hungerford
    20长毛对虾长毛对虾 Penaeus penicillatus
    21斑节对虾斑节对虾 Penaeus monodon
    22虾蛄类黑斑口虾蛄 Oratosquilla kempi、猛虾蛄 Harpiosquilla harpax、口虾蛄 Oratosquilla oratoria、眼斑猛虾蛄 Harpiosquilla annandalei
    23其他大型底栖动物体长>1 mm,包括其他棘皮动物、甲壳类、软体动物包括光滑河篮蛤 Potamocorbula laevis、河蚬 Corbicula fluminea、中国圆田螺 Cipangopaludina chinensis、菲律宾偏顶蛤 Modiolus philippinarum、小荚蛏 Siliqua minima
    24波纹巴非蛤波纹巴非蛤 Paphia undulata
    25棘皮动物海胆类、海参类、海星类、蛇尾类等
    26小型底栖动物体长<1 mm,包括轮虫类、环节动物、多毛类、软体动物、甲壳类等
    27浮游动物原生动物、水螅水母类、桡足类、枝角类、端足类、长尾类、短尾类、糠虾类、毛颚类、有尾类、其他浮游幼体等
    28浮游植物硅藻、甲藻、蓝藻、绿藻类:颗粒直链藻 Melosira granulata、中肋骨条藻 Skeletonema costatum、小球藻 Chlorella sp.、黄丝藻 Tribonema sp.等
    29有机碎屑颗粒有机碳和溶解有机碳
    下载: 导出CSV

    表  2   珠江口生态系统Ecopath模型功能组估算参数

    Table  2   Basic input and output parameters of groups estimated by Ecopath for Pearl River estuary ecosystem

    序号
    No.
    功能组
    functional group
    营养级
    trophic level
    生物量/t·km−2
    B
    生产量/生物量/a−1
    P/B
    消耗量/生物量/a−1
    Q/B
    转化效率
    EE
    1海洋哺乳动物4.1590.0090.04514.770.000
    2鲨鳐类4.1520.0120.8209.5000.000
    3其他大型中上层鱼类3.3660.7210.9405.1100.294
    4花鲈3.7220.0040.2707.3000.721
    5其他小型中上层鱼类3.2771.3702.88011.000.391
    6其他鲱形目鱼类3.1121.7504.08017.350.243
    7凤鲚2.6960.3302.82513.500.837
    8花鰶2.9310.1203.65012.100.769
    9其他大型底栖鱼类3.6820.0122.43227.440.616
    10石首鱼科鱼类3.2260.1603.55011.350.608
    11黑鲷3.6800.0050.3306.6000.600
    12黄鳍鲷3.3320.0080.4508.1000.681
    13小型底层鱼类3.2511.7703.94015.590.896
    14鲀形目鱼类3.4010.1201.7807.1100.086
    15鰕虎鱼类3.0980.8704.11017.200.805
    16头足类3.6471.243.50011.600.674
    17其他无脊椎动物2.4691.2709.60041.540.903
    18蟹类2.6510.8105.65026.900.918
    19其他虾类2.6691.0896.80041.540.820
    20长毛对虾2.6690.0306.50030.000.647
    21斑节对虾2.6690.0056.50030.000.452
    22虾蛄类3.0741.7005.30018.900.591
    23其他大型底栖动物2.4505.6005.10018.500.915
    24波纹巴非蛤2.2001.9503.00018.5000.970
    25棘皮动物2.1841.57010.26041.540.561
    26小型底栖动物2.25013.766.57036.900.789
    27浮游动物2.00013.5036.000186.00.437
    28浮游植物1.00015.00230.0000.672
    29有机碎屑1.000200.00.374
     注:黑体部分为模型估算值  Note: The estimated parameters by model are in bold.
    下载: 导出CSV

    表  3   珠江口水域生态系统的总体特征参数

    Table  3   Summary statistics of net flow in Pearl River estuary ecosystem by Ecopath

    特征参数
    attribute parameter
    数值
    value
    数值1
    Value 1
    数值2
    Value 2
    数值3
    Value 3
    数值4
    Value 4
    数值5
    Value 5
    数值6
    Value 6
    总消耗量/t·(km2·a)−1
    total consumption
    3 491.9343 492.5913 495.2013 497.1343 538.4343 540.0844 859.454
    总输出量/t·(km2·a)−1
    total export
    1 345.6361 345.1351 343.1861 341.7651 318.5111 317.548473.380
    总呼吸量/t·(km2·a)−1
    total respiratory flow
    2 104.3642 104.8652 106.8142 108.2352 131.4892 132.4522 976.620
    流向碎屑总量/t·(km2·a)−1
    total flows into detritus
    2 150.5132 150.0122 148.0632 146.7462 128.9682 128.2041 415.009
    系统总流量/t·(km2·a)−1
    total system throughput
    9 092.4479 092.6039 093.2649 093.8809 117.4029 118.2889 724.463
    总生产量/t·(km2·a)−1
    total production
    4 139.1834 139.2084 139.3474 139.4724 149.2584 149.6164 360.943
    总初级生产力/t·(km2·a)−1
    calculated total net primary production
    3 450.0003 450.0003 450.0003 450.0003 450.0003 450.0003 450.000
    总初级生产力/总呼吸量
    total primary production/total respiration
    1.6391.6391.6381.6361.6191.6181.159
    净系统生产量/t·(km2·a)−1
    net system production
    1 345.6361 345.1351 343.1861 341.7651 318.5111 317.548473.380
    总初级生产力/总生物量
    total primary production/total biomass
    53.25353.17952.84952.73152.00951.96624.873
    总生物量/t·(km2·a)−1
    total biomass (excluding detritus)
    64.78564.87565.28065.42766.33566.390138.705
    联结指数
    connectance index
    0.3700.3700.3700.3700.3700.3700.370
    系统杂食指数
    system omnivory index
    0.2870.2840.2840.2850.2880.2890.283
     注:“数值”代表当前的系统状态;“数值1”至“数值6”依次表示花鲈、黑鲷、黄鳍鲷、长毛对虾、斑节对虾和波纹巴非蛤达到最大生态容纳量后的系统特征参数  Note: The "value" represents the present status of the system; Value 1−Value 6 represent the status after a large amount of L. japonicus, A. schlegelii, A. latus, P. penicillatus, P. monodon and P. undulata biomass.
    下载: 导出CSV

    表  4   6种适宜放流种类在珠江口生态系统中的最大生态容纳量

    Table  4   Maximum ecological carrying capacity of six species in Pearl River estuary ecosystem

    序号
    No.
    适宜放流种类
    suitable release species
    当前生物量/t·km−2
    current biomass
    最大容纳量/t·km−2
    maximum capacity
    转换效率/%
    conversion efficiency
    1 花鲈 0.004 0.094 12.28
    2 黑鲷 0.005 0.500 12.46
    3 黄鳍鲷 0.008 0.650 12.40
    4 长毛对虾 0.030 1.580 12.33
    5 斑节对虾 0.005 1.610 12.34
    6 波纹巴非蛤 1.950 75.870 11.06
     注:当前系统转换效率为12.23%
     Note: The current system conversion efficiency is 12.23%.
    下载: 导出CSV
  • [1] 袁梦, 汤勇, 徐姗楠, 等. 珠江口南沙海域秋季渔业资源群落结构特征[J]. 南方水产科学, 2017, 13(2): 18-25. doi: 10.3969/j.issn.2095-0780.2017.02.003
    [2] 晏磊, 谭永光, 杨吝, 等. 珠江口水域秋季刺网的渔获组成及多样性分析[J]. 南方水产科学, 2016, 12(1): 111-119. doi: 10.3969/j.issn.2095-0780.2016.01.015
    [3] 肖瑜璋, 王蓉, 张保学. 珠江口海域海洋渔业资源现状分析与建议[J]. 黑龙江科技信息, 2010(28): 233. doi: 10.3969/j.issn.1673-1328.2010.28.228
    [4] 段丽杰. 基于EwE的珠江口渔业和近海生态系统模拟研究[D]. 广州: 中山大学, 2009: 9-15.
    [5] 程家骅, 姜亚洲. 海洋生物资源增殖放流回顾与展望[J]. 中国水产科学, 2010, 17(3): 610-617.
    [6]

    HEYMANS J J, COLL M, LINK J S, et al. Best practice in Ecopath with Ecosim food-web models for ecosystem-based management[J]. Ecol Model, 2016, 331: 173-184. doi: 10.1016/j.ecolmodel.2015.12.007

    [7]

    De MUTSERT K, STEENBEEK J, LEWIS K, et al. Exploring effects of hypoxia on fish and fisheries in the northern Gulf of Mexico using a dynamic spatially explicit ecosystem model[J]. Ecol Model, 2016, 331: 142-150. doi: 10.1016/j.ecolmodel.2015.10.013

    [8] 米玮洁, 胡菊香, 赵先富. 生态通道模型及其在水生态系统中的应用探讨[J]. 环境科学与技术, 2012, 35(7): 186-190, 196. doi: 10.3969/j.issn.1003-6504.2012.07.040
    [9] 许祯行, 陈勇, 田涛, 等. 基于Ecopath模型的獐子岛人工鱼礁海域生态系统结构和功能变化[J]. 大连海洋大学学报, 2016, 31(1): 85-94.
    [10] 陈作志, 邱永松, 贾晓平, 等. 捕捞对北部湾海洋生态系统的影响[J]. 应用生态学报, 2008, 19(7): 1604-1610.
    [11] 杨超杰, 吴忠鑫, 刘鸿雁, 等. 基于Ecopath模型估算莱州湾朱旺人工鱼礁区日本蟳、脉红螺捕捞策略和刺参增殖生态容量[J]. 中国海洋大学学报(自然科学版), 2016, 46(11): 168-177.
    [12] 吴忠鑫, 张秀梅, 张磊, 等. 基于线性食物网模型估算荣成俚岛人工鱼礁区刺参和皱纹盘鲍的生态容纳量[J]. 中国水产科学, 2013, 20(2): 327-337.
    [13] 王腾, 张贺, 张虎, 等. 基于营养通道模型的海州湾中国明对虾生态容纳量[J]. 中国水产科学, 2016, 23(4): 965-975.
    [14] 刘玉, 隋丽杰, 段丽杰, 等. 珠江口EwE模型功能组划分研究[J]. 海洋环境科学, 2008, 27(5): 480-483. doi: 10.3969/j.issn.1007-6336.2008.05.018
    [15] 农业部. 农业部关于做好“十三五”水生生物增殖放流工作的指导意见[EB/OL]. [2016-05-25]. http://www.ynagri.gov.cn/dl/news730/20160525/6269010.shtml.
    [16]

    CHRISTENSEN V, WALTERS C J. Ecopath with Ecosim: methods, capabilities and limitations[J]. Ecol Model, 2004, 172(2/3/4): 109-139.

    [17]

    CHRISTENSEN V, WALTERS C J, PAULY D. Ecopath with ecosim: a user's guide[M]. Vancouver: University of British Columbia, 2005: 154.

    [18] 王增焕, 李纯厚, 贾晓平. 应用初级生产力估算南海北部的渔业资源量[J]. 海洋水产研究, 2005, 26(3): 9-15.
    [19]

    PITCHER T J, BUCHARY E, ASUMAILA U R. Spatial simulations of Hong Kong's marine ecosystem: ecological and economic forecasting of marineprotected areas with human-made reefs[J]. Fish Centre Res Rep, 2000, 10(3): 154-158.

    [20]

    PAULY D. On the interrelationships between natural mortality, growth parameters, and mean environmental temperature in 175 fish stocks[J]. ICES J Mar Sci, 1980, 39(2): 175-192. doi: 10.1093/icesjms/39.2.175

    [21]

    PALOMARES M D, PAULY D. Predicting food consumption of fish populations as functions of mortality, food type, morphometrics, temperature and salinity[J]. Mar Freshw Res, 1998, 49(5): 447-453. doi: 10.1071/MF98015

    [22]

    WANG Y, DUAN L, LI S, et al. Modeling the effect of the seasonal fishing moratorium on the Pearl River estuary using ecosystem simulation[J]. Ecol Model, 2015, 312: 406-416. doi: 10.1016/j.ecolmodel.2015.06.011

    [23] 顾洪静. 福建九龙江口水域鱼类群落及其资源的研究[D]. 厦门: 集美大学, 2014: 47-62.
    [24]

    MORISSETE L, HAMMILL M O, SAVENKOFF C. The trophic role of marine mammals in the northern Gulf of St. Lawrence[J]. Mar Mammal Sci, 2006, 22(1): 74-103. doi: 10.1111/j.1748-7692.2006.00007.x

    [25] 黄美珍. 台湾海峡及邻近海域主要无脊椎动物食性特征及其食物关系研究[J]. 海洋科学, 2005, 29(1): 73-80. doi: 10.3969/j.issn.1000-3096.2005.01.015
    [26] 林群, 李显森, 李忠义, 等. 基于Ecopath模型的莱州湾中国对虾增殖生态容量[J]. 应用生态学报, 2013, 24(4): 1131-1140.
    [27]

    ODUM E P. The strategy of ecosystem development[J]. Science, 1969, 164(3877): 262-270. doi: 10.1126/science.164.3877.262

    [28] 莫宝霖, 秦传新, 陈丕茂, 等. 基于Ecopath模型的大亚湾海域生态系统结构与功能初步分析[J]. 南方水产科学, 2017, 13(3): 9-19. doi: 10.3969/j.issn.2095-0780.2017.03.002
    [29]

    LIN H J, SHAO K T, KUO S R, et al. A trophic model of a sandy barrier lagoon at Chiku in southwestern Taiwan[J]. Estuar Coast Shelf Sci, 1999, 48(5): 575-588. doi: 10.1006/ecss.1998.0457

    [30]

    LIN H J, SHAO K T, HWANG J S, et al. A trophic model for Kuosheng Bay in northern Taiwan[J]. J Mar Sci Technol, 2004, 12(5): 424-432.

    [31] 杨林林, 姜亚洲, 袁兴伟, 等. 象山港生态系统结构与功能的Ecopath模型评价[J]. 海洋渔业, 2015, 37(5): 399-408. doi: 10.3969/j.issn.1004-2490.2015.05.002
    [32] 陈作志, 邱永松. 南海北部生态系统食物网结构、能量流动及系统特征[J]. 生态学报, 2010, 30(18): 4855-4865.
    [33] 陈丕茂. 广东人工鱼礁区增殖放流种类初探[J]. 南方水产, 2005, 1(1): 11-20. doi: 10.3969/j.issn.2095-0780.2005.01.003
    [34] 郭晓奇. 广东海洋生物增殖放流存在的问题与对策[J]. 海洋与渔业, 2014(7): 40-41. doi: 10.3969/j.issn.1672-4046(s).2014.07.038
    [35] 佚名. 农业部和广东省联合举办南海生物资源增殖放流[J]. 北京农业, 2009(21): 34.
    [36] 洪巧巧, 庄平, 杨刚, 等. 长江口中国花鲈食性分析[J]. 生态学报, 2012, 32(13): 4181-4190.
  • 期刊类型引用(24)

    1. 庄平,赵峰,罗刚,张涛,石小涛,冯广朋,王思凯. 水生生物资源增殖放流的发展历程与问题思考. 水生生物学报. 2025(01): 43-54 . 百度学术
    2. 章欣仪,郑春芳,秦松,刘伟成,张川,范青松. 基于Ecopath模型的瓯江口斑鰶、刀鲚和鮻的增殖生态容量评估. 水产学报. 2025(02): 97-108 . 百度学术
    3. 肖玉林,施凯,许强. 海南岛热带典型天然牡蛎礁生态系统营养结构与功能评价. 生态学报. 2025(04): 1697-1710 . 百度学术
    4. 王孟佳,徐开达,王好学,周永东,李鹏飞,朱凯,陈欣怡,陈璐. 浙江近海甲壳类资源增殖放流现状研究. 海洋开发与管理. 2024(01): 136-144 . 百度学术
    5. 杨禧越,刘永,李纯厚,唐广隆,张达娟,游奕来,潘淑芳,郑秋实,肖雅元,吴鹏. 珠江口万山群岛黄鳍棘鲷食性随年龄的变化特征. 中国水产科学. 2024(02): 219-231 . 百度学术
    6. 韩毓,张杭君. 水产生态容量及在淡水增养殖上的应用研究进展. 水产科学. 2024(04): 675-682 . 百度学术
    7. 张聪,孔令宇. 海上油气田开发工程渔业资源补偿措施研究. 环境保护. 2024(15): 26-28 . 百度学术
    8. 袁华荣,章守宇,陈丕茂. 海洋牧场建设效益评价研究进展与展望. 南方水产科学. 2024(05): 1-13 . 本站查看
    9. 范泽宇,白雪兰,徐聚臣,黄路全,王晓宁,吕亚兵,侯杰,何绪刚. 运用Ecopath模型构建大水面增殖放流方案——以洈水水库为例. 华中农业大学学报. 2023(01): 82-91 . 百度学术
    10. 方光杰,周永东,梁君,徐开达,龙翔宇,刘润泽. 岛礁型海洋牧场聚鱼增殖模式综述. 浙江海洋大学学报(自然科学版). 2023(02): 165-172 . 百度学术
    11. 冯瑞玉,郭禹,李金明,孙金辉,于刚,吴一桂,秦传新. 基于EnhanceFish模型的鱼类增殖放流策略研究:以中山市南朗水域黄鳍棘鲷增殖放流为例. 渔业科学进展. 2023(05): 1-10 . 百度学术
    12. 江满菊,郭禹,秦传新,潘莞倪,于刚,马振华. 黄鳍棘鲷幼鱼对不同开孔形状和直径的人工鱼礁模型的行为响应. 中国水产科学. 2023(12): 1496-1506 . 百度学术
    13. 裴精花,陈清华,范金金,刘伟杰,郭照良,隋昊志. 珠江口海域游泳动物群落结构及多样性特征. 南方农业学报. 2023(12): 3727-3738 . 百度学术
    14. 洪小帆,陈作志,张俊,江艳娥,龚玉艳,蔡研聪,杨玉滔. 基于Ecopath模型的七连屿礁栖性生物的生态承载力分析. 热带海洋学报. 2022(01): 15-27 . 百度学术
    15. 孔业富,尹成杰,王林龙,刘杨,林黎,康斌. 基于Ecopath模型的三门湾生态系统结构与功能. 应用生态学报. 2022(03): 829-836 . 百度学术
    16. 袁旸,线薇薇,张辉. 基于生态通道模型的我国渔业资源生态容量研究进展. 海洋科学. 2022(07): 105-119 . 百度学术
    17. 陈璐,王好学,徐开达,吕泽砚,黄波,李哲,梁君,周永东,李鹏飞,刘连为. 浙江近岸水域岛礁性鱼类增殖放流现状分析. 浙江海洋大学学报(自然科学版). 2022(05): 459-465+472 . 百度学术
    18. 马文刚,尹洪洋,孙春阳,王兆国,魏一凡,冯博轩,奉杰,许强,李秀保,王爱民. 热带典型珊瑚岛礁海洋牧场花刺参底播增殖容量及其生态效应预测. 海洋与湖沼. 2022(06): 1573-1584 . 百度学术
    19. 朱克诚,刘宝锁,伞利择,刘波,张楠,郭华阳,郭梁,江世贵,张殿昌. 黃鳍棘鲷放流苗种的遗传质量评估. 广东海洋大学学报. 2021(03): 138-144 . 百度学术
    20. 范泽宇,白雪兰,徐聚臣,王晓宁,吕亚兵,侯杰,何绪刚. 基于Ecopath模型的洈水水库生态系统特征及鲢、鳙生态容量分析. 中国水产科学. 2021(06): 773-784 . 百度学术
    21. 王书献,张胜茂,戴阳,王永进,隋江华,朱文斌. 利用声呐数据提取磷虾捕捞深度方法研究. 南方水产科学. 2021(04): 91-97 . 本站查看
    22. 许龙飞,梁志强,李君轶,郭星辰,姜海波,安苗,邵俭. 野生鲫、鳡形态性状与体质量的通径分析. 山地农业生物学报. 2021(06): 71-75 . 百度学术
    23. 林坤,麦广铭,王力飞,王学锋. 2015—2018年珠江口近岸海域鱼类群落结构及其稳定性. 水产学报. 2020(11): 1841-1850 . 百度学术
    24. 戴媛媛,吴会民,张韦,王健,缴建华. 基于Ecopath模型的我国海洋渔业生态系统研究概况. 海洋湖沼通报. 2020(06): 150-157 . 百度学术

    其他类型引用(15)

图(3)  /  表(4)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 39
出版历程
  • 收稿日期:  2018-11-27
  • 修回日期:  2019-03-31
  • 录用日期:  2019-04-25
  • 网络出版日期:  2019-06-10
  • 刊出日期:  2019-08-04

目录

/

返回文章
返回