Effect assessment of fishery resources proliferation in Zhelin Bay marine ranching in eastern Guangdong
-
摘要:
为评价粤东柘林湾海洋牧场的建设效果,以环境卫星遥感和现场调查相结合的方法,对柘林湾海洋牧场建设前(2011年8月)和建设后(2013年8月)海表温度(sea surface temperature,SST)、叶绿素a质量浓度(chlorophyll a concentration,Chl a)、总渔获物的单位捕捞努力量渔获量(catch per unit effort,CPUE)、生物多样性、底栖动物的生物量及栖息密度等进行了对比分析。结果表明,柘林湾海洋牧场建设后,海域氮磷比(N/P)接近16,Chl a质量浓度由海洋牧场建设前的7.5~12.3 mg·m–3提高到建设后的10.4~16.2 mg·m–3。总渔获物CPUE从2.1~5.5 kg·h–1提高到5.8~14.5 kg·h–1。鱼类、甲壳类、头足类和贝类的种类数分别增加了25种、3种、2种和3种,鱼类、甲壳类、头足类和贝类群落的Shannon-Wiener多样性指数(H′)分别提高了0.5、0.4、0.1和1.0,底栖动物的生物量及栖息密度均有所增加。柘林湾海洋牧场的建设在一定程度上改善了渔业生境,对渔业资源的养护和增殖具有积极作用。
Abstract:In order to assess the effects of the construction of Zhenlin Bay marine ranching in the eastern Guangdong, we compared the variation in sea surface temperature (SST), chlorophyll a concentration (Chl a), catch per unit effort (CPUE), biodiversity, biomass and density of zoobenthos during the pre- (August, 2011) and post- (August, 2013) marine ranching in Zhelin Bay, based on satellite remote sensing and survey data. Results show that the N/P ratio was nearly 16, and Chl a increased from 7.5–12.3 mg·m–3 to 10.4–16.2 mg·m–3. CPUE increased from 2.1–5.5 kg·h–1 to 5.8–14.5 kg·h–1. The species number of fish, crustaceans, cephalopods and shellfish increased by 25, 3, 2 and 3, respectively. The Shannon-Wiener biodiversity index of fish, crustaceans, cephalopods and shellfish increased by 0.5, 0.4, 0.1 and 1.0, respectively. Both biomass and density of zoobenthos also increased. The construction of marine ranching in Zhelin Bay has restored the habitat to some extent, and played a positive role in the conservation and proliferation of fishery resources.
-
Keywords:
- marine ranching /
- resource proliferation /
- remote sensing /
- Zhelin Bay
-
微卫星(microsatellite)DNA是由1~6个核苷酸为单位多次串联重复的简单序列,又称简短串联重复序列(short tandem repeat,STR)、简单序列重复(simple sequence repeat,SSR) 或简单序列长度多态性(simple sequence length polymorphism,SSLP),是20世纪80年代末发展起来的一种分子标记。微卫星具有高度的多态性[1]和共显性,在真核生物基因组中随机分布,每代变异超过2%[2]。其分析可以分辨一个碱基对的差异[3],且等位基因的条带易于识别和解释,比其它分子标记带来更多的信息量[4]。因此在种群遗传结构分析、种群遗传多样性检测、遗传图谱的构建及生产性状位点的连锁分析与QTL定位分析中得到了广泛的应用[5-7]。
由于不同种类之间的微卫星引物序列通用性较差。因此必须首先从实验生物基因组中获得微卫星DNA序列,设计引物,筛选多态性微卫星标记。然而筛选微卫星座位的工作繁重,其使用受到一定的限制。随着分子生物学技术的发展,相继产生了一些新的微卫星DNA分离方法。本文对几种微卫星位点分离技术进行介绍并对其进行分析比较,为选择适合的方法提供参考。
1. 微卫星位点的分离方法
1.1 生物信息学方法(Data mining)与近缘种交叉扩增(cross amplification)
获得微卫星最简捷的途径就是通过互连网从公共数据库(如EMBL、GenBank、EST数据库等)查找微卫星DNA,如河豚(Fugu rubripes)[8]、中国明对虾(Fenneropenaeus orientalis)[9]和栉孔扇贝(Chlamys farreri)[10]等。徐鹏等[9]利用生物信息学方法从10 446个中国明对虾ESTs序列中筛选微卫星DNA,共发现微卫星序列229个,占整个ESTs数据的2.19%,其中含双碱基重复序列146个和3碱基重复序列58个,分别占在ESTs微卫星序列总数的63.76%和25.33%,大部分为完美型(perfect)的重复序列。根据筛选的微卫星序列设计19对引物并进行多态性检测,在有扩增产物的16对引物中,首次筛选得到8个中国明对虾微卫星标记。其次,利用近缘种的已知微卫星引物进行交叉扩增(cross amplification)筛选也可获得一定的有效微卫星引物。鲁双庆等[11]研究了鲤(Cyprinus carpio)微卫星引物对远缘种黄鳝(Monopteras albus)的适用性。结果显示,31对鲤微卫星引物中有11对引物能对黄鳝DNA模板扩增出特异性带谱。每对引物扩增的等位基因数3~13个,平均每个位点5.6个,显示了较高的多态性。林凯东等[12]首次将鲤的微卫星引物用于草鱼(Ctenopharyngodon idellus)基因组分析。
1.2 小片段DNA克隆法(small DNA fragments cloning)
此方法的基本原理是构建目标生物基因组小片段DNA文库,通过杂交筛选出含有微卫星序列的阳性克隆。首先用限制性内切酶充分消化DNA,琼脂糖凝胶电泳,选取400~900 bp片段克隆,构建基因组文库。然后将重组克隆转移到杂交膜上,采用32P标记的重复序列探针如(AT)n进行杂交,放射自显影,获得阳性克隆、测序,设计PCR引物并进行扩增筛选(图 1)。
孙效文等[13]利用上述方法从鲤鱼文库中筛选2 000个菌落,获得阳性克隆45个,有22个含有微卫星,其中完美型的占63.6%,非完美型的占22.7%,混合型的占13.7%。陈微等[14]用此方法从牙鲆(Paralichthys olivaceus)文库中筛选阳性克隆45个,共得到20个微卫星序列,其中完美型13个,非完美型5个,混合型2个。PANIEGO等[15]也用此方法分离向日葵(Helianthus annnus)微卫星标记。测序503个微卫星克隆,设计了271对微卫星引物。
利用微卫星重复序列作探针筛选基因组文库是一种耗时费力的方法[16]。获得阳性克隆的比例通常较少(0.04%~12%之间)。对于那些基因组中微卫星DNA含量不是很丰富的种类(比如鸟类和植物),或需要大量的微卫星标记用于研究种群遗传结构[17-18]或构建遗传图谱[19]时,用此方法分离微卫星难以满足需要。
1.3 以RAPD为基础的PCR分离微卫星法(RAPD-based PIMA approach)
为了避免基因组文库的构建和筛选的繁琐性,一些国外学者先后报道用随机扩增多态DNA(RAPD)方法去扩增未知的微卫星序列[20-21]。其中用PCR分离微卫星(PCR isolation of microsatellite approach,PIMA)[22]就是用RAPD引物从目标生物基因组中获得随机扩增片段,这些扩增产物克隆到T-载体上,然后用含有重复序列引物和载体引物筛选阳性克隆、测序(图 1,PIMA支路)。RAPD片段比随机基因组克隆含有较多的微卫星重复序列[23-25]。与传统的方法相比,PIMA省略了DNA酶切、片段大小选择以及接头连接这些步骤,虽然实验操作简单但研究报道较少。
1.4 引物伸长法(Primer extension approach)
基因组DNA酶切后,选一定大小的片段插入到质粒(pBluescript)或噬菌体(M13mp18)载体上,然后转化、洗脱获得含有单链环状DNA(ssDNA)并构建文库。以ssDNA为模板,与含有重复序列的寡聚核苷酸或带有生物素标记的重复序列进行伸长反应,获得富含微卫星位点双链DNA的次级文库。最后Southern杂交或PCR筛选阳性克隆并测序(图 2)。
OSTRANDER等[26]和PAETKAU[27]运用引物伸长法分别对犬齿类和鲍鱼基因组文库进行实验,并分别获得40%~50%和最高达100%阳性克隆。OSTRANDER等构建了含60 000克隆的单链DNA文库,对于基因组频率低于1%的特定重复序列有600座位(含所需的重复序列)在富集文库中表现出来。并且该方法对分离富含2个寡核苷酸重复序列如(AC)n比较有效,对分离3个和4个寡核苷酸重复序列是否有效还不肯定。此方法实验步骤繁琐使其适用性受到一定限制。
1.5 选择性杂交法(selective hybridization method)
选择性杂交法第一步与传统方法一样,也是基因组DNA经过酶切后与接头或载体连接,用连有接头的DNA片段与标记的重复序列探针选择性杂交,捕获含有微卫星序列的DNA片段。最后PCR扩增、克隆。对重组克隆可直接测序、PCR筛选或Southern blot筛选(图 3)。
此方法实验步骤简单,报道较多[28-32]。其中酶切片段与接头或载体连接是非常重要的一步,因为连接插入片段的量不足和多联体的形成都会限制下一步的实验。酶切片段大小的选择可以在酶切后[30]或在连接后[31]进行,在连接后选择片段大小有利于去除非特异性连接。重复序列探针与DNA的杂交既可在尼龙膜上[28, 32]也可在包被有链霉亲和素的磁珠上[30-31]进行。LI等[33-34]采用选择杂交法已成功分离出8个皱纹盘鲍(Haliotis discus hannai)微卫星标记。
1.6 磁珠富集法(magnetic beads enrichment method)
磁珠富集法分离微卫星分子标记是一种简单高效的方法[31, 35], 已经应用于一些植物和动物微卫星分子标记的分离[26, 36-37]。实验生物基因组DNA经酶切,连上接头,PCR扩增,与生物素标记的重复序列探针杂交,磁珠富集,构建PCR富集文库(图 4)。然后再进行筛选即可得到微卫星分子标记。可用不同的酶和接头进行酶切、连接。如果按AFLP的方法进行酶切、连接、扩增,再富集,即为FIASCO法(fast isolation by AFLP of sequences containing repeats)[38]。包括单酶切扩增产物富集[38]和双酶切预扩增产物富集[36]。
孙效文等[13]用此方法筛选鲤鱼微卫星标记。获得微卫星314个,完美型占79.0 %,非完美型占14.3 %,混合型占6.7 %,重复次数超过10的有293个,占93.3 %。孙效文等[38]用磁珠富集法分离草鱼微卫星DNA标记。筛选获得阳性克隆132个,86.36 %含有微卫星序列。高国庆等[36]用FIASCO法从AFLP片段中分离花生(Arachis hypogaeal)微卫星DNA标记,结果回收纯化14个片段,测序后发现都含有简单重复序列。从预扩增的AFLP片段中富集SSR可获得较多的含简单重复序列的片段,而选择性扩增的AFLP片段不经富集直接测序的方法效率较低[39]。此方法在其他种类(比如一些鸟类、鱼类、甲壳类和红珊瑚)的富集率在50%~90%[38]。这些研究表明,用生物素-磁珠富集法克隆微卫星效率高,成本低,所获微卫星质量高。
2. 结语
直接克隆法耗时费力且筛选的效率也比较低。引物伸长法虽有所报道,其实验操作繁琐使其适用性受到限制。磁珠富集法是一种高效而简单快速的分离方法,已经应用于一些植物和动物微卫星分子标记的分离。整个过程可在一星期完成。如果利用篮白斑筛选克隆,从理论上讲,每一个白色菌斑都应当含有微卫星序列。但是操作过程中一些因素会影响筛选微卫星效率。最主要的影响因素是磁珠的平衡及洗液和洗涤温度的严格控制。从国内发表的文献上看,目前从基因组分离微卫星的主要方法是小片段克隆法和磁珠富集法以及稍作改进的一些方法。还有一些从基因组中克隆微卫星的方法,但最有效的还是基于PCR扩增的磁珠富集法。
从整体上看,微卫星分子标记在陆生动植物的分离和应用比较早,水产动物起步较晚,大多还处于分离筛选的初级阶段。在国内,只有鲤[41],对虾[9, 42],栉孔扇贝[10]等少数种类已分离出微卫星分子标记。网上基因库可利用的资源也还非常有限,远不能满足研究和应用的需要。而我国是一个渔业大国,水产动物种类多,遗传差异大,在遗传多样性分析、连锁图谱构建、数量性状基因(quantitative trait loci, QTL)定位分析、分子标记辅助育种等方面需要大量的微卫星标记。因此,选择有效的分离方法可以加速水产动物尤其主要养殖种类的微卫星分子标记的筛选及其应用进程。随着水产养殖生物的基因组测序和大规模cDNA测序,生物信息学方法分离微卫星DNA及其在近缘种的扩增筛选将越来越受到重视。
-
图 5 柘林湾海洋牧场建设前后底栖动物、叶绿素和营养盐对比分析
a. 各站位底栖动物生物量和栖息密度;b. 各站位实测叶绿素a质量浓度;c. 各站位氮磷比(虚线表示Redfield值)
Figure 5. Variation in biomass and density of zoobenthos, Chl a and nutrients during the pre- (August, 2011) and post- (August, 2013) marine ranching in Zhelin Bay
a. biomass and density of zoobenthos; b. in situ chlorophyll a mass concentration in each station; c. N/P ratio in each station (dotted line indicates Redfield value.)
表 1 柘林湾海洋牧场建设前后优势种
Table 1 Dominant species in pre- and post-marine ranching in Zhelin Bay
海洋牧场建设前 (2011年8月)
pre-marine ranching (August, 2011)海洋牧场建设后 (2013年8月)
post-marine ranching (August, 2013)鱼类 fish 鹿斑鲾 Leiognathus ruconius 鱼类 fish 丽叶鲹 Alepes kleinii 甲壳类 crustaceans 口虾蛄 Oratosquilla oratoria 甲壳类 crustaceans 红星梭子蟹 Portunus sanguinolentus 宽突赤虾 Metapenaeopsis palmensis 宽突赤虾 Metapenaeopsis palmensis 头足类 cephalopods 短蛸 Octopus ocellatus 头足类 cephalopods 短蛸 Octopus ocellatus 田乡枪乌贼 Loligo tagoi Sasaki 贝类 shellfish 大珠母贝 Pinctada maxima 贝类 shellfish 毛蚶 Scapharca subcrenata 波纹巴菲蛤 Paphia undulata -
[1] 周艳波, 陈丕茂, 李辉权. 广东省柘林湾海域溜牛礁区建礁可行性研究[J]. 广东农业科学, 2011, 38(23): 10-14. doi: 10.3969/j.issn.1004-874X.2011.23.003 [2] 舒黎明, 陈丕茂, 秦传新, 等. 柘林湾-南澳岛潮间带冬夏两季大型底栖动物种类组成及优势种[J]. 生态学杂志, 2016, 35(2): 423-430. [3] 黄宏, 李大鹏, 张岩, 等. 海州湾海洋牧场人工鱼礁投放对营养盐的影响[J]. 环境科学学报, 2017, 37(8): 2854-2861. [4] 陈涛. 基于浮游动物群落的象山港海洋牧场人工鱼礁建设效果分析[D]. 上海: 上海海洋大学, 2014: 1-47. [5] 廖秀丽, 陈丕茂, 马胜伟, 等. 大亚湾杨梅坑海域投礁前后浮游植物群落结构及其与环境因子的关系[J]. 南方水产科学, 2013, 9(5): 109-119. doi: 10.3969/j.issn.2095-0780.2013.05.017 [6] BECKER A, TAYLOR M D, LOWRY M B. Monitoring of reef associated and pelagic fish communities on Australia's first purpose built offshore artificial reef[J]. ICES J Mar Sci, 2017, 74(1): fsw133.
[7] 李纯厚, 贾晓平, 齐占会, 等. 大亚湾海洋牧场低碳渔业生产效果评价[J]. 农业环境科学学报, 2011, 30(11): 2346-2352. [8] CHEN C, JIAO H F, WANG Y N, et al. Temporal and spatial changes of macrobenthos in marine pasture demonstration area in Xiangshan Bay[J]. Oceanologia et Limnologia Sinica, 2016, 47(1): 130-139.
[9] 张伟, 李纯厚, 贾晓平, 等. 环境因子对大亚湾人工鱼礁上附着生物分布的影响[J]. 生态学报, 2009, 29(8): 4053-4060. doi: 10.3321/j.issn:1000-0933.2009.08.005 [10] 彭璇, 马胜伟, 陈海刚, 等. 夏季柘林湾-南澳岛海洋牧场营养盐的空间分布及其评价[J]. 南方水产科学, 2014, 10(6): 27-35. doi: 10.3969/j.issn.2095-0780.2014.06.004 [11] 袁华荣, 陈丕茂, 秦传新, 等. 南海柘林湾鱼类群落结构季节变动的研究[J]. 南方水产科学, 2017, 13(2): 26-35. doi: 10.3969/j.issn.2095-0780.2017.02.004 [12] 舒黎明, 陈丕茂, 黎小国, 等. 柘林湾及其邻近海域大型底栖动物的种类组成和季节变化特征[J]. 应用海洋学学报, 2015, 34(1): 124-132. doi: 10.3969/J.ISSN.2095-4972.2015.01.016 [13] 余景, 胡启伟, 李纯厚, 等. 西沙-中沙海域春季鸢乌贼资源与海洋环境的关系[J]. 海洋学报, 2017, 39(6): 62-73. doi: 10.3969/j.issn.0253-4193.2017.06.007 [14] YU J, TANG D L, YAO L J, et al. Long-term water temperature variations in Daya Bay of China using satellite and in situ observations[J]. Terr Atmos Ocean Sci, 2010, 21(2): 393-399. doi: 10.3319/TAO.2009.05.26.01(Oc)
[15] SONG W J, DONG Q, XUE C. A classified El Nino index using AVHRR remote-sensing SST data[J]. Int J Remote Sens, 2016, 37(2): 403-417. doi: 10.1080/01431161.2015.1125553
[16] 余景, 胡启伟, 袁华荣, 等. 基于遥感数据的大亚湾伏季休渔效果评价[J]. 南方水产科学, 2018, 14(3): 1-9. doi: 10.3969/j.issn.2095-0780.2018.03.001 [17] YU J, CHEN P M, ZHAO M. Satellite remote sensing assessment of ecological effects of artificial reefs in Daya Bay, China[J]. Int J Remote, 2014, 64(64): 269-275.
[18] HILBORN R, WALTERS C J. Quantitative fisheries stock assessment[M]. London: Chapman and Hall, 1992: 177-178.
[19] PARZEN E. On estimation of a probability density function and mode[J]. Ann Stat, 1962, 33(3): 1065-1076. doi: 10.1214/aoms/1177704472
[20] WILSON J, SHEAVES M. Short-term temporal variations in taxonomic composition and trophic structure of a tropical estuarine fish assemblage[J]. Mar Biol, 2001, 139(4): 787-796. doi: 10.1007/s002270100624
[21] 孙丕喜, 王波, 张朝晖, 等. 莱州湾海水中营养盐分布与富营养化的关系[J]. 海洋科学进展, 2006, 24(3): 329-335. doi: 10.3969/j.issn.1671-6647.2006.03.009 [22] 刘炜, 李奶姜, 李婕. 福宁湾水质状况及其水体富营养化的初步探讨[J]. 海洋通报, 2008, 27(1): 111-115. doi: 10.3969/j.issn.1001-6392.2008.01.016 [23] 付英杰. 两种养殖模式下枸杞岛紫贻贝的生长特征及其对水域水质的影响[D]. 舟山: 浙江海洋学院, 2014: 1-48. [24] CHEN J F. Dynamic mechanism of sediment resuspension with its effects on content of nutrients in water in the shellfish culture area of Sanggou Bay[J]. Mar Fish Res, 2007, 28(3): 105-111.
[25] ZOU D H, XIA J R. Nutrient metabolism of marine macroalgae and its relationship with coastal eutrophication: a review[J]. Chin J Eco, 2011, 30(3): 589-595.
[26] YU J, CHEN P M, TANG D L, et al. Ecological effects of artificial reefs in Daya Bay of China observed from satellite and in situ measurements[J]. Adv Space Res, 2015, 55(9): 2315-2324. doi: 10.1016/j.asr.2015.02.001
[27] 张继红, 方建光, 蒋增杰, 等. 獐子岛养殖水域叶绿素含量时空分布特征及初级生产力季节变化[J]. 海洋水产研究, 2008, 29(4): 22-28. [28] 黄长江, 董巧香, 吴常文, 等. 大规模增养殖区柘林湾叶绿素a的时空分布[J]. 海洋学报(中文版), 2005, 27(2): 127-134. doi: 10.3321/j.issn:0253-4193.2005.02.016 [29] 王菲菲, 章守宇, 林军. 象山港海洋牧场规划区叶绿素a分布特征研究[J]. 上海海洋大学学报, 2013, 22(2): 266-273. [30] 刘子琳, 蔡昱明, 宁修仁. 象山港中, 西部秋季浮游植物粒径分级, 叶绿素a和初级生产力[J]. 海洋学研究, 1998, 16(3): 18-24. [31] 陈勇, 田涛, 尹增强, 等. 獐子岛近岸海洋牧场示范区生态修复效果初步研究[C]//2014水域生态环境修复学术研讨会论文集. 大连海洋大学, 2014: 22-32. [32] MENENDEZ M. Effect of nutrient pulses on photosynthesis of Chaetomorpha linum, from a shallow Mediterranean coastal lagoon[J]. Aquat Bot, 2005, 82(3): 181-192. doi: 10.1016/j.aquabot.2005.04.004
[33] 胡奎伟, 许柳雄, 陈新军, 等. 海洋遥感在渔场分析中的研究进展[J]. 中国水产科学, 2012, 18(6): 1078-1087. [34] NAKAMURA Y, KERCIKU F. Effects of filter-feeding bivalves on the distribution of water quality and nutrient cycling in a eutrophic lagoon[J]. J Mar Sys, 2000, 26: 209-221. doi: 10.1016/S0924-7963(00)00055-5
[35] 陈丕茂, 袁华荣, 贾晓平, 等. 大亚湾杨梅坑人工鱼礁区渔业资源变动初步研究[J]. 南方水产科学, 2013, 9(5): 100-108. doi: 10.3969/j.issn.2095-0780.2013.05.016 [36] 陈勇, 杨军, 田涛, 等. 獐子岛海洋牧场人工鱼礁区鱼类资源养护效果的初步研究[J]. 大连海洋大学学报, 2014, 29(2): 183-187. [37] JIANG Z Y, LIANG Z L, ZHU L X, et al. Numerical simulation of effect of guide plate on flow field of artificial reef[J]. Ocean Eng, 2016, 116: 236-241. doi: 10.1016/j.oceaneng.2016.03.005
[38] LIU Y, ZHAO Y P, DONG G H, et al. A study of the flow field characteristics around star-shaped artificial reefs[J]. J Fluids Struct, 2013, 39(5): 27-40.
[39] 崔勇, 关长涛, 万荣, 等. 人工鱼礁流场效应的数值模拟与仿真研究[J]. 系统仿真学报, 2009, 21(23): 7393-7396. [40] CHARBONNEL E, SERRE C, RUITTON S, et al. Effects of increased habitat complexity on fish assemblages associated with large artificial reef units (French Mediterranean coast)[J]. ICES J Mar Sci, 2002, 59(S): S208-S213.
[41] 张虎, 刘培廷, 汤建华, 等. 海州湾人工鱼礁大型底栖生物调查[J]. 海洋渔业, 2008, 30(2): 97-104. doi: 10.3969/j.issn.1004-2490.2008.02.001 [42] KRONCKE I. Long-term change in North Sea benthos[J]. Sencken Bergiana Marit, 1995, 26(12): 73-80.
[43] 申屠基康, 林霞, 赵亚波, 等. 贝类对对虾养殖池塘沉积物中小型底栖动物的影响[J]. 水产学报, 2017, 41(9): 1434-1442. [44] 舒黎明, 陈丕茂, 黎小国, 等. 柘林湾附近海域大型底栖动物物种多样性[J]. 中国水产科学, 2015, 22(3): 501-516. [45] 陈晨, 焦海峰, 王一农, 等. 象山港海洋牧场示范区大型底栖生物的时空变化[J]. 海洋与湖沼, 2016, 47(1): 130-139.