Study on non-CO color retention method of tilapia fillets
-
摘要:
为研究罗非鱼(Oreochromis mossambicus)鱼片非一氧化碳(CO)发色的新方法,获得安全有效的罗非鱼片发色工艺,以色差值为鱼片色泽的主要评价指标,在亚硝酸钠质量浓度、碳酸氢钠质量浓度、浸泡时间为单因素进行实验的基础上,采用Box-Behnken中心设计原理,对发色方案进行响应面实验优化分析。结果表明,用亚硝酸钠质量浓度0.4 g·L−1、碳酸氢钠质量浓度5.0 g·L−1的复合溶液浸泡罗非鱼片22 min的发色处理效果良好,优化后的鱼片红色肉的Δa*为1.97,提升了17.35%,鱼片整体色泽较好,得到了一种罗非鱼片非CO发色的新方法。
Abstract:In order to study new non-CO color retention method of tilapia fillets and achieve a safe and effective color retention process, we used color difference value as main evaluation index for the fillets' color. Based on single-factor test of sodium nitrite concentration, sodium bicarbonate concentration and soaking time, we used Box-Behnken center design principle to optimize the response surface test of the assay scheme. The results show that soaking in a composite solution of sodium nitrite concentration of 0.4 g·L−1 and sodium bicarbonate concentration of 5.0 g·L−1 for 22 min performs well. The redness value (Δa*) of the red meat was 1.97 with an increase of 17.35%. The overall color of the fillets was improved. A new method of non-CO color retention technology of tilapia fillets is obtained.
-
Keywords:
- tilapia fillets /
- color retention /
- myoglobin /
- color difference value
-
鱼类皮肤暴露于水环境中,其表面形成的黏膜层对宿主具有重要的物理、化学和生物屏障作用[1]。当鱼体处于健康状态时,皮肤黏膜层微生物与宿主互利共生,维持相对稳定的动态平衡状态[2]。环境胁迫、病原入侵等均会破坏鱼体皮肤黏膜层的微生物稳态,影响宿主健康[3-4]。研究发现,感染了传染性造血器官坏死病毒 (Infectious hematopoietic necrosis virus, IHNV) 的虹鳟 (Oncorhynchus mykiss) 皮肤微生物中变形菌门丰度显著下降,而放线菌门的丰度显著升高[5]。与健康大鲵 (Andrias davidianus) 相比,患溃疡病大鲵皮肤中的金黄杆菌属(Chryseobacterium)、伯克氏菌属 (Burkholderia) 和韩国丛毛单胞菌 (Comamonas koreensis) 的丰度显著升高[6]。
中华鲟 (Acipenser sinensis) 是我国一级重点保护水生动物,被认为是长江水生动物保护的旗舰物种[7]。近年来,中华鲟物种保护研究工作不断取得新突破,人工迁地保护规模日益扩大。然而,随着集约化养殖程度不断加深,中华鲟的病害问题也日趋增多。迄今为止,常见的细菌性病害包括细菌性烂鳃病、细菌性败血症、肠炎病、肿嘴病、腹水病、分枝杆菌病等[8-10]。传统的细菌分离培养方法是目前中华鲟病害研究的主要手段[11-12]。
花斑病是近年来中华鲟养殖过程中出现的一种新型疾病,该病以体表部分背骨板及周围皮肤褪色形成花斑为主要临床症状。中华鲟体表皮肤裸露,与水环境密切接触,寄生着复杂多样的微生物菌群。细菌培养法在处理皮肤等复杂样本时,大部分微生物难以进行分离纯化培养,具有一定的局限性。近十年来,高通量测序技术快速发展,能够全面解析微生物群落结构的种类和丰度,具有高效、全面、准确等特点,已逐渐应用于揭示人类疾病与微生物的互作关系[13-14]。本研究以健康和患花斑病中华鲟幼鱼为研究对象,利用高通量测序技术比较分析了二者皮肤黏膜层的微生物菌群结构特征,探索用于监测中华鲟健康状况的菌群标志物,以期为中华鲟的健康养殖和疾病防控提供参考依据。
1. 材料与方法
1.1 样品采集
实验样品为中华鲟研究所2023年繁殖的子二代中华鲟,全长 (10.02±0.65) cm,体质量 (3.62±0.32) g。如图1所示,健康中华鲟体色均匀,体表皮肤光滑;患花斑病中华鲟部分背骨板及周围皮肤褪色形成花斑。在无菌条件下,对6尾健康和6尾自然患病的中华鲟皮肤进行取样,分别为健康中华鲟皮肤黏液组 (HM组) 和患病中华鲟皮肤黏液组 (DM组)。具体方法如下:用无菌水冲洗鱼体3遍,用无菌镊刮取背骨板及周围皮肤黏液0.5 g,分装置2 mL离心管中,液氮速冻后置于 –80 ℃冰箱保存备测。
1.2 DNA提取、PCR扩增和高通量测序
采用Fast DNA®Spin Kit for Soil (MP Biomedicals,美国) 试剂盒提取皮肤总DNA。提取到的DNA经1% (w)琼脂糖凝胶电泳检测其合格性。使用338F (5'-ACTCCTACGGGAGGCAGCAG-3') 和806R (5'-GGACTACHVGGGTWTCTAAT-3') 通用引物对16S rRNA基因的V3—V4变异区进行PCR扩增。PCR反应程序为:95 ℃ 3 min;95 ℃ 30 s;53 ℃ 30 s,72 ℃ 45 s,29个循环;72 ℃ 10 min。PCR产物经回收、纯化等处理后,通过上海美吉生物医药科技有限公司Illumina Miseq PE300平台进行高通量测序。
1.3 数据处理和生物信息学分析
在美吉生物云平台完成数据处理及生物信息学分析工作。测序获得的原始数据使用fastp (Version 0.19.6) 和Fasth (Version 1.2.11) 进行质控和拼接,再采用Uparse (Version 11) 软件进行处理,根据97%的相似度对序列进行OTU聚类。采用PDR Classifier (Version 2.13) 软件对每条序列进行物种注释分类,基于Silva (Version 138) 数据库进行比对注释。按照最小样本序列数对数据抽平处理后,利用R语言 (Version 3.3.1) 工具制作韦恩图、群落柱形图和PCoA图;采用Mothur (Version 1.30.2) 软件计算α多样性;通过Wilcoxon秩和检验开展健康和患病中华鲟皮肤黏膜层优势菌属的差异分析。
2. 结果
2.1 物种组成分析
12个中华鲟皮肤样品经高通量测序和序列优化后,共获得675 884条高质量序列,序列的平均长度为424 bp。所有样品的覆盖率均超过99.5%,表明其测序深度能够全面反映出各样品的细菌菌群结构。韦恩图 (图2) 显示,健康和患病中华鲟皮肤黏膜层共有OTUs数量为453个,健康中华鲟皮肤黏膜层特有OTUs数量为1 823个,患病中华鲟皮肤黏膜层特有OTUs数量为126个。二者间的OTUs数量相差较大,健康中华鲟皮肤黏膜层总OTUs数量为2 276个,患病中华鲟皮肤黏膜层总OTUs数量为579个,相比健康中华鲟减少了1 697个(74.56%)。
在门水平上 (图3-a),健康中华鲟皮肤黏膜层的优势菌门为厚壁菌门 (45.26%)、变形菌门 (31.65%)和拟杆菌门 (15.02%)。患病中华鲟皮肤黏膜层的优势菌门转变为拟杆菌门和变形菌门,尤其是拟杆菌门的丰度由15.02%升至78.83%,成为第一优势菌门。
在属水平上 (图3-b),健康中华鲟皮肤黏膜层优势菌属为乳杆菌属 (Lactobacillus, 26.73%)、不动杆菌属 (Acinetobacter, 19.64%)、norank_f_Muribaculaceae (6.23%)、明串珠菌属 (Leuconostoc, 5.92%) 和假单胞菌属 (Pseudomonas, 2.84%),其他各菌属不足2%。患病中华鲟皮肤黏膜层优势菌属为黄杆菌属 (Flavobacterium, 78.38%) 和不动杆菌属 (17.62%),其他菌属不足2%。不动杆菌属是健康和患病中华鲟皮肤中的共同优势菌属。除不动杆菌属外,二者间的其他优势菌属均不同,患病中华鲟皮肤黏膜层的优势菌属种类明显少于健康中华鲟,且黄杆菌属高度富集,相对丰度由0.99%升至78.38%。
2.2 多样性分析
选取α多样性指数比较健康和患病中华鲟皮肤微生物的物种丰富度和多样性。Chao指数和Ace指数均显示,患病中华鲟皮肤黏膜层微生物物种丰富度显著低于健康中华鲟 (p<0.001,图4-a—4-b)。Shannon指数和Simpson指数均显示,患病中华鲟皮肤黏膜层微生物物种多样性均显著低于健康中华鲟 (p<0.001,图4-c—4-d)。由PCoA图 (图5) 可见,健康中华鲟皮肤中的全部样品落在第二和第四象限并形成一个组群,而患病中华鲟皮肤中的全部样品均落在第一和第三象限并形成另外一个组群,表明两者间的菌群结构具有明显差异。
2.3 差异性分析
为进一步解析健康和患病中华鲟皮肤在属水平微生物群落结构上的差异性,对2组样品采用Wilcoxon秩和检验进行优势菌属的显著性差异分析。结果显示,与健康中华鲟皮肤相比,患病中华鲟皮肤黄杆菌属显著升高 (图6-a,p<0.01),不动杆菌属无显著性差异 (图6-b,p>0.05),乳杆菌属 (图6-c)、norank_f_Muribaculaceae(图6-d)、明串珠菌属 (图6-e)、假单胞菌属 (图6-f)、戴尔福特菌属(Delftia,图6-g)、Lachnospiraceae_NK4A136_group (图6-h)、普雷沃氏菌属 (Prevotella,图6-i) 显著下降 (p<0.01)。黄杆菌属在患病中华鲟皮肤中丰度较高,乳杆菌属、norank_f_Muribaculaceae、明串珠菌属、假单胞菌属在健康组丰度较高,以上5种菌属可能是反映中华鲟健康状态的敏感菌群。
3. 讨论
3.1 花斑病对中华鲟皮肤黏膜层微生物菌群物种组成及丰度的影响
已有研究发现健康状态可以影响鱼类皮肤黏膜层微生物菌群结构的变化[15]。许峻旗等[6]发现大鲵在感染溃疡病后,拟杆菌门和变形菌门显著升高 (p<0.05),而厚壁菌门和放线菌门显著降低 (p<0.05)。张雪萍等[16]采用高通量测序技术对患烂皮病棘胸蛙 (Quasipaa spinosa) 的健康和溃烂皮肤样本进行比较研究,结果显示其健康皮肤的优势菌门为蓝细菌门/叶绿体、变形菌门、厚壁菌门、拟杆菌门和放线菌门,而溃烂皮肤的优势菌门为变形菌门。本研究结果与上述研究相似,健康中华鲟皮肤黏膜层优势菌门以厚壁菌门 (45.26%)、变形菌门 (31.65%) 和拟杆菌门 (15.02%) 为主,而患病中华鲟皮肤黏膜层优势菌门则以拟杆菌门 (78.83%) 和变形菌门 (20.28%) 为主,厚壁菌门退出优势菌门,相对丰度不足1%。厚壁菌门可以促进皮肤发酵产生活性物质,同时还可以维持皮肤表面酸性环境,帮助宿主抑制病原体的入侵[17-18]。拟杆菌门包括拟杆菌纲、黄杆菌纲和鞘脂杆菌纲等,其中黄杆菌纲中含有多种条件致病菌。因此,推测患病中华鲟皮肤黏膜层厚壁菌门的大幅减少和拟杆菌门的高度富集与中华鲟的感染发病密切相关。
进一步细化至属水平,对健康和患病中华鲟皮肤黏膜层微生物菌群组成进行对比分析,发现花斑病导致中华鲟皮肤黏膜层优势菌属减少,优势菌属由5种降至2种。在患病中华鲟皮肤中,相对丰度最高的是黄杆菌属,占比超78%。黄杆菌属隶属于拟杆菌门、黄杆菌纲、黄杆菌目、黄杆菌科,地理分布广泛,为条件致病菌,宿主种类繁多,可感染虹鳟[19]、大西洋鲑 (Salmo salar)[20]、西伯利亚鲟 (A. baerii)[21]、罗非鱼[22]等多种水生动物。有研究发现,黄杆菌属感染后的主要临床症状表现为鳃丝腐烂、体表溃疡、皮肤褪色[23-24],这与本研究中的患病中华鲟临床症状具有相似之处。综上,拟杆菌门中的黄杆菌属高度富集表明中华鲟皮肤黏膜层的微生物稳态被破坏,黄杆菌属可能是花斑病引起中华鲟皮肤黏膜层菌群改变的特征菌属。
3.2 花斑病对中华鲟皮肤黏膜层微生物菌群多样性的影响
微生物多样性在维持宿主生态功能和健康状态方面具有重要作用,多样性高意味着宿主具有更强的抗性,多样性下降可直接增加宿主患病的风险[25-26]。张雪晨[27]比较分析了健康和感染虾肝肠孢虫 (Enterocytozoon hepatopenaei) 凡纳滨对虾 (Litopenaeus vannamei) 肠道微生物群落的变化,结果显示患病对虾肠道微生物多样性显著低于健康对虾。Wang等[28]利用高通量测序方法研究了健康和患病大西洋鲑肠道菌群的结构特征,发现健康鱼肠道细菌多样性明显高于患病鱼。本研究也得到了相似结果,与健康中华鲟相比,患病中华鲟皮肤黏膜层微生物多样性和丰富度均显著下降 (p<0.001)。此外,本研究还发现在多样性和丰富度显著降低的同时,微生物群落结构呈简单化;健康中华鲟皮肤黏膜层总OTUs数量和特有OTUs数量分别为2 276和1 823个,而患病中华鲟则分别减少至579和126个;这提示微生物多样性和群落结构可间接反映鱼体的健康状态。
3.3 中华鲟健康状态菌群标志物的筛选
通过对健康和患病中华鲟皮肤黏膜层微生物菌群优势菌属进行差异性显著分析,获得5种反映中华鲟健康状态的敏感菌属。其中黄杆菌属在患病中华鲟皮肤中高度富集,而乳杆菌属、norank_f_Muribaculaceae、明串珠菌属、假单胞菌属等4种菌属在健康中华鲟皮肤中具有较高的丰度。黄杆菌属在自然界中广泛存在,是细菌性冷水病[29]、柱形病[30]等疾病的主要致病菌。根据黄杆菌属的富集状态,结合其临床意义;本研究筛选出黄杆菌属作为监测中华鲟花斑病病原的菌群标志物,其相对丰度升高提示鱼体患花斑病风险增加。在实际养殖过程中,可以通过定期检测体表皮肤菌群标志物的丰度来评估中华鲟的健康状态。随着中华鲟集约化养殖程度的不断提高,疾病问题也日趋增多。在面对新型疾病,特别是在病原体难培养或不可培养的情况下,采用高通量测序技术能有效发现病原体线索,有助于深入开展系统性研究。
4. 结论
本研究基于高通量测序技术对健康和患花斑病中华鲟皮肤黏膜层微生物菌群进行比较分析。结果表明,与健康中华鲟相比,花斑病破坏了中华鲟皮肤黏膜层正常的微生态稳态结构,优势菌群由乳杆菌属、不动杆菌属等转变为黄杆菌属,因此黄杆菌属可以作为监测中华鲟花斑病病原的菌群标志物,其相对丰度的高低可用以评估中华鲟的患病风险。
-
表 1 响应面实验设计因素与水平
Table 1 Factors and levels used in response surface experiment
因素
factor水平 level –1 0 1 碳酸氢钠/g·L−1 (A) sodium bicarbonate 3 4.5 6 亚硝酸钠/g·L−1 (B) sodium nitrite 0.25 0.35 0.45 浸泡时间/min (C) soaking time 10 20 30 表 2 响应面法优化实验结果
Table 2 Experimental results of Box-Behnken design
实验号
test No.碳酸氢钠
sodium bicarbonate亚硝酸钠
sodium nitrite浸泡时间
soaking time红度值Δa*
redness value1 −1 0 −1 0.68 2 0 0 0 1.96 3 0 0 0 1.82 4 0 1 −1 1.75 5 0 0 0 1.69 6 0 0 0 1.82 7 0 1 1 1.98 8 −1 1 0 1.03 9 1 −1 0 0.98 10 0 0 0 1.86 11 1 1 0 1.95 12 −1 −1 0 0.72 13 −1 0 1 0.85 14 0 −1 1 1.23 15 1 0 1 1.36 16 0 −1 −1 0.83 17 1 0 −1 1.12 表 3 回归与方差分析结果
Table 3 Analysis of variance for fitted regression model
方差来源
source of variation平方和
SS自由度
df均方
MSF P Prob>F 显著性
significance模型 model 3.68 9 0.41 41.35 <0.000 1 ** A-碳酸氢钠 sodium bicarbonate 0.57 1 0.57 57.30 0.000 1 ** B-亚硝酸钠 sodium nitrite 1.09 1 1.09 109.92 <0.000 1 ** C-浸泡时间 soaking time 0.14 1 0.14 13.66 0.007 7 ** AB 0.11 1 0.11 11.00 0.012 8 * AC 0.001 1 0.001 0.12 0.735 3 BC 0.007 1 0.007 0.73 0.421 1 A2 1.29 1 1.29 129.87 <0.000 1 ** B2 0.05 1 0.05 4.92 0.062 1 C2 0.32 1 0.32 32.18 0.000 8 ** 残差 residual 0.069 7 0.02 失拟项 lack of fit 0.032 3 0.01 1.12 0.439 1 纯误差 pure error 0.038 4 0.009 总和 cor total 3.75 16 R2=0.98 RAdj=0.95 注:*. P<0.05;**. P<0.01 -
[1] 赵志霞, 吴燕燕, 李来好, 等. 我国罗非鱼加工研究现状[J]. 食品工业科技, 2017, 38(9): 363-367, 373. [2] 李娜, 赵永强, 李来好, 等. 冰藏过程中罗非鱼鱼片肌肉蛋白质变化[J]. 南方水产科学, 2016, 12(2): 88-94. doi: 10.3969/j.issn.2095-0780.2016.02.013 [3] 袁媛, 袁永明, 代云云, 等. 罗非鱼供给侧结构改革的思考[J]. 中国农学通报, 2018, 34(8): 118-122. [4] 王晶, 林向东, 曹雪涛, 等. 一种替代罗非鱼片CO活体发色方法的复合发色新工艺[J]. 食品与机械, 2014, 30(6): 181-186. [5] 史智佳, 臧明伍, 王宇, 等. 肉制品中减少亚硝酸盐添加量的方法及存在的问题[J]. 食品工业科技, 2011, 32(8): 418-422. [6] 钟耀广, 南庆贤. 亚硝酸盐的发色机理及安全性问题[J]. 肉类工业, 2001(5): 47-48. doi: 10.3969/j.issn.1008-5467.2001.05.018 [7] 刘彩红, 樊晓盼, 王思雨, 等. 替代亚硝酸盐生产安全腌肉制品的研究现状[J]. 食品安全质量检测学报, 2015, 6(2): 534-539. [8] 陈瑶, 刘成国, 罗扬, 等. 亚硝酸盐在腊肉加工中的作用及其替代物的研究进展[J]. 肉类研究, 2010(5): 32-36. doi: 10.3969/j.issn.1001-8123.2010.05.009 [9] OHNUMA S, KIM Y J, SUZUKI A, et al. Combined effects of high pressure and sodium hydrogen carbonate treatment on beef: improvement of texture and color[J]. High Pressure Res, 2013, 33(2): 342-347. doi: 10.1080/08957959.2013.793321
[10] 郝淑贤, 林婉玲, 李来好, 等. CO发色对罗非鱼片贮藏过程质量影响[J]. 食品工业科技, 2014, 35(2): 286-290. [11] 郝淑贤, 李来好, 杨贤庆, 等. 一氧化碳发色肉制品安全性分析[J]. 食品科学, 2006, 27(10): 604-608. doi: 10.3321/j.issn:1002-6630.2006.10.155 [12] 郝淑贤, 李来好, 杨贤庆, 等. 一氧化碳发色罗非鱼片急性毒性与遗传毒性研究[J]. 食品工业科技, 2017, 38(20): 303-306. [13] LI L H, HAO S X, DIAO S Q, et al. Proposed new color retention method for tilapia fillets (O. niloticus♀×O. aureus♂) by euthanatizing with reduced carbon monoxide[J]. J Food Process Pres, 2008, 32(5): 729-739. doi: 10.1111/jfpp.2008.32.issue-5
[14] 朱英莲, 李沛瑶. 戊糖乳杆菌替代亚硝酸盐发色效果的研究[J]. 食品科技, 2014(5): 120-124. [15] 尚艳丽, 杨金生, 霍健聪, 等. 运输过程中金枪鱼生鱼片色泽变化的模拟[J]. 食品工业, 2012(11): 60-62. doi: 10.3969/j.issn.1006-6195.2012.11.044 [16] 张秋会, 李苗云, 黄现青, 等. 肉制品的质构特性及其评价[J]. 食品与机械, 2012, 28(3): 36-39, 121. doi: 10.3969/j.issn.1003-5788.2012.03.010 [17] ALLEN K E, CORNFORTH D P. Myoglobin oxidation in a model system as affected by nonheme iron and iron chelating agents[J]. J Agric Food Chem, 2006, 54(26): 10134-10140. doi: 10.1021/jf0623182
[18] CHOW C J, YANG J I, LEE P F, et al. Effects of acid and alkaline pretreatment on the discoloration rates of dark muscle and myoglobin extract of skinned tilapia fillet during iced storage[J]. Fish Sci, 2009, 75(6): 1481-1488. doi: 10.1007/s12562-009-0168-z
[19] 李沛军, 孔保华, 郑冬梅. 微生物发酵法替代肉制品中亚硝酸盐呈色作用的研究进展[J]. 食品科学, 2010, 31(17): 388-391. [20] WANG Z C, YAN Y Z, NISAR T, et al. Influence of postmortem treatment with nitric oxide on the muscle color and color stability of tilapia (Oreochromis niloticus) fillets[J]. Nitric Oxide, 2018, 76: 122-128. doi: 10.1016/j.niox.2017.09.009
[21] 周小双, 王锦旭, 杨贤庆, 等. 响应面法优化合浦珠母贝糖胺聚糖提取工艺[J]. 食品与发酵工业, 2016, 42(1): 238-243. [22] MANTILLA D, KRISTINSSON H G, BALABAN M O, et al. Carbon monoxide treatments to impart and retain muscle color in tilapia fillets[J]. J Food Sci, 2008, 73(5): C390-C399. doi: 10.1111/j.1750-3841.2008.00757.x
-
期刊类型引用(7)
1. 杨艳,蓝一,刘佳敏,王茜. 渔业生物环境DNA宏条形码数据库研究进展. 湖北农业科学. 2025(01): 174-180 . 百度学术
2. 周严,童璐,胡文静,李志力,郝雷,刘其根,胡忠军. 淡水鱼类环境DNA宏条形码引物的筛选及其在千岛湖的应用. 湖泊科学. 2024(01): 187-199 . 百度学术
3. 徐颖琪,梁绪虹,陈新军,宋成辉,彭祖焜,王丛丛. 基于COⅠ基因构建西北太平洋常见鱼类DNA条形码参考数据库. 上海海洋大学学报. 2024(04): 823-835 . 百度学术
4. 张浩博,王晓艳,陈治,钟兰萍,高天翔. 基于环境DNA metabarcoding的舟山及其邻近海域鱼类空间分布格局的初步研究. 水产学报. 2024(08): 125-138 . 百度学术
5. 陈治,高天翔. 线粒体12S与COI条形码对海洋鱼类的鉴定差异. 海南热带海洋学院学报. 2023(02): 10-16 . 百度学术
6. 李晨虹,凌岚馨,谭娟,林晓龙,王辉,孙冰皎,李曌. 环境DNA技术在水生生物监测中的挑战、突破和发展前景. 上海海洋大学学报. 2023(03): 564-574 . 百度学术
7. 陈治,蔡杏伟,申志新,张清凤,李芳远,谷圆,李高俊,赵光军,王镇江. 海南岛淡水鱼类eDNA宏条形码COⅠ通用引物的筛选. 渔业科学进展. 2023(06): 40-57 . 百度学术
其他类型引用(1)