硝化型生物絮团的驯化培养

田道贺, 桂福坤, 李华, 周子明, 刘青松, 董宏标, 段亚飞, 张家松

田道贺, 桂福坤, 李华, 周子明, 刘青松, 董宏标, 段亚飞, 张家松. 硝化型生物絮团的驯化培养[J]. 南方水产科学, 2019, 15(4): 39-45. DOI: 10.12131/20180260
引用本文: 田道贺, 桂福坤, 李华, 周子明, 刘青松, 董宏标, 段亚飞, 张家松. 硝化型生物絮团的驯化培养[J]. 南方水产科学, 2019, 15(4): 39-45. DOI: 10.12131/20180260
TIAN Daohe, GUI Fukun, LI Hua, ZHOU Ziming, LIU Qingsong, DONG Hongbiao, DUAN Yafei, ZHANG Jiasong. Domestication and cultivation of nitrifying bio-floc[J]. South China Fisheries Science, 2019, 15(4): 39-45. DOI: 10.12131/20180260
Citation: TIAN Daohe, GUI Fukun, LI Hua, ZHOU Ziming, LIU Qingsong, DONG Hongbiao, DUAN Yafei, ZHANG Jiasong. Domestication and cultivation of nitrifying bio-floc[J]. South China Fisheries Science, 2019, 15(4): 39-45. DOI: 10.12131/20180260

硝化型生物絮团的驯化培养

基金项目: 中国水产科学研究院南海水产研究所中央级公益性科研院所基本科研业务费专项资金资助(2017YB15);深圳市战略性新兴产业和未来产业发展专项资金(201605051733565380);广东省自然科学基金项目(2017A030313147, 2015A030310393);农业部南海渔业资源开发利用重点实验室开放基金(FREU2017-01);农业部海洋渔业可持续发展重点实验室开放课题(2018HY-XKQ01);浙江省自然科学基金项目(Z16E090006)
详细信息
    作者简介:

    田道贺(1994— ),男,硕士研究生,从事工厂化循环水研究。E-mail: tiandaohe258@163.com

    通讯作者:

    张家松(1971— ),男,博士,研究员,从事水产设施养殖技术研究。E-mail: jiasongzhang@hotmail.com

  • 中图分类号: X 52

Domestication and cultivation of nitrifying bio-floc

  • 摘要:

    为培养硝化型生物絮团、减少碳源投加、提高絮团效率并缩短培养周期,文章采用养殖废水排污口底泥为接种污泥培养生物絮团,通过逐渐减少碳源投加,开展了硝化型生物絮团的定向培养,并结合高通量测序分析了生物絮团菌群变化。结果显示,排污口底泥主要优势菌群与其他报道的异养生物絮团一致,具有良好的微生物菌群基础,能够在7 d内形成出水稳定的生物絮团。随着碳源减少,生物絮团微生物菌群结构随之改变,32 d后形成硝化型生物絮团。高通量测序结果显示,接种污泥和硝化型生物絮团主要优势菌群均为变形菌门和拟杆菌门。在纲水平上,原始污泥优势菌群为Gammaproteobacteria (γ-变形杆菌属)、Bacteroidia (拟杆菌属)和Deltaproteobacteria (δ-变形杆菌属),而硝化型生物絮团优势菌群为BacteroidiaGammaproteobacteriaAnaerolineae (厌氧绳菌属)。硝化型生物絮团硝化菌总相对丰度对比原始污泥有了较大提高,出水水质稳定,能有效调控养殖后期水质并降低养殖成本。

    Abstract:

    In this study, nitrifying biofloc was cultivated from sewage outlet sediment by gradually reducing carbon source so as to improve its nitrogen removal performance, reduce the cost and shorten the culture period. High throughput sequencing technology was used to analyze the bacterial community structure of the seed sludge and nitrifying biofloc. The results show that the main dominant flora of seed sludge was consistent with other reported heterotrophic flocs, indicating that the sewage outlet sediment has good microbial flora foundation and can form nitrogen removal stable biofloc within 7 d. As the decrease of carbon source, the microbial flora structure of heterotrophic biofloc changed, and the nitrifying biofloc gradually formed after 32-day target training. The dominant bacterial communities of the seed sludge and nitrifying biofloc were Proteobacteria and Bacteroidetes. At Class level, the dominant flora of seed sludge were Gammaproteobacteria, Bacteroidia and Deltaproteobacteria, while the dominant flora of nitrifying biofloc were Bacteroidia, Gammaproteobacteria and Anerolineae. Among them, the total relative abundance of nitrifying bacteria in nitrifying biofloc had greatly increased compared with the seed sludge. The nitrifying biofloc contributes to high nitrogen removal performance and less aquaculture cost.

  • 岩藻黄质是一种类胡萝卜素,在自然界中分布广泛,主要存在于藻类、贝类中,尤其在褐藻、硅藻中含量较高。岩藻黄质可以与叶绿素、蛋白质形成捕光复合体,是硅藻中发挥捕光作用的重要化合物[1]。目前有关岩藻黄质活性的报道较多,研究表明岩藻黄质具有抑菌、抗炎、抗肥胖、抗糖尿病、抗肿瘤、调节肠道菌群和抗器官纤维化等生理活性[2-6]

    目前岩藻黄质的最主要来源依旧是海藻[7],例如海带 (Laminaria japonica)、三角褐指藻 (Phaeodactylum tricornutum)[8]。岩藻黄质是一种优质的海洋来源功能因子,但由于其合成途径目前尚未得到完全解析,其生产及产量调控尚缺乏理论依据[9-12],合成生物学是发掘未知合成途径的重要手段,通常需要首先在微生物中异源构建目标化合物的上游已知中间物的合成途径,然后利用合成该中间物的工程菌株探索下游未知途径[13]。目前已知合成途径且结构上最接近岩藻黄质的中间物是新黄质[14]。作为岩藻黄质的可能前体物质,新黄质的结构与岩藻黄质很相似 (图1),两者均含有1条多烯链,2个六元环和1个累积双键,但存在着双键、羟基和羰基、乙酰氧基的区别。

    图  1  新黄质与岩藻黄质的结构式
    Figure  1.  Structural formula of neoxanthin and fucoxanthin

    新黄质的合成途径见图2。甲羟戊酸 (MVA) 途径主要存在于真核生物、古生菌和植物的细胞质中,甲基赤藓糖醇-4-磷酸 (MEP) 途径主要存在于细菌和植物叶绿体中,丙酮酸、甘油醛-3-磷酸和乙酰辅酶A分别通过MEP途径和MVA途径生成MEP和MVA,再经由其他酶催化生成异戊烯焦磷酸 (IPP) 和二甲基烯丙基焦磷酸 (DMAPP)[15-17]。大肠杆菌中含有MEP途径,并有法尼基焦磷酸 (FPP) 可以作为岩藻黄质的底物[15,18]

    图  2  新黄质合成途径
    Figure  2.  Synthetic pathway of neoxanthin

    目前尚未见以微生物宿主生产新黄质的报道,因此构建合成新黄质的微生物细胞工厂成为发掘岩藻黄质的未知途径,并进一步成为海藻高效生产岩藻黄质提供理论依据的关键环节。本研究以大肠杆菌 (Escherichia coli ) 为宿主,按照代谢途径逐步构建番茄红素、β-胡萝卜素、玉米黄质、紫黄质的合成途径,最终实现了新黄质的代谢工程合成,为进一步发掘岩藻黄质合成的未知途径奠定基础。

    本文所用菌株的基因型、功能及来源见表1,质粒的基因型、功能及来源见表2

    表  1  本文所用菌株
    Table  1.  Strains in this study
    菌株
    Strain
    基因型
    Genotype
    功能
    Function
    来源
    Source
    TreliefTM5α化学感受态细胞
    TreliefTM5α Chemically competent cell
    F, φ80dlacZ Δ M15, Δ (lacZYA-argF) U169, deoR, recA1, endA1, hsdR17 (rK, mK+), phoA, supE44, λ, thi-1, gyrA96, relA1 质粒克隆 擎科生物
    BL21 (DE3) 化学感受态细胞
    BL21 (DE3) Chemically competent cell
    F, ompT, hsdSB (rB, mB), gal, dcm (DE3) 高效表达 擎科生物
    菠萝泛菌 Pantoea ananatis crtE, crtB, crtI, crtY, crtZ 获取crtEcrtB
    crtIcrtYcrtZ基因
    中国工业微生物菌
    种保藏管理中心
    E. coli BL21 pTrc99a-crtEBI lacI, Ptrc-crtE-crtB-crtI-TrrnB, AmpR 生产番茄红素 本实验构建
    E. coli BL21 pTrc99a-crtEBIY lacI, Ptrc-crtE-crtB-crtI-crtY-TrrnB, AmpR 生产β-胡萝卜素 本实验构建
    E. coli BL21 pTrc99a-crtEBIYZ lacI, Ptrc-crtE-crtB-crtI-crtY-crtZ-TrrnB, AmpR 生产玉米黄质 本实验构建
    E. coli BL21 pTrc99a-crtEBIYZ pACYCDuet-1-QZEP3 lacI, Ptrc-crtE-crtB-crtI-crtY-crtZ-TrrnB, PT7-QZEP3-TT7, AmpR, CmR 生产紫黄质 本实验构建
    E. coli BL21 NEO lacI, Ptrc-crtE-crtB-crtI-crtY-crtZ-TrrnB, PT7-QZEP3-NSY-TT7, AmpR, CmR 生产新黄质 本实验构建
    注:crtE. 牻牛儿基牻牛儿基焦磷酸合成酶基因;crtB. 八氢番茄红素合成酶基因;crtI. 八氢番茄红素脱氢酶基因;crtY. 番茄红素环化酶基因;crtZ. β-胡萝卜素羟化酶基因;ZEP3. 玉米黄质环氧化酶基因;QZEP3. 去除叶绿体转运肽的玉米黄质环氧化酶基因;NSY. 新黄质合酶基因;后表同此。 Note: crtE. The gene of Geranylgeranyl diphosphate synthase; crtB. The gene of phytoene synthase; crtI. The gene of phytoene desaturase; crtY. The gene of Lycopene cyclase; crtZ. The gene of β-carotene hydroxylase; ZEP3. The gene of zeaxanthin epoxidase; QZEP3. The gene of zeaxanthin epoxidase without chloroplast transport peptide; NSY. The gene of neoxanthin synthase. The same case below.
    下载: 导出CSV 
    | 显示表格
    表  2  本文所用质粒
    Table  2.  Plasmids in this study
    质粒   
    Plasmid   
    基因型   
    Genotype   
    功能
    Function
    来源
    Source
    pTrc99a lacI, Ptrc-TrrnB, AmpR 载体 本实验室
    pTrc99a-crtEBI lacI, Ptrc-crtE-crtB-crtI-TrrnB, AmpR E. coli BL21中生产番茄红素 本实验构建
    pTrc99a-crtEBIY lacI, Ptrc-crtE-crtB-crtI-crtY-TrrnB, AmpR E. coli BL21中生产β-胡萝卜素 本实验构建
    pTrc99a-crtEBIYZ lacI, Ptrc-crtE-crtB-crtI-crtY-crtZ-TrrnB, AmpR E. coli BL21中生产玉米黄质 本实验构建
    pACYCDuet-1 lacI, PT7-TT7, CmR 载体 本实验室
    pACYCDuet-1-ZEP3 lacI, PT7-ZEP3-TT7, CmR E. coli BL21中生产紫黄质 本实验构建
    pACYCDuet-1-QZEP3 lacI, PT7-QZEP3-TT7, CmR E. coli BL21中生产紫黄质 本实验构建
    pACYCDuet-1-QZEP3-NSY lacI, PT7-QZEP3-NSY-TT7, CmR E. coli BL21中生产新黄质 本实验构建
    下载: 导出CSV 
    | 显示表格

    番茄红素标准品、β-胡萝卜素标准品、玉米黄质标准品、紫黄质标准品和新黄质标准品购于Sigma-Aldrich公司。高保真DNA聚合酶试剂Phanta Max Super-Fidelity DNA Polymerase、DNA聚合酶试剂2×Taq Master Mix (Dye Plus)、重组克隆试剂ClonExpress Ultra One Step Cloning Kit购于诺唯赞生物公司。凝胶萃取试剂盒E.Z.N.A® Gel Extraction Kit购于Omega Bio-Tek公司。细菌基因组DNA提取试剂盒、快速质粒小提试剂盒购于天根生化科技公司。酵母粉、蛋白胨、琼脂粉、氨苄青霉素、氯霉素购于索莱宝科技公司。SSCS Solution感受态制备液购于上海捷瑞生物公司。其他试剂及药品未作特殊说明均为国药化试分析纯。PCR引物合成及测序由青岛擎科公司提供。

    LB培养基:0.5%酵母粉,1%蛋白胨,1%的氯化钠(NaCl,固体培养基中加入2%琼脂粉),115 ℃灭菌30 min。

    ZYP-5052培养基:0.5%酵母粉,1%蛋白胨,8.1 g·L−1 磷酸氢钠 (Na2HPO4),6.8 g·L−1 磷酸二氢钾 (KH2PO4),3.3 g·L−1 磷酸铵 [(NH4)2SO4],0.2%的0.5 mol·L−1 硫酸镁(MgSO4),2%的50×5052母液 (50×5052母液:25%甘油,2.5%葡萄糖,10%的α-乳糖),115 ℃灭菌30 min。

    氨苄青霉素溶液:溶剂为水,在培养基中使用的终质量浓度为100 µg·mL−1

    氯霉素溶液:溶剂为乙醇,在培养基中使用的终质量浓度为25 µg·mL−1

    考虑到一个质粒上需要加入多个目的片段,为了保证每个片段能够正确表达,本研究在构建质粒的过程中会在2个目的片段的中间加入一段核糖体结合位点 (RBS)。在NCBI查找了菠萝泛菌中crtEcrtBcrtIcrtYcrtZ目的片段的CDS序列[19]。设计引物见表3,从菠萝泛菌基因组中通过PCR扩增得到了这5个基因。ZEP3基因来自三角褐指藻[20]NSY基因来源于番茄[21],由华大基因全基因合成。

    表  3  引物序列
    Table  3.  Primer sequence
    引物名称
    Primer
    序列 (5'—3')
    Sequence (5'—3')
    crtE-F CCGGAATTCATGACGGTCTGCGCAAAA
    crtE-R TCCCCCGGGTTAACTGACGGCAGCGAG
    crtB-F TCCCCCGGGCAGGAACAGATGAATAATCCGTCGTTA
    crtB-R CTAGTCTAGACTAGAGCGGGCGCTGCCA
    crtI-F CTAGTCTAGACAGGAACAGATGAAACCAACTACGGTA
    crtI-R CCCAAGCTTTCATATCAGATCCTCCAG
    crtY-F GAGGATCTGATATGAAAGCTTCACAGGAAACAGACCATGCAACCGCATTAT
    crtY-R GGTCTGTTTCCTGTGTTAACGATGAGTCGT
    crtZ-F CACAGGAAACAGACCATGTTGTGGATTTGG
    crtZ-R TCCGCCAAAACAGCCAAGCTTTTACTTCCCGGATGCGG
    ZEP3-F CACCACAGCCAGGATCCTATGAGTGAAGAAAAAGTGGA
    ZEP3-R TGCGGCCGCAAGCTTTTACAGGCCTGCTGC
    NSY-F AGATATACATATGGCAGATCTATGGAAACCCTGCTGAAAC
    NSY-R GGTTTCTTTACCAGACTCGAGTTACAGGCTTTCAATTGC
    下载: 导出CSV 
    | 显示表格

    同源重组法构建质粒:利用高保真DNA聚合酶PCR扩增目的基因片段与质粒片段,使得各片段连接处留有15~20 bp同源序列,使用重组克隆试剂进行重组连接,将重组产物转入E. coli Trelief™5α感受态中,涂布至对应抗生素的LB固体培养基上。12 h后对固体培养基上生长的转化子进行菌落PCR验证并选取样品进行测序。LB培养基培养测序正确的菌株,使用快速质粒小提试剂盒提取质粒。

    单质粒工程菌的构建:将pTrc99a-crtEBI、pTrc99a-crtEBIY和pTrc99a-crtEBIYZ质粒分别利用热激法直接转入E. coli BL21感受态细胞中。

    双质粒工程菌的构建:将E. coli BL21 pTrc99a-crtEBIYZ工程菌制备成感受态细胞,再利用热激法将pACYCDuet-1-QZEP3、pACYCDuet-1-QZEP3-NSY质粒转入。感受态制备方法为:将需制成感受态的菌株在LB培养基中培养4~5 h (OD600达到0.6左右),取菌液在4 000 r·min−1、4 ℃条件下离心5 min,弃上清后加入10%原菌液体积的10%无菌甘油洗涤菌体,再次离心弃上清,再重复一次甘油洗涤和离心弃上清,加入2%原菌液体积的SSCS Solution感受态制备液,即得到感受态细胞。

    将工程菌在含有对应抗生素的LB固体培养基上培养,再挑取菌落在含有抗生素的LB培养基中培养12 h,得到种子液。按2%接菌量将种子液接入50 mL ZYP-5052培养基,20 ℃发酵48 h。

    大肠杆菌类胡萝卜素提取[22]:取2.0 mL的菌液,8 000 r·min−1离心10 min留菌体,加入1 mL丙酮,在40 ℃条件下,萃取至菌体颜色全部变成白色,12 000 r·min−1离心2 min留丙酮上清。萃取液采用氮吹法进行吹干,获得类胡萝卜素产物,用200 μL丙酮复溶,0.22 µm尼龙滤膜去除杂质,得到待检测样品。

    C30检测方法[23]:使用YMC Carotenoid类胡萝卜素分析色谱柱 (250×4.6 mm) 对提取产物进行分析,进样量20 μL,吸光值476 nm,柱温35 ℃,流速1.0 mL·min−1。具体的液相检测条件见表4。用该方法绘制标准曲线 [y为峰面积,x为质量浓度 (mg·L−1)]。番茄红素:y=52.505x−1.670 7, R2=0.999;β-胡萝卜素:y=1 312.9x−12.668, R2=0.999;玉米黄质:y=129.92x−39.204, R2=0.999;紫黄质:y=130.76x−33.414, R2=0.999。

    表  4  YMC Carotenoid流动相条件
    Table  4.  YMC Carotenoid mobile phase conditions
    t/min甲醇比例
    Methanol proportion/%
    甲基叔丁醚比例
    Methyl tertiary butyl ether/%
    09010
    159010
    254060
    359010
    下载: 导出CSV 
    | 显示表格

    上述C30色谱柱检测方法无法分离紫黄质和新黄质,所以我们采用了另一种C18检测方法来达到分离目的。C18检测方法[24]:使用C18 (250×4.6 mm, 5 μm)色谱柱检测,流动相是V(乙腈)∶V(乙酸乙酯)∶V(水)=74∶16∶10,采用等度洗脱,进样量20 μL,吸光值440 nm,柱温42 ℃,流速1.0 mL·min−1。用该方法绘制标准曲线 [y为峰面积,x为质量浓度 (µg·L−1)]。紫黄质:y=76.889 x−140.93,R2=0.997;新黄质:y=357.07x+2.392,R2=0.991。

    四极杆飞行时间质谱条件:离子源为电喷雾电离源 (ESI);电离化方式为ESI+;毛细管温度为350 ℃;雾化器压力为276 kPa;干燥气流速为10 L·min−1;扫描范围为m/z 20~1 000。

    取2 mL发酵后的菌液,12 000 r·min−1离心3 min,置于85 ℃烘箱烘干24 h,测量细胞干质量[25]。根据产物浓度与细胞干质量,计算出产量单位 (细胞干质量,下同) 为mg·g−1或µg·g−1

    质粒pTrc99a-crtEBI、pTrc99a-crtEBIY和pTrc99a-crtEBIYZ成功转入E. coli BL21后,对应的工程菌E. coli BL21 pTrc99a-crtEBI、E. coli BL21 pTrc99a-crtEBIY和E. coli BL21 pTrc99a-crtEBIYZ发酵后菌体发生了颜色变化,对菌体内物质进行HPLC分析 (图3),结果表明成功产出了番茄红素、β-胡萝卜素和玉米黄质。根据标准曲线及细胞干质量计算出各产物浓度,其中E. coli BL21 pTrc99a-crtEBI的番茄红素产量为3.20 mg·g−1E. coli BL21 pTrc99a-crtEBIY的β-胡萝卜素产量为1.35 mg·g−1E. coli BL21 pTrc99a-crtEBIYZ的玉米黄质产量为0.70 mg·g−1

    图  3  番茄红素、β-胡萝卜素和玉米黄质工程菌的构建
    Figure  3.  Construction of lycopene, β-carotene and zeaxanthin engineered bacteria

    在T7启动子的作用下,基因crtEcrtBcrtIcrtYcrtZ成功表达,产出目标产物。根据HPLC结果,E. coli BL21 pTrc99a-crtEBIY和E. coli BL21 pTrc99a-crtEBIYZ中并没有发现中间产物的积累,可能原因是产物浓度较低,CRTI、CRTY和CRTZ蛋白水平相较于低浓度产物来说催化能力较强,导致没有中间产物的积累,也可能与菌株本身以及生长状况有关,不同菌株在不同生长状况下产物积累量存在差异。

    以产玉米黄质的菌株E. coli BL21 pTrc99a-crtEBIYZ为宿主菌株,转入pACYCDuet-1-ZEP3质粒,构建产紫黄质菌株E. coli BL21 pTrc99a-crtEBIYZ pACYCDuet-1-ZEP3。但HPLC检测结果显示并无紫黄质产生。分析原因可能为ZEP3基因来源于三角褐指藻,是真核生物来源的基因,可能存在信号肽或叶绿体转运肽的编码区,但原核生物无法实现真核生物对蛋白的加工,导致蛋白折叠错误,使活性减弱甚至消失。

    因此利用网站http://www.cbs.dtu.dk/services/ChloroP/预测叶绿体转运肽,预测前54个氨基酸为cTP区域。去除ZEP3基因的cTP后得到QZEP3,重新构建pACYCDuet-1-QZEP3质粒再转入产玉米黄质的工程菌中,HPLC分析菌体内产物有紫黄质存在 (图4),进一步证实了以上猜想。

    图  4  E. coli BL21 pTrc99a-crtEBIYZ pACYCDuet-1-QZEP3工程菌发酵产物HPLC结果
    Figure  4.  HPLC results of fermentation products of E. coli BL21 pTrc99a-crtEBIYZ pACYCDuet-1-QZEP3

    根据标准曲线及细胞干质量计算出产物浓度,E. coli BL21 pTrc99a-crtEBIYZ pACYCDuet-1-QZEP3的紫黄质的产量为114.70 μg·g−1, 玉米黄质产量为289.45 μg·g−1。该工程菌中不仅有紫黄质生成,还有β-胡萝卜素和玉米黄质中间产物的积累,但并未检测到番茄红素的积累,可能原因是QZEP3的蛋白水平并不高,使得玉米黄质有较多积累,而番茄红素和β-胡萝卜素的积累可能与菌株生长状况相关,在不同生长状况下产物积累量存在差异,致使菌体内存在中间产物的积累。进一步分析HPLC结果,该工程菌不仅产出预期的β-胡萝卜素、玉米黄质和紫黄质,还有未知的产物 (保留时间6.2和10.6 min) 被检测到,猜测可能是QZEP3催化玉米黄质生成紫黄质时还生成了中间体产物。

    以产紫黄质的菌株E. coli BL21 pTrc99a-crtEBIYZ pACYCDuet-1-QZEP3为宿主菌株,转入pACYCDuet-1-QZEP3-NSY质粒,构建产新黄质菌株E. coli BL21 NEO。用C30和C18色谱柱的方法对E. coli BL21 NEO菌体内产物进行检测 (图5)。紫黄质与新黄质是同分异构体,分子式为C40H56O4,分子量为600.417 9。E. coli BL21 NEO中的新黄质和紫黄质质谱结果 (图6) 显示,新黄质对应分子离子峰的m/z为600.414 6,紫黄质对应分子离子峰的m/z为600.413 8,这与紫黄质和新黄质分子量基本相当。HPLC与MS结果表明E. coli BL21 NEO成功产出新黄质。根据标准曲线及细胞干质量计算出各产物浓度,其中新黄质的产量为99.27 μg·g−1,紫黄质的产量为150.30 μg·g−1,玉米黄质的产量为119.77 μg·g−1E. coli BL21 NEO不仅产出预期的新黄质,还有β-胡萝卜素、玉米黄质和紫黄质的积累,也有未知的中间体产物生成。

    图  5  E. coli BL21 NEO工程菌HPLC检测结果
    Figure  5.  Detection of E. coli BL21 NEO by HPLC
    图  6  E. coli BL21 NEO工程菌新黄质 (a) 和紫黄质 (b) 的质谱检测结果
    Figure  6.  Detection results of neoxanthin (a) and violaxanthin (b) in E. coli BL21 NEO by MS

    本文以产玉米黄质的工程菌为宿主,并将QZEP3和NSY导入,实现了新黄质的合成,但是QZEP3和NSY基因导入后的紫黄质和新黄质产量浓度不高,可能是上游途径的底物含量少,酶的催化效果不高,后续可以通过理性设计或定向进化对QZEP3和NSY进行改造,提高QZEP3和NSY在大肠杆菌中的活性来提高紫黄质和新黄质的产量,或者通过更换启动子,调节MEP上游通路途径,基因的过表达等方法[26-29],进一步提升紫黄质和新黄质的产量。

    本文以大肠杆菌为表达菌株,进行了新黄质合成途径的构建。以含有crtEBIYZ基因的产玉米黄质的E. coli BL21为宿主,引入了QZEP3和NSY基因,成功在大肠杆菌中建立了新黄质合成途径。有关新黄质本身的生理活性研究并不多[30-32],以微生物生产新黄质可提供新的生产途径,为研究新黄质的生理活性等提供便利,也为进一步探究岩藻黄质的合成途径奠定了基础。岩藻黄质的合成途径可以指导褐藻等海藻中岩藻黄质等物质的高值化利用,如通过理性设计改造获得高产岩藻黄质的藻类。

  • 图  1   异养生物絮团照片

    a. 沉降异养生物絮团; b. 异养生物絮团光学显微镜镜检图(100×)

    Figure  1.   Pictures of heterotrophic bio-floc

    a. sedimentation of heterotrophic flocs; b. microscopic examination of heterotrophic flocs (100×)

    图  2   异养生物絮团驯化阶段氨氮、亚硝酸氮和化学耗氧量变化

    Figure  2.   Dynamic changes of ${\rm{NH}}_{\rm{4}}^{\rm{ + }}{\rm{ {\text{-}} N}}$, ${\rm{NO}}_{\rm{2}}^{\rm{ - }}{\rm{ {\text{-}} N}}$ and CODMn with heterotrophic biofioc at acclimatization stage

    图  3   硝化型生物絮团氨氮、亚硝酸盐氮和化学耗氧量变化

    Figure  3.   Dynamic changes of ${\rm{NH}}_{\rm{4}}^{\rm{ + }}{\rm{ {\text -} N}} $, ${\rm{NO}}_{\rm{2}}^{\rm{ - }}{\rm{ {\text -} N}} $ and CODMn with nitrifying biofloc

    图  4   原始污泥与硝化型生物絮团的菌群分布 (门层级)

    A. 原始污泥;B. 硝化型生物絮团

    Figure  4.   Bacterial composition at Phylum level of original sludge and nitrifying bio-flocs (at Phylum level)

    A. original sludge; B. nitrifying biological flocculent

    表  1   原始污泥与硝化型生物絮团中硝化细菌的属水平丰度

    Table  1   Relative abundance of nitrifying bacteria at Genus level of original sludge and nitrifying bioflocs %

    硝化细菌属分类
    nitrifying bacteria genera axonom
    原始污泥
    original sludge
    硝化型生物絮团
    nitrifying bio-flocs
    亚硝酸盐氧化细菌 NOB 海螺菌属 Nitrincola 0.01 0.00
    硝化球菌属 Nitrococcus 0.02 0.45
    硝化刺菌属 Nitrospina 0.02 0.00
    Nitrincolaceae-unclassified 0.01 0.00
    Nitrincolaceae-uncultured 0.02 0.01
    硝化螺菌属 Nitrospira 0.05 0.00
    氨氧化细菌 AOB 亚硝化菌属 Nitrosomonas 0.06 0.10
    下载: 导出CSV
  • [1]

    XU W J, PAN L Q. Enhancement of immune response and antioxidant status of Litopenaeus vannamei, juvenile in biofloc-based culture tanks manipulating high C/N ratio of feed input[J]. Aquaculture, 2013, 412(6): 117-124.

    [2]

    HARI B, MADHUSOODANA K B, VARGHESE J T, et al. The effect of carbohydrate addition on water quality and the nitrogen budget in extensive shrimp culture systems[J]. Aquaculture, 2006, 252(2): 248-263.

    [3] 王超, 潘鲁青, 张开全. 生物絮团在凡纳滨对虾零水交换养殖系统中的应用研究[J]. 海洋湖沼通报, 2015(2): 81-89.
    [4] 李涛, 杨平凹, 白海锋, 等. 生物絮团对锦鲤生长及养殖水体水质的影响[J]. 河北渔业, 2017, 284(8): 18-20. doi: 10.3969/j.issn.1004-6755.2017.08.006
    [5]

    CHOI K J, ZHANG S, SONG J H, et al. Aerobic denitrification by a heterotrophic nitrifying-aerobic denitrifying (HN-AD) culture enriched activated sludge[J]. Ksce J Civ Eng, 2017, 21(6): 2113-2118. doi: 10.1007/s12205-016-1287-6

    [6]

    COHEN J M, SAMOCHA T M, FOX J M, et al. Characterization of water quality factors during intensive raceway production of juvenile Litopenaeus vannamei using limited discharge and biosecure management tools[J]. Aquacult Eng, 2005, 32(3): 425-442.

    [7] 罗亮, 张家松, 李卓佳. 生物絮团技术特点及其在对虾养殖中的应用[J]. 水生态学杂志, 2011, 32(5): 129-133.
    [8]

    AVNIMELECH Y. Carbon/nitrogen ratio as a control element in aquaculture systems[J]. Aquaculture, 1999, 176(3/4): 227-235.

    [9] 罗国芝, 朱泽闻, 潘云峰, 等. 生物絮凝技术在水产养殖中的应用[J]. 中国水产, 2010, 29(2): 62-63. doi: 10.3969/j.issn.1002-6681.2010.02.029
    [10]

    RAY A J, LOTZ J M. Comparing a chemoautotrophic-based biofloc system and three heterotrophic-based systems receiving different carbohydrate sources[J]. Aquacult Eng, 2014, 63: 54-61. doi: 10.1016/j.aquaeng.2014.10.001

    [11] 林燕, 孔海南, 王茸影, 等. 异养硝化作用的主要特点及其研究动向[J]. 环境科学, 2008, 29(11): 3291-3296. doi: 10.3321/j.issn:0250-3301.2008.11.052
    [12]

    GERAATS S G. The use of a metabolically structured model in the study of growth, nitrification, and denitrification by Thiosphaera pantotropha[J]. Biotechnol Bioeng, 2010, 36(9): 921-930.

    [13] 谭洪新, 庞云, 王潮辉, 等. 驯化硝化型生物絮体养殖南美白对虾的初步研究[J]. 上海海洋大学学报, 2017, 26(4): 490-500.
    [14] 刘娜. SRT对生化处理系统运行特性的影响[D]. 重庆: 重庆大学, 2013: 48.
    [15]

    SCHRYVER P D, CRAB R, DEFOIRDT T, et al. The basics of bio-flocs technology: the added value for aquaculture[J]. Aquaculture, 2008, 277(3/4): 125-137.

    [16]

    AVNIMELECH Y. Bio-filters: the need for an new comprehensive approach[J]. Aquacult Eng, 2006, 34(3): 172-178.

    [17] 王涛, 刘青松, 段亚飞, 等. 低C/N驯化生物絮团的自养和异养硝化性能研究[J]. 海洋渔业, 2018, 40(5): 105-115.
    [18] 李朝兵, 李志斐, 韩林强, 等. 生物絮团技术对室内培育小规格罗非鱼种的影响[J]. 水产养殖, 2015, 36(7): 29-35. doi: 10.3969/j.issn.1004-2091.2015.07.007
    [19] 邓吉朋, 黄建华, 江世贵, 等. 生物絮团在斑节对虾养殖系统中的形成条件及作用效果[J]. 南方水产科学, 2014, 10(3): 29-37. doi: 10.3969/j.issn.2095-0780.2014.03.005
    [20] 杨义飞, 陈双双, 赵飞飞. SBR中活性污泥培养驯化的研究[J]. 环境科学与管理, 2011, 36(7): 102-104. doi: 10.3969/j.issn.1673-1212.2011.07.029
    [21] 李杰, 田相利, 董双林, 等. 碳菌调控对虾、蟹混养系统微生物群落功能多样性的影响[J]. 河北渔业, 2015(8): 3-11. doi: 10.3969/j.issn.1004-6755.2015.08.002
    [22] 李小敏. 海洋细菌与碳及营养盐的相互作用研究[J]. 现代盐化工, 2017, 44(4): 31-32.
    [23]

    SUITA S M, BALLESTER E L C, ABREU P C, et al. Dextrose as carbon source in the culture of Litopenaeus vannamei in a zero exchange system[J]. Lat Am J Aquat Res, 2015, 43(3): 526-533.

    [24]

    HU X J, CAO Y C, WEN G L, et al. Effects of combined use of Bacillus and molasses on microbial communities in shrimp cultural enclosure systems[J]. Aquacult Res, 2017, 48(6): 2691-2705. doi: 10.1111/are.2017.48.issue-6

    [25]

    WAGNER M, RATH G, AMANN R, et al. In situ identification of ammonia-oxidizing bacteria[J]. Syst Appl Microbiol, 1995, 18(2): 251-264. doi: 10.1016/S0723-2020(11)80396-6

    [26]

    DAIMS H, BRÜHL A, AMANN R, et al. The domain-specific probe EUB338 is insufficient for the detection of all Bacteria: development and evaluation of a more comprehensive probe set[J]. Syst Appl Microbiol, 1999, 22(3): 434-434. doi: 10.1016/S0723-2020(99)80053-8

    [27]

    WITZIG R, MANZ W, ROSENBERGER S, et al. Microbiological aspects of a bioreactor with submerged membranes for aerobic treatment of municipal wastewater[J]. Water Res, 2002, 36(2): 394-402. doi: 10.1016/S0043-1354(01)00221-4

    [28]

    MIURA Y, HIRAIWA M N, ITO T, et al. Bacterial community structures in MBRs treating municipal wastewater: relationship between community stability and reactor performance[J]. Water Res, 2007, 41(3): 627-637. doi: 10.1016/j.watres.2006.11.005

    [29]

    BOCK D E, BEHRENS D L, LUDWIG W, et al. A new obligately chemolithoautotrophic, nitrite-oxidizing bacterium, Nitrospira moscoviensis sp. nov. and its phylogenetic relationship[J]. Arch Microbiol, 1995, 164(1): 16-23. doi: 10.1007/BF02568729

    [30] 杨少丽, 王印庚, 董树刚. 海水养殖鱼类弧菌病的研究进展[J]. 渔业科学进展, 2005, 26(4): 75-83. doi: 10.3969/j.issn.1000-7075.2005.04.013
    [31] 吴后波, 潘金培. 病原弧菌的致病机理[J]. 水生生物学报, 2003, 27(4): 422-426. doi: 10.3321/j.issn:1000-3207.2003.04.018
    [32] 陈倩伶. 生物絮团技术应用于对虾养殖水质调控[D]. 南宁: 广西大学, 2015: 35.
    [33] 杨美圆. 刺参无公害绿色育苗和保苗技术研究[D]. 扬州: 扬州大学, 2015: 25.
    [34] 叶建勇, 单洪伟, 李色东, 等. 甘蔗渣悬浮颗粒和芽孢杆菌在凡纳滨对虾高位池养殖中的应用[J]. 浙江海洋学院学报(自然科学版), 2016, 35(2): 132-136. doi: 10.3969/j.issn.1008-830X.2016.02.007
    [35]

    MORIARTY D J W. The role of microorganisms in aquaculture ponds[J]. Aquaculture, 1997, 151(1): 333-349.

  • 期刊类型引用(4)

    1. 叶松霖,金炫安,杜昊霏,王家诚,金旭东,徐博怀,丁浩淼. 岩藻黄质通过AKT/mTOR途径调节糖酵解代谢促进人急性淋巴细胞白血病细胞凋亡的作用研究. 核农学报. 2024(05): 842-851 . 百度学术
    2. 朱盈盈,栾倩,曾凡正,王晓娜,袁勇军,蔡路昀. 岩藻黄素的抗炎、抗癌活性及作用机制研究进展. 食品工业科技. 2024(11): 341-350 . 百度学术
    3. 王丽,赵子龙,刘振,毛相朝. 番茄红素β-环化酶和新黄质合酶功能差异关键氨基酸的发掘. 食品与发酵工业. 2023(16): 41-48 . 百度学术
    4. 陈金烨,闻正顺,刘佳欣,郭晓俊,余横笑. 负载岩藻黄质的果胶@β-环糊精的制备及其体外降脂活性研究. 食品安全质量检测学报. 2023(22): 1-8 . 百度学术

    其他类型引用(1)

图(4)  /  表(1)
计量
  • 文章访问数:  5612
  • HTML全文浏览量:  4098
  • PDF下载量:  85
  • 被引次数: 5
出版历程
  • 收稿日期:  2018-11-24
  • 修回日期:  2019-03-13
  • 录用日期:  2019-04-09
  • 网络出版日期:  2019-04-18
  • 刊出日期:  2019-08-04

目录

/

返回文章
返回