Assessment of impact of summer fishing moratorium in South China Sea during 2015−2017
-
摘要:
根据2015—2017年南海海域海洋捕捞生产结构调查数据,选取休渔前后渔船日均产量、日均产值、单位捕捞努力量渔获量(catch per unit effort,CPUE)、拖网渔获率等指标,应用显著性检验与增长幅度综合分析休渔效果。结果表明,2015年、2016年和2017年休渔后渔船日均产量比休渔前分别增加19.21%、49.99%和114.64%;日均产值分别增加0.40%、16.06%和49.14%;CPUE分别增加7.12%、73.30%和110.90%。休渔制度对渔船日均产量影响显著(P<0.05),对渔船日均产值、CPUE、渔获率与渔获结构影响有限(P>0.05)。总体评价,南海海域伏季休渔制度的实施对渔民增产效果显著,对改善资源群落结构效果有限,2017年休渔效果优于2015年和2016年。
Abstract:Based on the data of marine fishing production structure in the South China Sea during 2015−2017, we investigated the effect of summer fishing moratorium by studying the indicators such as daily yield, daily output value, catch per unit effort (CPUE) and trawl fishing rate before and after summer fishing moratorium, with differential test and growth rate analysis. Compared with the data before the moratorium, the daily yields of fishing boats after summer fishing moratorium increased by 19.21%, 49.99% and 114.64% in 2015, 2016 and 2017, respectively; the average daily output values increased by 0.40%, 16.06% and 49.14%, respectively; CPUE increased by 7.12%, 73.30% and 110.90%, respectively. The fishing moratorium system had a significant impact on the daily output of fishing vessels (P<0.05), but a limited impact on the daily output value, CPUE, catch rate and fishing structure (P>0.05). To sum up, summer fishing moratorium in the South China Sea affects the yield increment significantly, but affects the resource community structure not so much. The effect in 2017 is better than that in 2015 and 2016.
-
Keywords:
- summer fishing moratorium /
- fishing resources /
- impact assessment /
- South China Sea
-
近江牡蛎(Crassostrea rivulari)和波纹巴非蛤(Paphia undulate)是2种主要的养殖经济贝类,因其具有营养丰富、味道鲜美和食用方便等特点,深受消费者欢迎。它们能为人体提供丰富的蛋白质和氨基酸,尤其牡蛎还享有“海中牛奶”的美称[1],作为高灰分、低脂肪的食物[2],对不同年龄段的人、特别是老年人具有营养与保健功能[3]。同时近江牡蛎和波纹巴非蛤还富含人体必需的微量元素铁(Fe)、铜(Cu)等,常作为治疗缺乏微量元素(如Fe)辅助治疗的食疗材料[4]。
贝类作为食物进入人体消化道后,只有部分营养物质会被消化吸收,同时贝类不同的食用方式也会对其消化吸收[5]有影响,为更好地评估摄入量,体外仿生模型被引入到贝类中微量金属的分析研究中,通过模拟人体胃肠消化过程,考察贝类中微量金属在人体消化过程中的生物可接受性[6-9]。目前采用体外仿生模型研究食品、药品的生物可接受性已被广泛应用和认可[10-12]。近江牡蛎和波纹巴非蛤微量金属元素分析主要集中在总量[13-17],关于生物可接受性研究、特别是食用方式影响的研究甚少。该研究采用体外全仿生消化方法对近江牡蛎和波纹巴非蛤进行处理,模拟2种贝类在人体消化道环境中的消化过程,对胃、肠消化过程中转运至仿生消化液中的微量金属进行测定,考察生、熟2种状态下贝类微量金属在提取液中提取量、生物可接受性的变化规律及特征,并进行微量元素摄入评估,以期为近江牡蛎和波纹巴非蛤的食用药用价值提供基础数据。
1. 材料与方法
1.1 材料与试剂
1.1.1 样品制备
2013年在广东省石栏洲海域、博贺湾、独湾海域、桂山岛海域4个主要贝类养殖区采集近江牡蛎106个,在柘林湾青屿、浮屿海域采集波纹巴非蛤贝类样品40个,采集的样品在现场用海水将外壳洗净后,冰冻保存带回实验室。在实验室取出贝类样品的软组织和体液,冻干至恒质量,用玛瑙研钵研磨后装于食品塑料袋内待用。
1.1.2 试验试剂
牛血清白蛋白(分析纯,广州威佳科技有限公司出品),黏液素(分析纯,广州鼎国公司出品),氯化钾、硫氰化钾、磷酸二氢钠、磷酸钠、氯化钠、氢氧化钠、尿素、a-淀粉酶、尿酸、氯化钙、氯化铵、氯化镁、碳酸氢钠、磷酸二氢钾、葡萄糖、葡萄糖醛酸、氨基葡萄糖盐酸盐、胃蛋白酶、胰液素、脂肪酶、胆汁(分析纯,上海晶纯生化科技股份有限公司出品)。
1.2 仪器与设备
试验过程使用的仪器设备主要有Milestone微波消解萃取系统(Ethos1)、智诚气浴恒温振荡器(ZHWY-2000)、Crist真空冷冻干燥机(ALPHA 1-4/Ldplue)、HITCH原子吸收分光光度计Z-2000。
1.3 方法
1.3.1 全仿生消化液的制备方法
试验所用唾液、胃液、肠液、胆汁等消化液的组成见表 1。参照LAIRD和CHAN[18]的方法,分别加入相应的无机物、有机物、消化酶,调节pH与4 ℃下保存备用。
表 1 唾液、胃液、十二指肠液、胆汁组成成分Table 1. Main components of saliva, gastric juice, duodenal juice and bile无机物inorganic matter 有机物organic matter 消化酶digestive enzyme pH 唾液sailiva 10 mL 189.6 g·L-1 KCl
10 mL 20 g·L-1 KSCN 10 mL 88.80 g·L-1 NaH2PO4
10 mL 57 g·L-1 Na3PO4
1.7 mL 175.3 g·L-1 NaCl
1.8 mL 40 g·L-1 NaOH8 mL 25 g·L-1尿素 145 mg α-淀粉酶
15 mg尿酸
50 mg粘液素6.5±0.2 胃液gastric juice 15.7mL 175.3 g·L-1 NaCl
3.0 mL 88.8 g·L-1 NaH2PO4
9.2 mL 89.6 g·L-1 KCl
18 mL 22.2 g·L-1 CaCl2
8.3 mL 37% HCl10 mL 65 g·L-1葡萄糖
10 mL 2 g·L-1葡萄糖醛酸
3.4 mL 25 g·L-1尿素
10 mL 33 g·L-1 氨基葡萄糖盐酸盐1 g牛血清蛋白
1 g胃蛋白酶
3 g脂肪酶1.07±0.07 十二指肠液
duodenal juice40 mL 175.3 g·L-1 NaCl
40 mL 84.7 g·L-1 NaHCO3
10 mL 8 g·L-1 KH2PO4
6.3 mL 89.6 g·L-1 KCl
10 mL 5 g·L-1 MgCl2
9 mL 22.2 g·L-1 CaCl2
0.18 mL 37% HCl4 mL 25 g·L-1尿素 1 g牛血清蛋白
3 g胰液素
0.5 g脂肪酶7.8±0.2 胆汁bile 30 mL 175.3 g·L-1 NaCl
68.3 mL 4.7 g·L-1 NaHCO3
4.2 mL 89.6 g·L-1 KCl
0.2 mL 37% HCl
10 mL 2.2 g·L-1 CaCl21 g牛血清蛋白
6 g胆汁8.0±0.2 注:用盐酸或碳酸氢钠溶液调pH,用超纯水定容至500 mL,在4 ℃下保存
Note: The pH values of all solutions were adjusted using HCl or NaHCO3 and the total volume of each digestion solution was diluted to 500 mL with ultrapure water before storage at 4 ℃.1.3.2 贝类全仿生消化方法
样品仿生消化具体步骤[18]为:称取贝类样品(生食样品)1.00 g,加入10 mL仿生唾液,在37 ℃恒温振荡5 min后加入150 mL仿生胃液,再于37 ℃恒温振荡2 h后取100 mL胃仿生消化食糜离心,得胃提取液待测;余下部分加入200 mL仿生十二指肠和80 mL仿生胆汁,恒温振荡8 h后取100 mL肠道仿生食糜离心,得肠提取液待测。熟食样品为制备好的贝类样品(生食样品)加入15 mL高纯水加热,沸腾10 min所得,仿生消化步骤同上。
1.3.3 贝类样品和提取液中重金属测定方法
取0.5 g贝类样品或30 mL仿生提取液(1.3.1制得),加入8 mL浓硝酸、1 mL双氧水微波消解后转移至烧杯加热,最终定容到10 mL的容量瓶,用原子吸收分光光度计分别测定贝类样品和仿生提取液中的Fe、Cu。样品平行双份,测定结果以平均值表示。
1.3.4 数据处理
$$ \;\;\;\;\;\;生物可接受性 (\%)=\\\frac{\text { 贝类消化液中金属质量分数 }\left(\mathrm{mg} \cdot \mathrm{kg}^{-1}\right)}{\text { 贝类样品中金属质量分数 }\left(\mathrm{mg} \cdot \mathrm{kg}^{-1}\right)} \times 100 $$ 居民日微量元素摄入量(mg · d-1)=每日膳食贝类摄入量(g)×贝类金属元素质量分数(mg · g-1)×生物可接受性;式中每日膳食贝类摄入量:男为19.4 g、女为17.7 g[19]。
2. 结果
2.1 贝类样品Fe、Cu总量
分析结果表明近江牡蛎和波纹巴非蛤均富含Fe元素,贝类样品近江牡蛎w(Fe)变化范围为0.97~1.83 mg · g-1,波纹巴非蛤w(Fe)的变化范围为0.96~1.24 mg · g-1,近江牡蛎w(Fe)平均值略大于波纹巴非蛤;与w(Fe)相比w(Cu)较低,2种贝类w(Cu)相差较大,近江牡蛎w(Cu)平均值为0.31 mg · g-1,而波纹巴非蛤w(Cu)平均值不及近江牡蛎的十分之一。
2.2 消化阶段提取液中Fe、Cu的变化
胃、肠仿生消化过程中(图 1-a,图 1-b),熟近江牡蛎仿生消化液中Fe的提取量比生的大。在胃仿生消化阶段,熟牡蛎提取液中Fe的提取量为547 mg · kg-1,而生牡蛎的只有503.5 mg ·kg-1。在肠仿生消化阶段,熟牡蛎提取液中Fe的提取量也比生牡蛎略高,是生牡蛎的1.05倍。熟牡蛎中Cu在胃肠消化阶段变化不一致,在胃消化阶段Cu的提取量比生牡蛎高,但是在肠消化阶段则比生牡蛎低,纵观整个仿生消化过程,熟牡蛎被仿生消化液提取出来的Cu比生牡蛎的高。
熟的波纹巴非蛤仿生消化过程中,Fe、Cu元素变化规律相同。胃仿生消化阶段(图 1-a,图 1-c),熟的波纹巴非蛤提取液中Fe、Cu提取量均比生波纹巴非蛤高;而在肠仿生消化阶段,熟波纹巴非蛤Fe、Cu提取量均比生波纹巴非蛤低,分别是生波纹巴非蛤提取量的88%和97%(图 1-b,图 1-d),Fe提取量降低幅度大于Cu。
胃是人类消化系统中主要消化场所,此试验也印证了这一点。不管是煮熟还是生食,近江牡蛎和波纹巴非蛤中的Fe、Cu在胃仿生消化中释放的量比肠消化阶段多,胃和肠提取液中Cu差别比较大。有研究表明生牡蛎中经胃消化阶段被提取的Cu可高达80%[20]。
2.3 生物可接受性
经过仿生消化后,熟近江牡蛎中的Fe、Cu生物可接受性比生近江牡蛎高,加热后近江牡蛎的Fe生物可接受性平均值增加7.3%,Cu生物可接受性平均值增加4.6%(表 2),消化液Fe、Cu提取量均比总量低,近江牡蛎组织中有超过13.8%~74.6%的Fe和3.3%~22.3%的Cu留在食物残渣中未进入人体消化循环。AMIARD等[21]研究发现生牡蛎经过胃肠仿生消化后,3%~39%的Cu留在食物残渣中。食用方式对波纹巴非蛤中2种元素的生物可接受性影响不一致,熟波纹巴非蛤中Fe的生物可接受性平均比生的高11.5%,Cu则低了11.5%,可见熟食方式提高了波纹巴非蛤Fe生物可接受性同时降低了Cu的生物可接受性。
表 2 近江牡蛎和波纹巴非蛤中铁、铜的生物可接受性Table 2. Bioaccessibility of Fe and Cu in C.rivulari and P.undulate% 元素
element近江牡蛎C.rivulari 波纹巴非蛤P.undulate 生牡蛎raw 熟牡蛎cooked 生蛤raw 熟蛤cooked 铁Fe 52.0±32.7 55.8±30.4 40.7±13.2 45.4±11.2 铜Cu 83.4±11.6 87.2±9.5 87.8±10.3 77.7±12.7 无论是那种食用方式,近江牡蛎和波纹巴非蛤Cu的生物可接受性都比Fe高,但是2种贝类的Fe总量均比Cu高,可见2种贝类中Fe、Cu生物可接受性与其总量高低并没有明显关系。JORGE等[22]对5种贝类的Fe、Cu生物可接受性进行测定,结果显示Cu生物可接受性均比Fe高。
2.4 评价
食用方式变化会改变人体消化系统对贝类Fe、Cu的利用率,文章采用近江牡蛎和波纹巴非蛤Fe、Cu仿生消化结果进行评价,考察2种贝类对人体Fe、Cu摄入量的贡献(表 3)。参照唐洪磊等[19]估算贝类摄入量,食用近江牡蛎和波纹巴非蛤所摄入的Fe和Cu均未超过中国居民DRIs委员会[23]推荐的每日适宜摄入量,食用近江牡蛎每日可为人体提供1.97~2.32 mg的Fe,占适宜摄入量的9.9%~15.5%,同时提供人体所需Cu的22.6%~25.9%,熟近江牡蛎提供Fe、Cu均比生牡蛎高。食用波纹巴非蛤摄入的Fe、Cu均比近江牡蛎少,每日可为人体提供1.27~1.56 mg的Fe和0.06~0.08 mg的Cu,最高可提供10.4% Fe(熟蛤)和3.9%(生蛤)摄入量。PAWELPOH等[24]研究多种蜂蜜对人体微量元素摄入贡献,发现日食用100 g蜂蜜最高可为人体提供11.1%~19.2%的Fe和6.0%~7.5%的Cu[适宜摄入量(AI,mg ·d-1)为Fe:11~14、Cu:2.0~2.5],近江牡蛎和波纹巴非蛤为人体提供Fe、Cu元素摄入量不同,食用方式不同也略有影响,但总体而言所提供的Fe、Cu相对比较高。
表 3 居民日微量元素摄入量Table 3. Daily consumption of Fe and Cu in shellfishmg · d-1 元素
element适宜摄入量
AI可耐受摄入量
UI近江牡蛎C.rivulari 波纹巴非蛤P.undulate 生牡蛎raw 熟牡蛎cooked 生蛤raw 熟蛤cooked 男 女 男 女 男 女 男 女 男 女 男 女 铁Fe 15 20 50 50 2.16 1.97 2.32 2.12 1.39 1.27 1.56 1.47 铜Cu 2.0 2.0 8.0 8.0 0.50 0.45 0.52 0.47 0.08 0.07 0.07 0.06 注:适宜摄入量和可耐受摄入量采用成年居民(≥18岁)推荐值
Note:Values of Al an Ul using adult (age≥18) recommended values of DRIs.3. 讨论
此试验模拟人体胃肠消化过程,加入全仿生消化液对样品进行处理,考察近江牡蛎和波纹巴非蛤中金属元素Fe、Cu转移进入消化液的情况。结果表明,近江牡蛎和波纹巴非蛤样品中Fe、Cu进入到消化液中的量均小于其总量,其中Fe仅约50%转运到消化液中。FANNY等[25]研究智利贻贝(Mytilus chilensis)表明,无论是生贝还是熟贝,仿生消化液中镉(Cd)的提取量都比样品本身Cd总量低,同为金属元素的Fe、Cu也有相同表现。食物在消化道中的消化方式影响其金属元素被人体吸收利用的程度,消化是金属元素伴随营养物质进入人体、被吸收利用的重要途径,选用适宜、科学的消化方法是合理评估的基础。
煮熟的近江牡蛎中Fe、Cu的生物可接受性均有提高,而煮熟的波纹巴非蛤中Fe的生物可接受性提高的同时,Cu的生物可接受性却降低。METIAN等[26]研究紫贻贝(M.galloprovincialis)仿生消化也发现,煮熟后紫贻贝锰(Mn)、镅(Am)的生物可接受性提高,但Cd、钴(Co)、锌(Zn)等的生物可接受性却降低。贝类的不同食用方式可能引起其食糜在人体消化环境中消化过程的改变,不同元素受到的影响不一致,Fe、Cu生物可利用性发生不同程度改变,这种改变可能影响到近江牡蛎和波纹巴非蛤中Fe、Cu在人体中的吸收和利用,改变可能进入人体循环系统Fe、Cu的量。总体看2种试验贝类熟食比生食能为人体提供更多的Fe摄入量。
贝类品种的差异影响金属配合物的配体组成,近江牡蛎和波纹巴非蛤经过仿生消化后,形成了不同的仿生食糜成分,且仿生食糜基体成分复杂,食糜提取液中金属元素结合态、形态、结构态等存在差异,相同金属元素的不同形态分布可能影响其生物可接受性,而不同金属元素也可能由配位能力的因素,导致生物可接受性的不同。
近江牡蛎和波纹巴非蛤中Fe、Cu生物可接受性大小与其总量高低并没有明显的关系,且消化液提取量均比总量低。以往评估贝类样品为人体提供的微量元素摄入时,多数采用总量进行评估,结果可能导致摄入量被高估或是低估,考虑到实际食物进入人体消化系统并不是完全被消化吸收,此试验选择更加符合人体消化方式的全仿生消化方法处理样品,在进行评估的时候加入生物可接受性参数,结果可能更为科学有效。
-
表 1 2015—2017年休渔前后渔船日均产量统计结果
Table 1 Statistical results of average daily yield before and after summer fishing moratorium during 2015−2017
${\overline {\mathit{\boldsymbol{X}}}} \pm {\bf SD}$ 201505 201508 增长率/%
growth rate201605 201608 增长率/%
growth rate201704 201708 增长率/%
growth rate单拖 single trawler 626.74±674.67a 851.48±790.56b 35.86 634.10±726.81a 1 145.44±1 419.11b 80.64 655.14±845.97a 1 159.57±1 545.25b 77.00 双拖 bull trawler 2 773.50±1 833.75b 6 247.66±4 955.02a 125.26 4 512.46±4 257.73b 6 757.35±5 120.26a 49.75 3 211.07±2 709.62b 5 880.07±5 572.79b 83.12 桁杆拖虾 beam trawling 213.49±177.26b 243.03±218.68b 13.84 187.31±101.98b 423.28±501.54b 125.98 179.42±112.87b 536.36±429.28a 198.94 围网 purse seine 1 462.98±1 664.32ab 1 293.63±2 394.50bc –11.58 1 689.56±2 425.14abc 3 582.12±6 366.51a 112.01 1 933.52±4 208.51c 4 224.16±7 486.65a 118.47 流刺网 gill net 123.85±202.40a 101.45±173.27ab –18.09 115.05±216.32ab 78.75±201.03ab –31.55 45.97±55.52b 78.72±114.06a 71.24 钓具 fishing tackle 133.17±221.25ab 121.82± 190.21b – 8.52 137.02±196.59ab 169.47±251.34ab 23.68 129.08±182.61ab 185.04±236.86a 43.35 其他 other 102.92±123.89a 156.06±510.95a 51.63 79.35±91.59a 159.89±560.15a 101.50 121.08±145.45a 380.79±1 330.72a 214.49 注:不同上标字母表示某一作业类型的日均产量在不同时间差异显著(P<0.05),下表同此 Note: Different lowercase letters indicate significant difference (P<0.05). The same case in the following tables. 表 2 2015—2017年南海海域渔船日均产量、日均产值和CPUE均值
Table 2 Average values of daily yield, daily production value and CPUE of fishing boats in South China Sea during 2015−2017
201505 201508 增长率/%
growth rate201605 201608 增长率/%
growth rate201704 201708 增长率/%
growth rate日均产量/t daily yield 47 445.04c 56 561.28b 19.21 54 049.62c 81 070.71a 49.99 42 504.74d 91 233.06a 114.64 日均产值/百万元 daily production value/million Yuan 317.33c 318.60c 0.40 320.56c 372.03b 16.06 302.27c 450.80a 49.14 单位捕捞努力量渔获量/[kg·(kW·d)–1 CPUE 216 080.46c 231 468.31c 7.12 219 578.73c 380 524.81b 73.30 185 794.37d 391 835.35a 110.90 表 3 2015—2017年休渔前后渔船日均产值统计结果
Table 3 Statistical results of average daily production value before and after summer fishing moratorium during 2015−2017
${\overline {\mathit{\boldsymbol{X}}}} \pm {\bf SD}$ 作业类型
type of fishing vessels201505 201508 增长率/%
growth rate201605 201608 增长率/%
growth rate201704 201708 增长率/%
growth rate单拖 single trawler 5 763.49±2 860.79c 7 746.87±3 701.79b 34.41 6 230.31±2 470.67c 8 355.57±4 888.65b 34.11 6 286.32±3 257.39c 9 660.15±5 149.16a 53.67 双拖 bull trawler 14 055.21±10 375.48ab 20 943.16±15 242.59ab 49.01 15 082.40±9 090.37b 19 438.78±10 601.54a 28.88 16 375.87±8 845.72ab 23 580.17±16 977.61c 43.99 桁杆拖虾 beam trawling 3 392.19±1 973.87b 4 305.07±4 713.02b 26.91 3 092.06±1 777.26b 5 331.26±4 538.99b 72.42 3 037.33±1 701.58b 8 040.85±5 343.70a 164.73 围网 purse seine 8 348.29±8 310.18a 5 154.69±9 763.42b –38.25 9 428.75±14 645.69a 8 635.25±11 685.94a –8.42 11 934.76±20 451.73a 10 608.54±9 966.25a –11.11 流刺网 gill net 1 535.84±1 912.44ab 1 374.93±2 232.75a –10.48 1 543.25±1 915.26a 1 276.68±2 118.26a –17.27 1 248.45±1 740.08a 1 727.16±2 637.69a 38.34 钓具 fishing tackle 4 042.12±5 802.27ab 3 447.60±5 047.25a –14.71 4 105.74± 4 660.40a 4 732.23±6 306.55a 15.26 4 048.59±5 001.51a 5 757.97±6 766.10a 42.22 其他 other 1 163.73±2 418.94a 2 863.54±6 620.41a 146.07 2 800.96±3 783.53a 2 838.89±5 002.60a 1.35 3 381.70±6 550.63a 5 069.43±10 006.12a 49.91 表 4 2015—2017年休渔前后各作业类型CPUE统计结果
Table 4 Statistical results of CPUE of each type of fishing vessels before and after summer fishing moratorium during 2015−2017
${\overline {\mathit{\boldsymbol{X}}}} \pm {\bf SD}$ 作业类型
type of fishing vessels201505 201508 增长率/%
growth rate201605 201608 增长率/%
growth rate201704 201708 增长率/%
growth rate单拖 single trawler 2.55±1.67b 4.11±2.67a 61.18 2.89±2.17b 4.69 ±4.08a 62.28 2.78±2.57b 4.79 ±4.64a 72.30 双拖 bull trawler 8.63±5.00c 15.65±8.46a 81.34 11.47±6.63bc 13.98±5.19ab –93.61 8.69± 6.51c 11.57± 3.98b 33.14 桁杆拖虾 beam trawling 1.89±1.51bc 2.01±1.32b 6.35 1.60±1.06bc 2.82±2.55a 76.25 1.31±0.97c 3.20±2.08a 144.27 围网 purse seine 8.23±8.85b 6.50±11.76c –99.99 9.37±11.00b 27.57±39.54a 194.24 10.49±21.72c 29.80±41.47a 184.08 流刺网 gill net 2.33±3.10b 2.27±2.62b –2.58 2.53±3.59b 2.08±2.01b –17.79 1.72±1.96b 2.82±3.47a 63.95 钓具 fishing tackle 1.93±1.91ab 2.03±1.55ab 5.18 1.92±1.38ab 2.28±1.82ab 18.75 1.63±1.23b 2.19±1.51a 23.00 表 5 单拖渔船情况
Table 5 Trawling survey boats information
年份
year月份
month船次
Voy. No.马力
horsepower出海天数
days at sea2015 5 134 40 858 930 8 154 42 087 1 043 2016 5 126 35 537 686 8 140 41 247 906 2017 4 165 46 882 1 351 8 136 39 121 629 注:船次为所有调查渔船该月出海总次数,存在同艘渔船该月多次出海情况 Note: Voy. No. is the total number of fishing boats going out at sea that month, and there are some fishing boats going out several times within that month. 表 6 2015—2017年主要渔获种类渔获率与渔获结构
Table 6 Fishing rate and fishing structure of main fish species during 2015−2017
种类
species渔获率/kg·(kW·d)–1 catch rate 渔获结构/% fishing structure 2015年 2016年 2017年 2015年 2016年 2017年 5月 8月 5月 8月 4月 8月 5月 8月 5月 8月 4月 8月 蓝子鱼 Siganus 0.00 0.00 0.00 0.01 0.00 0.52 1.22 0.36 0.08 0.44 0.44 21.15 鲹类 Carangidae 0.00 0.16 0.01 0.92 0.02 0.14 1.45 11.67 0.97 53.17 2.79 5.67 二长棘鲷 Paerargyrops edita 0.01 0.06 0.00 0.08 0.00 0.07 2.69 4.72 0.47 4.58 0.38 3.02 带鱼 Trichiurus haumela 0.05 0.19 0.05 0.16 0.09 0.32 26.64 14.08 7.63 9.41 10.88 13.29 金线鱼 Nemipterus virgatus 0.00 0.13 0.01 0.03 0.00 0.02 2.03 9.37 1.49 1.70 0.22 0.78 刺鲳 Psenopsis anomala 0.01 0.03 0.00 0.04 0.00 0.02 4.65 2.15 0.76 2.04 0.10 0.69 鱿鱼 Loligo chinensis 0.00 0.05 0.01 0.03 0.01 0.07 1.54 3.50 1.65 1.55 0.66 2.92 -
[1] 李云凯, 禹娜, 陈立侨, 等. 东海南部海区生态系统结构与功能的模型分析[J]. 渔业科学进展, 2010, 31(2): 30-39. doi: 10.3969/j.issn.1000-7075.2010.02.005 [2] 刘勇, 程家骅. 东海、黄海秋季渔业生物群落结构及其平均营养级变化特征初步分析[J]. 水产学报, 2015, 39(5): 691-702. [3] 农业部产业政策与法规司. 农业部关于在东海, 黄海实施新伏季休渔制度的通知[EB/OL]. http://www.moa.gov.cn/zwllm/zcfg/nybgz/200806/t20080606_1057144.htm,2008-06-06/2018-11-16. [4] 农业部产业政策与法规司. 农业部关于在南海海域实行伏季休渔制度的通知[EB/OL]. http://jiuban.moa.gov.cn/zwllm/zcfg/nybgz/200806/t20080606_1057142.htm, 2008-06-06/2018-11-16. [5] 农业部渔业局. 农业部关于调整海洋伏季休渔制度的通告[EB/OL]. http://www.moa.gov.cn/govpublic/YYJ/201701/t20170120_5460478.htm,2017-01-20/2018-11-16. [6] 杨伯华, 邹建伟. 2012年南海伏季休渔效果评价——基于拖网、围网、刺网渔船生产对比[J]. 中国水产, 2013(2): 73-75. doi: 10.3969/j.issn.1002-6681.2013.02.026 [7] 严利平, 刘尊雷, 李圣法, 等. 东海区拖网新伏季休渔渔业生态和资源增殖效果的分析[J]. 海洋渔业, 2010, 32(2): 186-191. doi: 10.3969/j.issn.1004-2490.2010.02.012 [8] 丁峰元, 程家骅. 东、黄海水团动态与夏季休渔效果间的关系[J]. 生态学报, 2007, 27(6): 2342-2348. doi: 10.3321/j.issn:1000-0933.2007.06.025 [9] 严利平, 凌建忠, 李建生, 等. 应用Ricker动态综合模型模拟解析东海区伏季休渔效果[J]. 中国水产科学, 2006, 13(1): 85-91. doi: 10.3321/j.issn:1005-8737.2006.01.014 [10] 余景, 胡启伟, 袁华荣, 等. 基于遥感数据的大亚湾伏季休渔效果评价[J]. 南方水产科学, 2018, 14(3): 1-9. doi: 10.3969/j.issn.2095-0780.2018.03.001 [11] 邹建伟, 黄俊秀, 王强哲. 北部湾北部沿岸渔场2015年伏季休渔效果评价[J]. 渔业信息与战略, 2016, 31(2): 132-138. [12] 邹建伟, 王强哲, 黄俊秀, 等. 南海北部大陆架渔场2016年伏季休渔效果评价[J]. 水产科技情报, 2016, 43(6): 318-323. [13] 刘勇, 程家骅. 东海、黄海底层鱼类数量分布季节变化的因子分析[J]. 海洋学报(中文版), 2008, 30(4): 123-130. doi: 10.3321/j.issn:0253-4193.2008.04.015 [14] 陈森, 张鹏, 晏磊, 等. 南海新建钢质罩网渔船渔获组成及渔场分析[J]. 南方水产科学, 2015, 11(5): 125-131. doi: 10.3969/j.issn.2095-0780.2015.05.015 [15] 陈春亮, 曲念东, 侯秀琼, 等. 2007年伏季休渔深圳海域渔业资源调查分析[J]. 水产科学, 2008, 27(12): 648-651. doi: 10.3969/j.issn.1003-1111.2008.12.011 [16] 侯秀琼, 陈春亮, 孙省利, 等. 2007—2008年伏季休渔深圳市海域鱼类资源调查研究[J]. 海洋开发与管理, 2009, 26(1): 106-112. doi: 10.3969/j.issn.1005-9857.2009.01.020 [17] 程家骅. 伏季休渔制度实践的回顾之三: 现行伏季休渔制度的局限性分析及展望[J]. 中国水产, 2008(8): 17-19. doi: 10.3969/j.issn.1002-6681.2008.08.008 [18] 张龙, 徐汉祥, 王甲刚, 等. 舟山沿岸定置张网作业休渔前后鱼类组成分析[J]. 浙江海洋学院学报(自然科学版), 2011, 30(1): 1-8. doi: 10.3969/j.issn.1008-830X.2011.01.001 [19] ARENDSE C J, GOVENDER A, BRANCH G M. Are closed fishing seasons an effective means of increasing reproductive output? A per-recruit simulation using the limpet Cymbula granatina as a case history[J]. Fish Res, 2007, 85(1/2): 93-100.
[20] DAVIES K T, GENTLEMAN W C, DIBACCO C. Fisheries closed areas strengthen scallop larval settlement and connectivity among closed areas and across international open fishing grounds: a model study[J]. Environ Manag, 2015, 56(3): 587-602. doi: 10.1007/s00267-015-0526-9
[21] 潘澎, 李卫东. 我国伏季休渔制度的现状与发展研究[J]. 中国水产, 2016(10): 36-40. doi: 10.3969/j.issn.1002-6681.2016.10.015 [22] 徐莲莲, 杨美丽. 东海带鱼休渔制度对渔区渔民的经济影响及渔民的需求分析——基于舟山渔场嵊泗渔民的调查研究[J]. 农村经济与科技, 2014(9): 52-53, 152. doi: 10.3969/j.issn.1007-7103.2014.09.020 [23] ROLA A, NARVAEZ T A, NAGUIT M R A, et al. Impact of the closed fishing season policy for sardines in Zamboanga Peninsula, Philippines[J]. Soc Sci Electron Pub, 2018, 87: 40-50. [24] 朱国平, 李纲, 郑晓琼, 等. 东海鲐鱼资源时空分布特征[J]. 生态科学, 2011, 30(1): 1-7. doi: 10.3969/j.issn.1008-8873.2011.01.001 [25] MUSIELLO-FERNANDES J, ZAPPES C A. Small-scale shrimp fisheries on the Brazilian coast: stakeholders perceptions of the closed season and integrated management[J]. Ocean Coast Manag, 2017, 148: 89-96. doi: 10.1016/j.ocecoaman.2017.07.018
[26] 邹建伟, 王强哲, 林丕文, 等. 伏季休渔对北部湾北部虾类捕捞的影响及评价[J]. 南方水产科学, 2015, 11(6): 88-93. doi: 10.3969/j.issn.2095-0780.2015.06.012 [27] 晏磊, 谭永光, 杨炳忠, 等. 基于张网渔业休渔前后的黄茅海河口渔业资源群落比较[J]. 南方水产科学, 2016, 12(6): 1-8. doi: 10.3969/j.issn.2095-0780.2016.06.001 [28] WATSON D L, ANDERSON M J, KENDRICK G A, et al. Effects of protection from fishing on the lengths of targeted and non-targeted fish species at the Houtman Abrolhos Islands, Western Australia[J]. Mar Ecol Prog Ser, 2009, 384(2): 241-249.
[29] WATSON D L, HARVEY E S, KENDRICK G A, et al. Protection from fishing alters the species composition of fish assemblages in a temperate-tropical transition zone[J]. Mar Biol, 2007, 152(5): 1197-1206. doi: 10.1007/s00227-007-0767-0
[30] 陈作志, 邱永松, 贾晓平, 等. 捕捞对北部湾海洋生态系统的影响[J]. 应用生态学报, 2008, 19(7): 1604-1610. [31] 严利平, 杨林林, 刘尊雷, 等. 基于东海底层鱼类长度谱的捕捞强度变动判别[J]. 海洋渔业, 2016, 38(6): 570-576. doi: 10.3969/j.issn.1004-2490.2016.06.002 [32] MCLEAN D L, HARVEY E S, MEEUWIG J J. Declines in the abundance of coral trout (Plectropomus leopardus) in areas closed to fishing at the Houtman Abrolhos Islands, Western Australia[J]. J Exp Mar Biol Ecol, 2011, 406(1/2): 71-78.
[33] BAVINCK M, de KLERK L, van DIJK D, et al. Time-zoning for the safe-guarding of capture fisheries: a closed season in Tamil Nadu, India[J]. Mar Policy, 2008, 32(3): 369-378. doi: 10.1016/j.marpol.2007.08.007
[34] YU J, CHEN P M, TANG D L, et al. Ecological effects of artificial reefs in Daya Bay of China observed from satellite and in situ measurements[J]. Adv Space Res, 2015, 55(9): 2315-2324. doi: 10.1016/j.asr.2015.02.001
[35] 蔡研聪, 陈作志, 徐姗楠, 等. 北部湾二长棘犁齿鲷的时空分布特征[J]. 南方水产科学, 2017, 13(4): 1-10. doi: 10.3969/j.issn.2095-0780.2017.04.001 [36] 王迎宾, 郑基, 郑献之, 等. 舟山渔场禁渔线以外海域单拖网鱼类群落结构变动分析[J]. 南方水产科学, 2012, 8(1): 8-15. doi: 10.3969/j.issn.2095-0780.2012.01.002 [37] 刘凯, 张敏莹, 徐东坡, 等. 长江春季禁渔对崇明北滩渔业群落的影响[J]. 中国水产科学, 2006, 13(5): 834-840. doi: 10.3321/j.issn:1005-8737.2006.05.022 [38] 李忠炉, 金显仕, 单秀娟, 等. 小黄鱼体长-体质量关系和肥满度的年际变化[J]. 中国水产科学, 2011, 18(3): 602-610. [39] 刘尊雷, 陈诚, 袁兴伟, 等. 基于调查数据的东海小黄鱼资源变化模式及评价[J]. 中国水产科学, 2018, 25(3): 632-641. [40] YU H G, YU Y J. Fishing capacity management in China: theoretic and practical perspectives[J]. Mar Policy, 2008, 32(3): 351-359. doi: 10.1016/j.marpol.2007.07.004
[41] 刘勇, 程家骅. 渔业多鱼种综合开捕网目尺寸和捕捞努力量管理目标确定方法探讨[J]. 渔业科学进展, 2015, 36(6): 1-7. -
期刊类型引用(1)
1. 旷泽行,汪慧娟,谷阳光,齐占会,黄洪辉. 海南岛昌化江河口海域生物体重金属富集特征与概率健康风险评价. 海洋环境科学. 2021(05): 699-706 . 百度学术
其他类型引用(2)