Water state and microstructure characteristics of surimi gel from silver carp with different processing conditions
-
摘要:
为探讨超高压改善低盐鲢(Hypophthalmichthys molitrix) 鱼糜凝胶品质的机制,利用低场核磁共振(low field nuclear magnetic resonance,LF-NMR)、差示扫描量热法(differential scanning calorimeter,DSC)、傅里叶红外光谱(fourier transform infrared spectroscopy,FT-IR)以及扫描电镜分析比较了超高压低盐鱼糜凝胶 [300 MPa,1.5% 氯化钠(NaCl)] 与常压低盐鱼糜凝胶(0.1 MPa,1.5% NaCl)以及常压普通鱼糜凝胶(0.1 MPa,2.5% NaCl)在水分状态和微观结构上的差异。DSC结果表明超高压低盐鱼糜凝胶可冻结水的冰点降低,结合水含量(17.58%)较低盐对照组(10.89%)显著提高;LF-NMR表明超高压低盐鱼糜凝胶弛豫时间T21、T23和T24左移,不易流动水的含量(76.65%)较低盐对照组(67.29%)提高了9.39%;超高压处理能使低盐鱼糜凝胶形成光滑、连续、均匀的三维网络结构。因此,超高压处理(300 MPa,10 min)能够提高低盐鲢鱼糜凝胶结合水含量、改善微观结构。
Abstract:To explore the mechanism of the quality improvement of low-salt silver carp surimi gel by ultra-high pressure processing (UHPP), we compared the differences of water state and microstructure among high-pressure processed low salt surimi gels (300 MPa, 1.5% NaCl), atmospheric low salt surimi gels (0.1 MPa, 1.5% NaCl) and controlled surimi gel (0.1 MPa, 2.5% NaCl) by analyses of low field nuclear magnetic resonance (LF-NMR), differential scanning calorimetry (DSC), fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). The results of DSC show that the freezing point of frozen water decreased but the bound water content increased significantly from 10.89% to 17.58% after UHPP treatment (P<0.05). The LF-NMR results demonstrate that the spin-spin relaxation time (T21, T23 and T24) of low-sodium surimi gels after UHPP treatment decreased significantly (P<0.05), while the proportion of non-flowing water increased by 9.39% (from 67.29% to 76.65%). In addition, a smooth, uniform and denser network structure was achieved for low-sodium surimi gels at 300 MPa. Therefore, UHPP treatment (300 MPa, 10 min) can increase the bound water content and microstructure of low salt surimi gel.
-
Keywords:
- silver carp /
- surimi /
- ultra-high pressure (UHP) /
- water state /
- microstructure /
- thermal gel
-
黑素皮质素受体(melanocortin receptors, mcrs)是黑素细胞皮质激素(melanocortin, mc)参与多种调控和发挥功能的重要受体[1-2]。该受体家族属于G蛋白偶联受体 (GPCR),含有7个跨膜α螺旋结构[3],该家族包含了5种类型的基因,分别是MC1R、MC2R、MC3R、MC4R和MC5R[4]。Mcrs功能多样,在色素沉淀[5]、脂质和能量代谢[6]、摄食[7-9]等方面均起到重要作用。MC5R参与脂质代谢和外分泌功能等过程,MC5R基因在人体内普遍存在,在卵巢、乳腺、肾脏、脂肪细胞、肝脏和骨髓中均有表达,但MC5R在皮肤中的表达最高[10-11]。研究表明MC5R对肌肉和肝脏中的脂质代谢有调节作用[12],在人的皮脂细胞开始分化的时候表达较高,因此也可以作为人类皮脂细胞分化的标志性物质[13]。MC5R不仅调节脂质代谢,而且对分泌腺的分泌也有调节作用,例如泪腺和皮脂腺等[14]。目前对MC5R的研究,多集中于人 (Homo sapiens)、猪 (Sus domesticus)[15]、家鼠 (Mus musculus)[16]等物种。在鱼类中尚未发现有关mc5r对摄食影响的报道。
在自然环境中,鱼类经常会受到饥饿胁迫,恢复摄食后其摄食量增加,会出现饲料转化效率升高、生长速率显著加快等现象,此现象被称为生长补偿[17-19]。另外,哺乳动物基因组中存在5%~10%的生物钟基因,该类基因能够表现出以24 h为一个周期的昼夜节律性波动[20],与细胞增殖、凋亡、免疫应答、激素分泌和能量代谢等生命活动均有密切联系[21]。但生物钟基因在鱼类中的研究较少,研究与生长相关基因的昼夜节律变化,可以指导正确的投喂,改善鱼体的生长状态。
光倒刺鲃 (Spinibarbus hollandi) 属于硬骨鱼纲、鲤形目、鲤科、倒刺鲃属 ,主要分布于我国长江、珠江等水系,其生长快且肉质鲜美,是我国重要的经济鱼类[22]。目前有关光倒刺鲃的研究主要集中于繁殖生物学[23]、遗传多样性[24]等方面,有关光倒刺鲃生长、摄食相关基因的功能研究并不多见,笔者已对光倒刺鲃的mc4r和mstn基因进行了克隆,并且对这2个基因与生长性状关联的SNPs筛选和验证进行了初步研究,筛选出与生长显著关联的SNPs[25-26],同为Mcrs家族的mc5r基因是否具有相似的功能?本研究对光倒刺鲃mc5r基因进行了同源克隆和功能分析,以期为光倒刺鲃的摄食、生长发育及相关研究提供基础资料和新的思路。
1. 材料与方法
1.1 实验材料
实验用光倒刺鲃120尾,体质量为 (37.45±7.23) g,取自广东省韶关市水产研究所。在广州大学水产养殖室饲养。每天8:00对光倒刺鲃进行足量投喂,适应环境2周后进行实验。
1.2 实验设计
1.2.1 昼夜节律实验
把光倒刺鲃分为2组 (投喂组和非投喂组),每组50尾,置于100 cm×60 cm×60 cm的水族箱中,水温22~26 ℃,实验时间为2017年10月,实验用鱼置于室内自然光照和自然昼夜节律下,水面光照强度为0~430 lx。非投喂组不喂食,投喂组每天8:00投喂。两组分别在实验开始第1天的9:00、11:00、15:00、20:00以及第2天的8:00 (投喂后)对光倒刺鲃进行取样,每次6尾,使用MS-222麻醉后迅速解剖,将脑组织保存于RNA keeper溶液中,取样时间点参考赵建等[27]对鱼类昼夜摄食节律的研究确定。
1.2.2 饥饿再投喂实验
把光倒刺鲃分为对照组、饥饿4 d组、饥饿7 d组、饥饿7 d再投喂4 d组和饥饿7 d再投喂7 d组,每组10尾,置于100 cm×60 cm×60 cm的水族箱中,每天8:00进行投喂,水温22~26 ℃,实验时间为2017年10月,实验用鱼置于室内自然光照和自然昼夜节律下,水面光照强度为0~430 lx。在实验结束当天11:00取脑组织,每次取6尾用于RNA表达量检测。
1.3 克隆与测序
取25 mg光倒刺鲃肌肉组织,使用生物工程 (上海)股份有限公司 (简称生工)的Ezup柱式DNA试剂盒提取DNA,使用Prep柱式DNA胶回收试剂盒回收DNA。根据金线鲃 (Sinocyclocheilus grahami)的编码区序列设计引物F1和R1 (表1),以光倒刺鲃基因组DNA为模板进行扩增,根据扩增出的光倒刺鲃mc5r中间序列片段,正向和反向各设计3条特异性染色体步移引物,分别为F2、F3、F4、R2、R3和R4,与Genome Walking Kit (TaKaRa)试剂盒提供的兼并引物进行热不对称PCR反应,反应步骤和反应条件按试剂盒说明书进行操作,送生工测序,得到正向和反向序列片段。
表 1 光倒刺鲃mc5r基因克隆和表达分析的引物Table 1. Primers for cloning and expression analysis of mc5r gene in S. hollandi引物
primer引物序列 (5'−3')
primer sequence用途
application产物大小/bp
product sizeF1 AAGATGCCCTGTCTACCAACCC 克隆 850 R1 GGTCCAAATCCCTCCAATGATG 克隆 F2 GGAGGGAAAACAACAGCACAAGC 克隆 750 R2 GGTCCAAATCCCTCCAATGATG 克隆 800 F3 GGTTAAAGATGCCCAACCCACC 克隆 800 R3 GGATGAGGTGGAGAAAGAACGG 克隆 800 F4 CTACTTACTCACCAACCGCCAG 克隆 850 R4 CTTTGATCGACAGCGTGTCCC 克隆 900 F AACACTTCAGAGGCCACCCTG qRT-PCR 150 R TGAGCTGCTCGCATGCTTTGG qRT-PCR 18sF TGATCGTCTTCGAGCCTCTGAC 内参 150 18sR AATTCTTGGACCGGCGCAAGAC 内参 1.4 光倒刺鲃mc5r基因序列拼接与分析
将测序获得的中间、正向和反向序列片段用SeqMan软件进行拼接比对,把拼接所获得的序列在NCBI的Blast工具上进行比对,确认所获得序列是mc5r基因序列,用软件DNAMAN对光倒刺鲃mc5r序列的CDs区进行翻译,得到其编码的氨基酸序列。利用在线工具TMHMM Service v.2.0对光倒刺鲃mc5r的跨膜蛋白进行预测。使用MEGA 5.0软件中Neighbor-Joining法构建系统发育树,Bootstrap method检测重复1 000次。
1.5 光倒刺鲃mc5r基因的组织表达分析
取5尾光倒刺鲃的15个组织:大脑、小脑、中脑、间脑、延脑、肝、肾、肠、胃、脾、肌肉、鳃、心脏、性腺、眼,保存于RNA keeper溶液中。使用Trizol法提取RNA,用1%琼脂糖电泳检测RNA质量。根据PrimeScript TM RT reagent Kit with gDNA Eraser (Perfect Real Time) 说明书对所得的RNA进行反转录。按照SYBR® Premix Ex TaqTM II (Tli RNaseH Plus) 试剂盒的要求,使用ABI7000荧光定量PCR仪进行Real-time PCR检测mRNA的表达量,每个组织样品设置3个重复。用18S作为内参基因。实验数据使用2−ΔΔCt方法进行计算分析。
2. 结果
2.1 光倒刺鲃mc5r基因的序列分析
光倒刺鲃mc5r基因的序列长度为1 947 bp,编码区长987 bp,编码329个氨基酸 (图1、图2),含有7个跨膜α螺旋结构。
分析该蛋白的理论等电点为8.60;相对分子质量为37 213.62,其中亮氨酸 (Leu)的含量最高 (11.3%);色氨酸 (Trp)的含量最低 (1.2%)。分析显示,该蛋白的不稳定指数为47.09,属于不稳定蛋白。水合性的总平均值 (GRAVY)为0.803,表示该蛋白为疏水蛋白。
2.2 光倒刺鲃mc5r基因的系统进化分析
在GenBank上和其他物种的mc5r氨基酸序列比对发现,光倒刺鲃与鲤 (Cyprinus carpio)、犀角金线鲅 (S. rhinocerous)的同源性高达98%,与人的同源性仅为70.72%。将所得的光倒刺鲃mc5r基因预测的氨基酸序列与GenBank中的33个已知mc5r氨基酸序列利用MEGA 5.0软件进行比对得出 (图3),光倒刺鲃和斑马鱼 (Danio rerio) 聚为一支,说明其与斑马鱼的亲缘关系最近;然后与鲤科的鲤、武昌鱼 (Megalobrama amblycephala)、犀角金线鲅、金线鲃和鲫 (Carassius auratus)组成的分支聚为一支,说明其与鲤形目鱼类的亲缘关系较近;再与鲶形目斑点叉尾鮰 (Ictalurus punctatus)、鲑形目大鳞大麻哈鱼 (Oncorhynchus tshawytscha)和虹鳟 (O. mykiss)、鲀形目红鳍东方鲀 (Takifugu rubripes)、鲈形目大黄鱼 (Larimichthys crocea)等鱼类聚为一大支,光倒刺鲃与鲶形目和鲑形目鱼类亲缘关系较近,与鲀形目和鲈形目鱼类的亲缘关系较远;最后和哺乳类(人等)聚为一支。
2.3 光倒刺鲃mc5r在不同组织中的表达分析
通过qRT-PCR对光倒刺鲃mc5r在不同组织中的表达量进行研究。结果显示,光倒刺鲃mc5r在脑中的表达量较高,尤其是在大脑中的表达量最高;间脑与心脏的表达量次之;中脑和小脑的表达量较少,而在胃、肾、肌肉、脾、鳃、肠、性腺、肝、延脑和眼中仅微量表达(图4)。
2.4 光倒刺鲃mc5r基因的日周期表达分析
光倒刺鲃禁食组和投喂组,在当天11:00 (投喂后3 h)大脑mc5r的表达量最高;15:00 (投喂后7 h)已经呈显著下降趋势,20:00 (投喂后12 h)大脑mc5r的表达量最低;次日8:00 (投喂后24 h)大脑mc5r的表达量有所升高(图5)。此外,在投喂后7 h,光倒刺鲃mc5r投喂组的表达量显著高于禁食组,而在其他时间段禁食组和投喂组大脑mc5r的表达量没有显著差异。
2.5 光倒刺鲃mc5r对饥饿的响应
光倒刺鲃饥饿再投喂实验中,大脑mc5r的表达情况见图6。第0~第7天由于光倒刺鲃处于饥饿状态,大脑mc5r微量表达;在第8天开始投喂后,其大脑mc5r的表达量显著升高;但在第11和第14天,与第8天相比其大脑mc5r的表达量呈下降趋势。
3. 讨论
本研究通过同源克隆和染色体步移得到光倒刺鲃mc5r的基因序列,对所获得的氨基酸序列与其他物种进行同源性和系统进化分析,得出光倒刺鲃与鲤、犀角金线鲅的同源性高达98%,与人的同源性为70.72%,表明其与斑马鱼、武昌鱼和鲤等鲤科鱼类的亲缘关系较近,而与鸟类、两栖类和哺乳类等亲缘关系较远,有着较大差异。
光倒刺鲃mc5r主要在脑中表达,其中在大脑的表达量最高,中脑、间脑和小脑表达较高,在胃、肾、肌肉、脾、鳃、肠、性腺、肝和眼中仅微量表达。研究表明mc5r对于脂质代谢和分泌腺的分泌有调节作用[10-14],mc5r对能量平衡也有调节作用[28],而在鱼类中,脑与其脂质代谢和能量平衡的调节作用也密切相关,所以光倒刺鲃脑中mc5r的表达量相对较高。mc5r在心脏中表达也较高,这可能与心脏供血需要一定能量,而mc5r在能量稳态中起重要作用[28]有关,也表明光倒刺鲃mc5r可能对能量平衡有一定调节作用。光倒刺鲃mc5r在不同组织的表达结果与其他鱼相似。在团头鲂中,mc5r在大脑的表达最高,其次是表皮、眼等与外分泌相关的组织[29];在金鱼中,mc5r在脑、眼和表皮有较高表达,肠、肝和肌肉中微量表达[30];在斑马鱼中,mc5r在脑、卵巢、胃肠道有较高表达,同时心脏中也有表达[31]。表明mc5r在不同鱼类各组织中的功能相似,在脂质代谢和能量平衡方面有重要作用。
生物钟能够影响多种生理活动,例如内分泌、食物消化吸收和肝脏新陈代谢等[32]。mc5r对于脂质代谢[12-13]和能量平衡[16]有一定调节作用。在光倒刺鲃中,不管投喂与否,光倒刺鲃mc5r的表达量会随着日周期的变化而变化,表明mc5r的表达受昼夜节律影响,同样光倒刺鲃的摄食、代谢等生理活动也可能会受到昼夜节律的影响。在日周期实验中,投喂后7 h光倒刺鲃mc5r的表达量显著高于未投喂组,说明摄食同样能够影响mc5r的表达。
在光倒刺鲃饥饿再投喂实验中,当光倒刺鲃遭受饥饿时,其大脑中mc5r的表达量较低,而再投喂后大脑中mc5r的表达量显著升高,随后逐渐降低。有研究表明激活mc5r能够促进肌肉对葡萄糖的摄取[16],并与皮脂腺代谢相关[33]。饥饿再投喂后,光倒刺鲃大脑中mc5r的表达量显著升高,推测mc5r基因可能在光倒刺鲃的摄食中有重要调节作用,并在饥饿再投喂后的补偿生长中扮演一定角色。
-
图 1 不同压力下鱼糜凝胶强度(a)和持水性(b)的变化
0.1(1). 常压对照组1 (0.1 MPa,添加2.5% NaCl);0.1(2). 常压对照组2 (0.1 MPa,添加1.5% NaCl);100~500. 不同高压处理组(100~500 MPa, 10 min,添加1.5% NaCl);不同字母代表样品存在显著差异(P<0.05)
Figure 1. Changes of gel strength of (a) and water holding capacity (WHC) (b) surimi gel at different pressures
0.1(1). normal atmospheric pressure Group 1 (0.1 Mpa, 2.5% NaCl); 0.1(2). normal atmospheric pressure Group 2 (0.1 Mpa, 1.5% NaCl); 100−500. different high pressure groups (100−500 MPa, 10 min, 1.5% NaCl); different letters indicate significant difference (P<0.05).
表 1 超高压及常压处理鱼糜凝胶中各种水分含量
Table 1 Various water contents in surimi gels treated with UHP and at normal pressure
% 样品
sample总水分
total water content可冻结水
freezable water content结合水
bound water content2.5% 氯化钠 NaCl (0.1 MPa) 76.87±2.39a 65.80±2.01a 11.07±1.03b 1.5% 氯化钠 NaCl (0.1 MPa) 77.74±3.10a 66.85±1.63a 10.89±1.70b 1.5% 氯化钠 NaCl (300 MPa, 10 min) 76.96±1.05a 59.38±1.08b 17.58±1.97a 注:UHP-300 MPa, 10 min;同列不同字母表示差异显著(P<0.05),下表同此 Note: Different letters in the same column indicate significant difference (P<0.05). The same case in the following tables. 表 2 鱼糜凝胶低场核磁共振自旋弛豫时间 (T2) 和峰比例 (P)
Table 2 LF-NMR spin-spin relaxation time (T2) and peak proportion (P) of surimi gel
样品
sample弛豫时间T2分布/ms
T2 relaxation time distribution弛豫时间T2峰面积所占比例/%
proportion of T2 relaxation time peak areaT21 T22 T23 T24 P21 P22 P23 P24 2.5% 氯化钠 NaCl (0.1 MPa) 1.00±0.08a 5.11±0.21c 70.79±2.98a 403.70±19.45a 2.15±0.12a 0.59±0.05c 68.68±3.01b 29.20±1.12a 1.5% 氯化钠 NaCl (0.1 MPa) 0.86±0.03b 6.64±0.15b 70.65±3.34a 405.12±18.45a 1.93±0.16a 0.98±0.03b 67.29±2.95b 30.10±1.03a 1.5% 氯化钠 NaCl (300 MPa, 10 min) 0.76±0.05c 7.03±0.35a 65.79±2.67b 371.12±23.16b 1.40±0.07b 1.59±0.11a 76.65±1.97a 20.36±2.05b 表 3 鱼糜凝胶的傅里叶红外光谱数据
Table 3 FT-IR spectra data of surimi gel
cm–1 样品
sample傅里叶红外光谱各峰值数据 FT-IR spectra peak data PK1 PK2 PK3 PK4 PK5 PK6 2.5% 氯化钠 NaCl (0.1 MPa) 3 295 2 926 1 654 1 546.6 1 400 1 050 1.5% 氯化钠 NaCl (0.1 MPa) 3 295 2 925 1 655 1 546.6 1 400 1 049 1.5% 氯化钠 NaCl (300 MPa, 10 min) 3 293.8 2 925.5 1 654.6 1 546.6 1 402 1 051 -
[1] 陆剑锋, 邵明栓, 林琳, 等. 卡拉胶和超高压对鱼糜凝胶性质的影响[J]. 农业机械学报, 2011, 42(12): 164-170. [2] 叶川. 微波处理与卡拉胶对低盐白鲢鱼糜凝胶特性的影响[D]. 合肥: 合肥工业大学, 2016: 8-33. [3] CANDO D, HERRANZ B, BORDERÍAS A J, et al. Different additives to enhance the gelation of surimi gel with reduced sodium content[J]. Food Chem, 2016, 196(1): 791-799.
[4] 付湘晋, 许时婴, 王璋. 微波加热法制备白鲢鱼低盐鱼糜凝胶[J]. 中国食品学报, 2010, 10(3): 52-57. doi: 10.3969/j.issn.1009-7848.2010.03.008 [5] 朱克卫. 微波处理改善鱼糜制品凝胶性的研究进展[J]. 农产品加工: 学刊, 2014, 9(18): 60-63. [6] 郭宝颜, 梁燕, 周爱梅, 等. 超高压对罗非鱼肌动球蛋白物化特性的影响[J]. 现代食品科技, 2015, 31(6): 259-263. [7] CANDO D, HERRANZ B, JAVIER BORDERIAS A, et al. Effect of high pressure on reduced sodium chloride surimi gels[J]. Food Hydrocolloid, 2015, 51(1): 176-187.
[8] 黄海. DSC在食品中的运用[J]. 食品与机械, 2002, 1(2): 6-9. doi: 10.3969/j.issn.1003-5788.2002.02.002 [9] CARNEIRO C D S, MÁRAICO E T, JÚNIOR C A C, et al. Studies of the effect of sodium tripolyphosphate on frozen shrimp by physicochemical analytical methods and Low Field Nuclear Magnetic Resonance (LF H-1 NMR)[J]. LWT-Food Sci Technol, 2013, 50(2): 401-407. doi: 10.1016/j.lwt.2012.09.009
[10] ZHOU Y, CHEN C, CHEN X, et al. Contribution of three ionic types of polysaccharides to the thermal gelling properties of chicken breast myosin[J]. J Agric Food Chem, 2014, 62(12): 2655-2662. doi: 10.1021/jf405381z
[11] 陆剑锋, 邵明栓, 林琳, 等. 结冷胶和超高压对鱼糜凝胶性质的影响[J]. 农业工程学报, 2011, 27(11): 372-377. doi: 10.3969/j.issn.1002-6819.2011.11.069 [12] 张莉莉. 高温(100~120 ℃)处理对鱼糜及其复合凝胶热稳定性的影响[D]. 青岛: 中国海洋大学, 2013: 55-60. [13] 罗晓玲, 杨瑞金, 赵伟, 等. 超高压处理复合鱼糜凝胶性能研究[J]. 食品与机械, 2010, 26(4): 15-18, 38. [14] CHEN X, TUME R K, XIONG Y, et al. Structural modification of myofibrillar proteins by high-pressure processing for functionally improved, value-added, and healthy muscle gelled foods[J]. Crit Rev Food Sci, 2017, 5(1): 1-23.
[15] ZHANG Z, YANG Y, ZHOU P, et al. Effects of high pressure modification on conformation and gelation properties of myofibrillar protein[J]. Food Chem, 2017, 217(1): 678-686.
[16] MARIA MORENO H, CARBALLO J, BORDERIAS J. Application of Response Surface Methodology to study the effect of different calcium sources in fish muscle-alginate restructured products[J]. Ciencia e Tecnologia de Alimentos, 2011, 31(1): 209-216. doi: 10.1590/S0101-20612011000100032
[17] CAO Y, XIA T, ZHOU G, et al. The mechanism of high pressure-induced gels of rabbit myosin[J]. Innov Food Sci Emerg, 2012, 16(1): 41-46.
[18] SANCHEZ-GONZALEZ I, CARMONA P, MORENO P A, et al. Protein and water structural changes in fish surimi during gelation as revealed by isotopic H/D exchange and Raman spectroscopy[J]. Food Chem, 2008, 106(1): 56-64. doi: 10.1016/j.foodchem.2007.05.067
[19] FERNÁNDEZ P P, MARTINO M N, ZARITZKY N E, et al. Effects of locust bean, xanthan and guar gums on the ice crystals of a sucrose solution frozen at high pressure[J]. Food Hydrocolloid, 2007, 21(4): 507-515. doi: 10.1016/j.foodhyd.2006.05.010
[20] BORCHARD W, KENNING A, KAPP A, et al. Phase diagram of the system sodium alginate/water: a model for biofilms[J]. Int J Biol Macromol, 2005, 35(5): 247-256. doi: 10.1016/j.ijbiomac.2005.02.006
[21] RENAUD T, BRIERY P, ANDRIEU J, et al. Thermal properties of model foods in the frozen state[J]. J Food Eng, 1992, 15(2): 83-97. doi: 10.1016/0260-8774(92)90027-4
[22] HAN M, WANG P, XU X, et al. Low-field NMR study of heat-induced gelation of pork myofibrillar proteins and its relationship with microstructural characteristics[J]. Food Res Int, 2014, 62(1): 1175-1182.
[23] 秦影, 汤海青, 欧昌荣, 等. 超高压处理对大黄鱼鱼糜水分状态和蛋白质结构的影响[J]. 农业工程学报, 2015, 31(23): 246-252. doi: 10.11975/j.issn.1002-6819.2015.23.033 [24] 林晶晶, 林向阳, 吴佳, 等. 利用核磁共振技术研究鱼糜制品在储藏过程中的水分变化[J]. 食品科学, 2011, 32(19): 46-49. [25] YANG J, DUNKER A K, POWERS J R, et al. β-Lactoglobulin molten globule induced by high pressure[J]. J Agric Food Chem, 2001, 49(7): 3236-3243. doi: 10.1021/jf001226o
[26] CHEN X, CHEN C G, ZHOU Y Z, et al. Effects of high pressure processing on the thermal gelling properties of chicken breast myosin containing κ-carrageenan[J]. Food Hydrocolloid, 2014, 40(1): 262-272.
[27] KOBAYASHI Y, MAYER S G, PARK J W. FT-IR and Raman spectroscopies determine structural changes of tilapia fish protein isolate and surimi under different comminution conditions[J]. Food Chem, 2017, 226(1): 156-164.
[28] 陈星. 超高压处理对肌原纤维蛋白-多糖混合凝胶特性的影响及其机制研究[D]. 合肥: 合肥工业大学, 2014: 31-32. [29] KOC M, KOC B, SUSYAL G, et al. Improving functionality of whole egg powder by the addition of gelatine, lactose, and pullulan[J]. J Food Sci, 2011, 76(9): S508-S515. doi: 10.1111/jfds.2011.76.issue-9
-
期刊类型引用(5)
1. 赖洁,叶树政,黄文炜,李斯迅,邓彬华,韩崇,龚剑,桂林,李强. 光倒刺鲃(Spinibarbus hollandi)基因组Survey及线粒体基因组研究. 海洋与湖沼. 2025(02): 423-432 . 百度学术
2. 戴炜,张超,王霜文,尧志宇,吴佩诗,鄢智轩,钟语慧,周蕾,江子怡,卢环,满百膺. 信江光倒刺鲃的生长与繁殖特性研究. 上饶师范学院学报. 2024(06): 26-40 . 百度学术
3. 郭辰,周飞,韩彪,潘翠,吴洁敏,杨婷,尚常花. 假单胞菌亮氨酸氨肽酶基因克隆及生物信息学分析. 广西师范大学学报(自然科学版). 2021(01): 156-164 . 百度学术
4. 李文俊,李强,钟良明. 珠江水系光倒刺鲃Cyt b基因的遗传变异分析. 湖南农业科学. 2021(02): 1-5+14 . 百度学术
5. 李文俊,李强,钟良明,桂林. 基于线粒体DNA控制区序列的珠江和长江水系光倒刺鲃群体遗传变异分析. 南方农业学报. 2021(11): 3121-3129 . 百度学术
其他类型引用(2)