自然感染无乳链球菌罗非鱼的比较病理学及毒力基因谱分析

谢云丹, 冯娟, 刘婵, 邓益琴, 王江勇, 苏友禄

谢云丹, 冯娟, 刘婵, 邓益琴, 王江勇, 苏友禄. 自然感染无乳链球菌罗非鱼的比较病理学及毒力基因谱分析[J]. 南方水产科学, 2019, 15(2): 47-57. DOI: 10.12131/20180185
引用本文: 谢云丹, 冯娟, 刘婵, 邓益琴, 王江勇, 苏友禄. 自然感染无乳链球菌罗非鱼的比较病理学及毒力基因谱分析[J]. 南方水产科学, 2019, 15(2): 47-57. DOI: 10.12131/20180185
XIE Yundan, FENG Juan, LIU Chan, DENG Yiqin, WANG Jiangyong, SU Youlu. Comparative pathological study of tilapia naturally infected with Streptococcus agalactiae and virulence gene profiling of isolated strains[J]. South China Fisheries Science, 2019, 15(2): 47-57. DOI: 10.12131/20180185
Citation: XIE Yundan, FENG Juan, LIU Chan, DENG Yiqin, WANG Jiangyong, SU Youlu. Comparative pathological study of tilapia naturally infected with Streptococcus agalactiae and virulence gene profiling of isolated strains[J]. South China Fisheries Science, 2019, 15(2): 47-57. DOI: 10.12131/20180185

自然感染无乳链球菌罗非鱼的比较病理学及毒力基因谱分析

基金项目: 国家自然科学基金项目 (31502210);“广东特支计划”科技青年拔尖人才项目 (2016TQ03N275);广州市珠江科技新星项目 (201610010015)
详细信息
    作者简介:

    谢云丹(1994—),女,硕士研究生,从事水产动物病原学研究。E-mail: 1159412450@qq.com

    通讯作者:

    苏友禄(1981—),男,博士,副研究员,从事水产动物免疫与防治技术研究。E-mail: suyoulu@scsfri.ac.cn

  • 中图分类号: S 941.42

Comparative pathological study of tilapia naturally infected with Streptococcus agalactiae and virulence gene profiling of isolated strains

  • 摘要:

    在自然感染无乳链球菌(Streptococcus agalactiae)的罗非鱼(Oreochromis niloticus)成鱼、稚鱼和自然携带无乳链球菌的罗非鱼体内分别获得14株、4株和2株无乳链球菌。临床和组织病理学分析显示,罗非鱼成鱼出现无规则游动,脑、眼眶、鳃和鳍条充血,眼球突出、白浊,内脏器官肿大、充血,以肾小管玻璃样变性、脑膜炎和心外膜炎等组织病理学变化为特征;罗非鱼稚鱼体表无明显症状,但部分内脏器官呈现肿大、充血现象,以脾脏血管区出血、肾小管上皮细胞变性、脑组织炎症反应较轻为其主要组织病理学特征。此外,罗非鱼胃固有层内及稚鱼肝脏组织中有大量的嗜酸性粒细胞浸润,可观察到无乳链球菌在成鱼的脑、心脏以及稚鱼肝脏中增殖;自然携带无乳链球菌的罗非鱼临床症状和组织学病变均不明显。PCR检测发现,各无乳链球菌毒力基因谱相同,但自然感染无乳链球菌的罗非鱼成鱼、稚鱼和自然携带无乳链球菌的罗非鱼的病理学损伤差异显著。

    Abstract:

    We isolated 14, 4 and 2 strains of Streptococcus agalactiae from naturally infected adult and juvenile tilapia as well as tilapia naturally carrying S. agalactiae, respectively. The clinical signs and anatomy changes of adult tilapia were as follows: erratic swimming, congestion of brain, eyeballs, gills and fins, exophthalmia, corneal opacity and swelling of visceral organs, which were characterized by histopathological changes with tubular hyaline degeneration, meningitis and epicarditis. The clinical symptoms of juvenile tilapia were not obvious, but some of the internal organs showed swelling and congestion, characterized by main histopathological features of hemorrhage of spleen vascular area, degenerated renal tubular epithelial cells and milder inflammatory response in brain tissue. In addition, eosinophil infiltration was found in the lamina propria of tilapia and in the liver of juvenile fish. It was observed that S. agalactiae proliferated in the brain and heart of adult fish and in the liver of juvenile tilapia, respectively. The clinical symptoms and histological lesions in tilapia carrying S. agalactiae were not obvious. The results of PCR detection show that all the S. agalactiae strains had the same virulence gene profiles, but there were significant differences in pathological damages among adult fish, juvenile fish and tilapia carrying S. agalactiae.

  • 图  1   罗非鱼脑组织PCR检测结果

    M. Maker DL 2 000;阳. 阳性对照;阴. 阴性对照;1~159. 采自开平养殖场;160~166. 采自高州平养殖场;167~170. 采自廉江养殖场;171~174. 采自吴川养殖场;175~180. 采自惠州养殖场;181~188. 采自河源养殖场

    Figure  1.   PCR detection results of tilapia brain

    positive. positive control; negative. negative control; 1−159. from Kaiping farm; 160-166. from Gaozhouping farm; 167−170. from Lianjiang farm; 171−174. from Wuchuan farm; 175−180. from Huizhou farm; 181−188. from Heyuan farm

    图  2   鱼感染无乳链球菌的眼观剖检变化

    罗非鱼成鱼:A. 眼眶充血、眼球突出(↓),肠道发炎、肠壁变薄、内容物发黄(*);B. 脑充血、出血(↓);C. 肝脏肿大、充血、胆囊肿大(*),脾脏肿大、充血,肾脏肿大(↓)。罗非鱼稚鱼:体表无明显症状;D. 肝脏充血肿大(*),脾脏肿大(*),肠壁变薄、内容物发黄;自然携带无乳链球菌罗非鱼:E. 体表正常;内脏无明显症状。斑马鱼:F. 身体弯曲,眼球浑浊,鳍条和腹部充血、出血(↓)

    Figure  2.   Change in anatomy of fish infected with S. agalactiae

    Adult tilapia: A. orbital congestion and exophthalmos (↓), intestinal inflammation, thinning of intestinal wall and yellowing of contents (*); B. cerebral hyperemia and hemorrhage (↓); C. liver enlargement, congestion, gallbladder enlargement (*), splenomegaly, hyperemia and kidney enlargement (↓). Juvenile tilapia: no obvious symptoms on the body surface; D. hepatic hyperemia (*), splenomegaly (*), thinning of intestinal wall and yellowing of contents; tilapia naturally carrying S. agalactiae: E. no obvious symptoms on the body surface; no visceral symptoms. Zebrafish: F. bent body, corneal opacity, and congestion of fins (↓)

    图  3   各株无乳链球菌感染斑马鱼后的累积死亡率

    Figure  3.   Cumulative motality rate of zebrafish infected with different S. agalactiae strains

    图  4   自然感染无乳链球菌罗非鱼成鱼组织病理学

    A. 脑,脑膜炎,脑膜增厚,大量的炎症细胞浸润,脑血管充血;B. 脑,A图

    Figure  4.   Histopathology of adult tilapia naturally infected with S. agalactiae

    A. brain, meningitis, thickening of the meninges, infiltration of a large number of inflammatory cells, cerebral vascular congestion; B. brain,magnified micrograph of the zone in the black frame in A, inflammatory cell aggregation (*), a large number of proliferating S. agalactiae around the blood vessels (↓); C. brain, intravascular microthrombus formation (↓); D. liver, focal inflammatory response, massive accumulation of inflammatory cells (*); E. intestinal, lamina propria congestion (↓), epithelial cells slightly shed; F. gill, gill filament epithelial cell hyperplasia, fusion (↓), sinus congestion (*); G. heart, epicarditis, epicardial thickening, a large number of inflammatory cell infiltration; H. heart, magnified micrograph of the zone in the black frame in G, massive proliferation around the blood vessels S. agalactiae (↓), intravascular inflammatory cell proliferation (*); I. heart, epicardial septic foci, a large number of cells, cell debris (*) and neutrophils in the abscess (↓); J. spleen , hemorrhage (*), splenic artery epithelial cell damage, thrombosis (↓); K. stomach, gastric lamina propria inflammation, vascular congestion (*), a large number of eosinophil infiltration in the inflammation area (↓); L. kidney, kidney tubulous degeneration (↓), renal interstitial hemorrhage (*)

    图  5   自然感染无乳链球菌罗非鱼稚鱼组织病理学

    A. 脑,脑炎,小胶质细胞聚集,血管充血;B. 脑,A图

    Figure  5.   Histopathology of juvenile tilapia naturally infected with S. agalactiae

    A. brain, encephalitis, microglia accumulation, vascular congestion; B. brain, magnified micrograph of the zone in the black frame in A, massive proliferation of microglia (*) and vascular congestion (↓); C. liver, liver hemorrhage (*), blood vessels a large number of eosinophil infiltration around; D. liver, magnified micrograph of the zone in the black frame in C, large proliferation of S. agalactiae (*) and hyperplastic eosinophils (↓); E. intestinal, intestinal villi shortened (↓), epithelial cell shedding (*); F. gill, gill silk epithelial cell shedding is "sticky"(↓), sinus congestion (*); G. heart; H. spleen, lymphocyte area shrinkage, vascular area bleeding (*); I. stomach, Inflammatory reaction in the lamina propria of the stomach; J. stomach, magnified micrograph of the zone in the black frame in I, a large number of eosinophils (↓) and neutrophil accumulation (*); K. kidney, tubular degeneration, necrosis; L. kidney, magnified micrograph of the zone in the black frame in K, renal tubular epithelial cells degeneration, shedding (*)

    图  6   自然携带无乳链球菌的罗非鱼组织病理学

    A. 脑;B. 肝脏,肝细胞轻微肿胀;C. 肠道;D. 鳃;E. 心脏;F. 脾脏,脾血窦充血;G. 胃,固有层轻微水肿;H. 肾脏,肾小管上皮轻微变性

    Figure  6.   Histopathology of tilapia carrying S. agalactiae

    A. brain; B. liver, liver cells slightly swollen; C. intestine; D. gill; E. heart; F. spleen, spleen sinus congestion; G. stomach, lamina propria edema; H. kidney, the epithelium of kidney tubules is slightly degenerated.

    图  7   无乳链球菌21种毒力基因PCR扩增

    M. DNA Marker (DL 2 000); 1. TKP1601; 2. TGZ1601

    Figure  7.   PCR amplification of 21 virulence gene of S. agalactiae

    表  1   样品采集和无乳链球菌菌株分离信息

    Table  1   Sample collection and information of separation of S. agalactiae strain

    质量/g
    mass
    采样地
    sampling city
    养殖密度/尾·hm–2
    breeding density/ind·hm–2
    发病史
    history of disease
    样品数/尾
    number of samples
    菌株数
    number of strains
    菌株编号
    strain No.
    检出率/%
    detection rate
    ≈500开平市≈1001592TKP1601-021.26
    ≈15高州市≈200爆发74TGZ1601-0457.10
    ≈500廉江市44TLJ1601-0463.64
    吴川市42TWC1601-02
    惠州市60
    河源市88TLC1601-08
    下载: 导出CSV

    表  2   引物列表

    Table  2   Primers of this study

    引物
    primer
    上游引物序列 (5'−3')
    forward primer sequence
    下游引物序列 (5'−3')
    reverse primer sequence
    扩增靶标
    amplification target
    长度/bp
    length
    16S rDNA-F/RAGAGTTTGATCC TGGCTCAGTACGGCTACCTTGTTACGACTT16S rDNA1 472
    sdi-F/RATTCTCCTCCTGGCAAAGCCTGACGCTTGGTAGTTGCTGT16S−23S rDNA192
    fbsA-F/RAGTGTTGGAAATCAAAGTCAAGGTTTCATTGCGTCTCAAACCGC纤维蛋白结合蛋白A (fbsA)924
    cfb-F/RAACTCTAGTGGCTGGTGCATCTCCAACAGCATGTGTGATTGCCAMP因子基因 (cfb)650
    dltR-F/RGTCTGAAGGTCCCCAAACCTTGTTACCCAAACGCTCAGGAT调节蛋白基因 (dltR)392
    ponA-F/RACAACTTGCTTTGCTCGCTGAGAGCCCTTCTGGCATTGTC青霉素结合蛋白基因 (ponA)1 337
    hylB-F/RTCCACAACCCGTCACAACACAACGCGCCCCATATCTACTA透明质酸酶基因 (hylB)790
    cspA-F/RTGCACGTAACCAGTATCGCAGCACCGAGTTTAACGGCATC丝氨酸蛋白酶基因 (cspA)175
    sodA-F/RTGATGCGCTTGAGCCACATAGCTTTGATGTAGTTAGGACGAACA超氧化物歧化酶基因 (sodA)513
    sip-F/RACAGATACGACGTGGACAGCACCACGATCTGGCATTGCAT表面免疫相关蛋白基因 (sip)1 173
    fbsB-F/RAGTTGCGCAAACTTCTGTCCTTTCCGCAGTTGTTACACCG纤维蛋白结合蛋白B基因 (fbsB)158
    iagA-F/RGCATGGCCATTCCACTGAAGGCTAGCACTCATGGCACCTT侵袭相关基因 (iagA)493
    scpB-F/RTGCGGCCTTTATCAGTCGAAAACAGTCCCATGATACCCGCC5a肽酶基因 (scpB)273
    bca-F/RTCAAGTTTGGTGCAGCTTCTGTCCGGTACTGACAATACTAACAATαC蛋白基因 (bca)616
    srr-1-F/RATGTTGCAGTAAAGCGCTGCGGAAGAGAGTCGTTTTCGGC富含丝氨酸重复蛋白基因 (srr-1)727
    bibA-F/RTGCATAATATCCAGGTGTAGGCATGAGAGATTGGGAAGTGGTGC免疫原性细菌黏附蛋白基因 (bibA)943
    psaA-F/RAGCTGTCACCCTTTTGACCTTTAGGCTTAGGTGCCTGTGCT肺炎球菌表面抗原A基因 (psaA)828
    lmb-F/RATTTGTGACGCAACACACGGTCTTGTTTCCGCTTGGAGCA层黏连蛋白结合蛋白基因 (lmb)263
    spb1-F/RGACATGGGGAGATGGTGGTGAGCTTCTGTGCCCCATTCAA溶血素Ⅲ (spb1)652
    bac-F/RTGATTCCCTTTTGCTCTGCCAGTTCATGGGAAGCGTTGCTCβC蛋白基因 (bac)557
    pavA-F/RTCGACTTACATTGCCCCACCGGCGGCATCTGTCTTAACCT纤维蛋白结合蛋白基因 (pavA)996
    cppA-F/RTGCAAATCTTGTCCCTGTGCTCGTACTCGTGCGGTGAATGC3降解蛋白酶基因 (cppA)387
    cylE-F/RATTCTCCTCCTGGCAAAGCCTGACGCTTGGTAGTTGCTGTβ-溶血素/溶细胞素基因 (cylE)176
    下载: 导出CSV

    表  3   21对毒力基因检测结果

    Table  3   Detection results of 21 virulence genes

    毒力基因
    virulence gene
    菌株 strain
    1234567891011121314151617181920
    fbsA++++++++++++++++++++
    cfb++++++++++++++++++++
    dltR++++++++++++++++++++
    ponA++++++++++++++++++++
    hylB++++++++++++++++++++
    cspA++++++++++++++++++++
    sodA++++++++++++++++++++
    sip++++++++++++++++++++
    fbsB++++++++++++++++++++
    iagA++++++++++++++++++++
    scpB
    bca++++++++++++++++++++
    srr-1++++++++++++++++++++
    bibA++++++++++++++++++++
    psaA++++++++++++++++++++
    lmb
    spb1++++++++++++++++++++
    bac++++++++++++++++++++
    pavA++++++++++++++++++++
    cppA++++++++++++++++++++
    cylE++++++++++++++++++++
     注:1−2. TKP1601−TKP1602;3−6. TGZ1601−TGZ1604;7−10. TLJ1601−TLJ1604;11−12. TWC1601−TWC1602;13−20. TLC1601−
    TLC1608
    下载: 导出CSV
  • [1] 顾慧敏, 胡引. 1例分娩期合并无乳链球菌败血症患者的抢救及护理[J]. 中国实用护理杂志, 2014, 30(12): 56-57.
    [2]

    SANZROJAS P, CABEZAOSORIO L, HERMOSA C, et al. Acute meningitis by Streptococcus agalactiae in a immunocompetent male[J]. Rev Esp Quim, 2013, 26(1): 78-79.

    [3]

    JAWA G, HUSSAIN Z, da SILVA O. Recurrent late-onset group B Streptococcus sepsis in a preterm infant acquired by expressed breastmilk transmission: a case report[J]. Breastfeed Med, 2013, 8(1): 134-136. doi: 10.1089/bfm.2012.0016

    [4]

    VILLENA R M A, OLALLA S J, de la TORRE L J, et al. Streptococcus agalactiae induced cavitated pneumonia[J]. Rev Clin Esp, 2009, 209(5): 252-254. doi: 10.1016/S0014-2565(09)71245-7

    [5]

    ELLIOTT J A, FACKLAM R R, RICHTER C B. Whole-cell protein patterns of nonhemolytic group B, type Ib, streptococci isolated from humans, mice, cattle, frogs, and fish[J]. J Clin Microbiol, 1990, 28(3): 628-630.

    [6]

    EVANS J J, BOHNSACK J F, KLESIUS P H, et al. Phylogenetic relationships among Streptococcus agalactiae isolated from piscine, dolphin, bovine and human sources: a dolphin and piscine lineage associated with a fish epidemic in Kuwait is also associated with human neonatal infections in Japan[J]. J Med Microbiol, 2008, 57(11): 1369-1376. doi: 10.1099/jmm.0.47815-0

    [7]

    GENG Y, WANG K Y, HUANG X L, et al. Streptococcus agalactiae, an emerging pathogen for cultured ya-fish, Schizothorax prenanti, in China[J]. Transbound Emerg Dis, 2012, 59(4): 369-375. doi: 10.1111/tbed.2012.59.issue-4

    [8] 崔静雯, 汪开毓, 贺扬, 等. 无乳链球菌感染尼罗罗非鱼的脑膜炎模型[J]. 水产学报, 2015, 39(12): 1883-1893.
    [9] 王瑞, 李莉萍, 黄婷, 等. 罗非鱼组织内无乳链球菌实时荧光定量PCR检测方法建立[J]. 南方水产科学, 2015, 11(3): 41-46. doi: 10.3969/j.issn.2095-0780.2015.03.007
    [10] 卢迈新, 黎炯, 叶星, 等. 广东与海南养殖罗非鱼无乳链球菌的分离、鉴定与特性分析[J]. 微生物学通报, 2010, 37(5): 766-774.
    [11]

    HEMÁNDEZ E, FIGUEROA J, IREGUI C. Streptococcosis on a red tilapia, Oreochromis sp., farm: a case study[J]. J Fish Dis, 2009, 32(3): 247-252. doi: 10.1111/jfd.2009.32.issue-3

    [12] 祝璟琳, 杨弘. 鱼源无乳链球菌致病机理研究进展[J]. 广东海洋大学学报, 2013, 33(6): 92-96.
    [13]

    CHIDEROLI R T, AMOROSO N, MAINARDI R M, et al. Emergence of a new multidrug-resistant and highly virulent serotype of Streptococcus agalactiae in fish farms from Brazil[J]. Aquaculture, 2017, 479: 45-51. doi: 10.1016/j.aquaculture.2017.05.013

    [14] 韦现色, 林勇, 杨慧赞, 等. 广西罗非鱼链球菌病的流行及防治[J]. 广西畜牧兽医, 2013, 29(1): 57-60. doi: 10.3969/j.issn.1002-5235.2013.01.031
    [15] 方伟, 梁宇恒, 宁丹, 等. 广东地区感染养殖罗非鱼的无乳链球菌分子分型研究[J]. 中山大学学报(自然科学版), 2016, 55(2): 97-101.
    [16]

    SU Y L, FENG J, LIU C, et al. Dynamic bacterial colonization and microscopic lesions in multiple organs of tilapia infected with low and high pathogenic Streptococcus agalactiae strains[J]. Aquaculture, 2017, 471: 190-203. doi: 10.1016/j.aquaculture.2017.01.013

    [17]

    PATRAS K A, NIZET V. Group B streptococcal maternal colonization and neonatal disease: molecular mechanisms and preventative approaches[J]. Front Pediatr, 2018, 6: 27. doi: 10.3389/fped.2018.00027

    [18]

    LECLERCQ S Y, SULLIVAN M J, IPE D S, et al. Pathogenesis of Streptococcus urinary tract infection depends on bacterial strain and β-hemolysin/cytolysin that mediates cytotoxicity, cytokine synthesis, inflammation and virulence[J]. Sci Rep-UK, 2016, 6: 29000. doi: 10.1038/srep29000

    [19]

    GENDRIN C, LEMBO A, WHIDBEY C, et al. The sensor histidine kinase RgfC affects group B streptococcal virulence factor expression independent of its response regulator RgfA[J]. Infect Immun, 2015, 83(3): 1078-1088. doi: 10.1128/IAI.02738-14

    [20] 李庆勇, 可小丽, 卢迈新, 等. 罗非鱼无乳链球菌C5a肽酶(ScpB)的原核表达及其免疫原性[J]. 中国水产科学, 2014, 21(1): 169-179.
    [21] 曾祖聪, 可小丽, 卢迈新, 等. 罗非鱼无乳链球菌LrrG-Sip融合蛋白免疫原性研究[J]. 南方水产科学, 2017, 13(3): 51-57. doi: 10.3969/j.issn.2095-0780.2017.03.007
    [22]

    ZHANG D, LI A, GUO Y, et al. Molecular characterization of Streptococcus agalactiae in diseased farmed tilapia in China[J]. Aquaculture, 2013, 412(6): 64-69.

    [23]

    KANNIKA K, PISUTTHARACHAI D, SRISAPOOME P, et al. Molecular serotyping, virulence gene profiling and pathogenicity of Streptococcus agalactiae isolated from tilapia farms in Thailand by multiplex PCR[J]. J Appl Microbiol, 2017, 122(6): 1497-1507. doi: 10.1111/jam.2017.122.issue-6

    [24]

    BERRIDGE B R, BERCOVIER H, FRELIER P F. Streptococcus agalactiae and Streptococcus difficile 16S-23S intergenic rDNA: genetic homogeneity and species-specific PCR[J]. Vet Microbiol, 2001, 78(2): 165-173. doi: 10.1016/S0378-1135(00)00285-6

    [25]

    PATTERSON H, SARALAHTI A, PARIKKA M, et al. Adult zebrafish model of bacterial meningitis in Streptococcus agalactiae infection[J]. Dev Comp Immunol, 2012, 38(3): 447-455. doi: 10.1016/j.dci.2012.07.007

    [26]

    KAYANSAMRUAJ P, PIRARAT N, KATAGIRI T, et al. Molecular characterization and virulence gene profiling of pathogenic Streptococcus agalactiae populations from tilapia (Oreochromis sp.) farms in Thailand[J]. J Vet Diagn Invest, 2014, 26(4): 488. doi: 10.1177/1040638714534237

    [27]

    GODOY D T, CARVALHOCASTRO G A, LEAL C A, et al. Genetic diversity and new genotyping scheme for fish pathogenic Streptococcus agalactiae[J]. Lett Appl Microbiol, 2013, 57(6): 476-483. doi: 10.1111/lam.2013.57.issue-6

    [28]

    UDO E E, BOSWIHI S S, ALSWEIH N. Genotypes and virulence genes in group B Streptococcus isolated in the maternity hospital, Kuwait[J]. Med Prin Pract, 2013, 22(5): 453-457. doi: 10.1159/000349932

    [29]

    RAJAGOPAL L. Understanding the regulation of group B streptococcal virulence factors[J]. Future Microbiol, 2009, 4(2): 201-221. doi: 10.2217/17460913.4.2.201

    [30]

    EVANS J J, PASNIK D J, KLESIUS P H. Differential pathogenicity of five Streptococcus agalactiae isolates of diverse geographic origin in Nile tilapia (Oreochromis niloticus L.)[J]. Aquacult Res, 2015, 46(10): 2374-2381. doi: 10.1111/are.2015.46.issue-10

    [31] 祝璟琳, 邹芝英, 李大宇, 等. 尼罗罗非鱼无乳链球菌病的病理学研究[J]. 水产学报, 2014, 38(11): 1937-1944.
    [32]

    ABUSELIANA A F, DAUD H H M, AZIZ S A, et al. Pathogenicity of Streptococcus agalactiae isolated from a fish farm in selangor to juvenile red tilapia (Oreochromis sp.)[J]. J Anim Vet Adv, 2011, 10(7): 914-919. doi: 10.3923/javaa.2011.914.919

    [33] 姜建强, 额尔敦木图, 包花尔, 等. 嗜酸性粒细胞与寄生虫感染免疫的相关性[J]. 黑龙江畜牧兽医, 2016(2): 63-67.
    [34]

    REIMERT C M, FITZSIMMONS C M, JOSEPH S, et al. Eosinophil activity in Schistosoma mansoni infections in vivo and in vitro in relation to plasma cytokine profile pre- and posttreatment with praziquantel[J]. Clin Vaccine Immunol, 2006, 13(5): 584-593. doi: 10.1128/CVI.13.5.584-593.2006

    [35]

    DORAN K S, LIU G Y, NIZET V. Group B streptococcal β-hemolysin/cytolysin activates neutrophil signaling pathways in brain endothelium and contributes to development of meningitis[J]. J Clin Invest, 2003, 112(5): 736-744. doi: 10.1172/JCI200317335

    [36]

    RING A, BRAUN J S, POHL J, et al. Group B streptococcal β-hemolysin induces mortality and liver injury in experimental sepsis[J]. J Infect Dis, 2002, 185(12): 1745-1753. doi: 10.1086/jid.2002.185.issue-12

    [37]

    CHENG Q, CARLSON B, PILLAI S, et al. Antibody against surface-bound C5a peptidase is opsonic and initiates macrophage killing of group B Streptococci[J]. Infect Immun, 2001, 69(4): 2302-2308. doi: 10.1128/IAI.69.4.2302-2308.2001

    [38]

    BOHNSACK J F, WIDJAJA K, GHAZIZADEH S, et al. A role for C5 and C5a-ase in the acute neutrophil response to group B streptococcal infections[J]. J Infect Dis, 1997, 175(4): 847-855. doi: 10.1086/jid.1997.175.issue-4

    [39] 胡会杰, 张琪, 周明旭, 等. 不同禽源致病性大肠杆菌毒力基因分布规律研究[J]. 中国家禽, 2015, 37(10): 34-37.
    [40]

    LIN P Y, LAN R, SINTCHENKO V, et al. Computational bacterial genome-wide analysis of phylogenetic profiles reveals potential virulence genes of Streptococcus agalactiae[J]. PloS One, 2011, 6(4): e17964. doi: 10.1371/journal.pone.0017964

    [41]

    WANG Z, GUO C, XU Y, et al. Two novel functions of hyaluronidase from Streptococcus agalactiae are enhanced intracellular survival and inhibition of proinflammatory cytokine expression[J]. Infect Immun, 2014, 82(6): 2615. doi: 10.1128/IAI.00022-14

    [42]

    BACHRACH G, ZLOTKIN A, HURVITZ A, et al. Recovery of Streptococcus iniae from diseased fish previously vaccinated with a Streptococcus vaccine[J]. Appl Environ Micro, 2001, 67(8): 3756. doi: 10.1128/AEM.67.8.3756-3758.2001

    [43]

    ALHARBI A H. Phenotypic and genotypic characterization of Streptococcus agalactiae isolated from hybrid tilapia (Oreochromis niloticus×O. aureus)[J]. Aquaculture, 2016, 464: 515-520. doi: 10.1016/j.aquaculture.2016.07.036

    [44]

    ELDAR A, BEJERANO Y, LIVOFF A, et al. Experimental streptococcal meningo-encephalitis in cultured fish[J]. Vet Microbiol, 1995, 43(1): 33-40. doi: 10.1016/0378-1135(94)00052-X

推荐阅读
基于基尔霍夫近似模型的南海大黄鱼声学目标强度研究
王文卓 et al., 南方水产科学, 2024
广西银滩南部海域海洋牧场渔业资源评估
牛麓连 et al., 南方水产科学, 2024
珠海外伶仃海洋牧场春季渔业资源生物碳储量初探
魏文迪 et al., 南方水产科学, 2024
广西银滩南部海域海洋牧场鱼类群落结构特征及其与环境因子的关系
于杰 et al., 南方水产科学, 2024
中西太平洋主要金枪鱼产量回顾性分析
ZHENG Linbin et al., JOURNAL OF SHANGHAI OCEAN UNIVERSITY, 2025
基于node-gam模型的太平洋中部大眼金枪鱼cpue时空分布及其与环境因子的关系
周淑婷 et al., 广东海洋大学学报, 2025
Temperature induced biological alterations in the major carp, rohu (labeo rohita): assessing potential effects of climate change on aquaculture production
Mridul, Md. Monirul Islam et al., AQUACULTURE REPORTS, 2024
Time series prediction of sea surface temperature based on bilstm model with attention mechanism
Zrira, Nabila et al., JOURNAL OF SEA RESEARCH, 2024
Dependence of daily precipitation and wind speed over coastal areas: evidence from china's coastline
HYDROLOGY RESEARCH, 2023
Hybrid model approach for hilly sub-watershed prioritization using morphometric parameters: a case study from bakkhali river watershed in cox’s bazar, bangladesh
GEOLOGY, ECOLOGY, AND LANDSCAPES, 2024
Powered by
图(7)  /  表(3)
计量
  • 文章访问数:  5505
  • HTML全文浏览量:  2348
  • PDF下载量:  116
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-16
  • 修回日期:  2018-11-04
  • 录用日期:  2018-12-20
  • 网络出版日期:  2018-12-24
  • 刊出日期:  2019-04-04

目录

    /

    返回文章
    返回