Genetic diversity analysis of first filial generation of seven introduced Litopenaeus vannamei populations using microsatellite DNA markers
-
摘要:
为明晰中国凡纳滨对虾(Litopenaeus vannamei)引进群体子一代的遗传多样性特征,于广东的3个对虾主产区采集7个养殖群体的种苗样品,其均为国外引进亲虾繁育的子一代。将之分别命名为TH-A1、TH-A2、TH-B、US-C1、US-C2、US-C3和US-C4,以微卫星标记检测其遗传多样性。结果显示,7个群体在12个位点呈现不同程度的多态性,其平均等位基因数(Na)、期望杂合度(He)、观测杂合度(Ho)和多态信息含量(PIC)分别为3.333~6.167、0.477~0.670、0.370~0.505和0.414~0.623;44个群体位点显著偏离哈迪-温伯格平衡,和文章中He大于Ho的结果对应。聚类分析显示7个群体共分为3支,其中TH-A1为一支,US-C1、US-C2和TH-A2为一支,其余的聚为一支。结果表明此次采集的养殖群体种苗样品存在一定的遗传差异。该结果可为后续挖掘种苗遗传背景与其养殖性能的关联性提供参考。
Abstract:Microsatellite DNA markers were used to assess the genetic diversity of first filial generation of seven introduced Litopenaeus vannamei populations, named TH-A1, TH-A2, TH-B, US-C1, US-C2, US-C3 and US-C4, respectively. The results show that the seven populations had varying polymorphism at 12 microsatellite loci, with the mean allele number (Na) ranging from 3.333 to 6.167. The mean values of expected (He) and observed (Ho) heterozygosity were 0.477–0.670 and 0.370–0.505, respectively. The polymorphic information content (PIC) for each population varied from 0.414 to 0.623. For Hardy-Weinberg equilibrium test, 44 out of 88 exhibited significant deviation (P<0.05), which corresponded with the fact thatHe was slightly higher than Ho. Cluster analysis shows that the seven populations were clustered into three branches (TH-A1; US-C1, US-C2 and TH-A2; the rest). It is indicated that the genetic characteristics vary in different cultured populations of L. vannamei. The results provide references for further exploration of relevance between genetic characteristics and practical performance of L. vannamei.
-
凡纳滨对虾(Litopenaeus vannamei)俗称南美白对虾,分类学上隶属于节肢动物门、甲壳纲、十足目,原产于中南美洲太平洋沿岸水域,具有抗病力强、生长速度快等优点。1988年引入我国,现已成为我国乃至世界范围内最重要的对虾养殖品种,2016年我国养殖总产量已达167.2×104 t[1-2],其中广东省的养殖产量为61.5×104 t,占全国总产量的36.8%。随着我国对虾养殖产业的规模化发展,行业对优质种苗的需求持续上升[3-5],据统计,2016年我国培养销售的凡纳滨对虾虾苗为8 028.4×108尾,其中仅广东省就达到3 000×108尾,占全国的37.4%[2]。为此,我国每年都从国外引进大量亲虾,保证市场虾苗生产的供应,也用于优质良种的培育。目前在我国对虾种苗市场上,养殖者根据亲本来源的差别将养殖群体种苗大致分为3类:1)直接由进口亲虾所繁育幼体培育出的虾苗通常被称为“一代苗”;2)由所养殖的“一代苗”中随机挑选性成熟个体作为亲本,生产培育而得的种苗称为“二代苗”;3)在我国本土将经多代繁育的性成熟个体作为亲本,生产培育的种苗被称为“土苗”或“普通苗”。据反映,3种类型的养殖群体种苗在养殖性能上存在较大差异,其生产成本和售价差别较大,养殖业者往往会依据养殖池塘模式以及环境特征,从“一代苗”、“二代苗”以及“普通苗”中选择合适的群体进行养殖。
微卫星标记由于在基因组中分布广、多态性高以及共显性遗传等优点,已广泛应用于水产动物的遗传特征分析。已有许多报道利用微卫星标记来评价凡纳滨对虾群体的种质资源和遗传分化,如Zhang等[6]利用7个微卫星标记分析了自新加坡和美国引进的7个群体的种质特性;马春燕等[7]基于8个高多态性的微卫星位点分析了凡纳滨对虾引进亲虾群体及引进亲虾子一代、子二代群体的遗传变异情况;包秀凤[8]采用7对微卫星引物分析了中国国内3个养殖群体以及4个引进亲虾子一代群体的遗传多样性。为分析当前养殖行业中凡纳滨对虾养殖群体的遗传多样性,本研究在中国凡纳滨对虾养殖和虾苗生产的主产区广东省的粤西和粤东地区,采集了多个对虾养殖基地或苗场的凡纳滨对虾一代苗种苗或幼虾样品。利用已开发的13对多态性高、扩增效果好的微卫星引物,检测其遗传多样性。以期分析不同来源的养殖群体的遗传特征和相似性,为今后进一步分析它们的遗传特征与养殖生产性能的关联性提供参考,还可为优质种苗繁育推广或评估提供基础数据支持。
1. 材料与方法
1.1 实验材料
实验群体为2017年8—9月收集于广东茂名、汕尾和中山等养殖(种苗)基地的7个凡纳滨对虾一代苗养殖群体,其亲虾来源包括泰国的Charoen Pokphand Group (CP)和SyAqua以及美国的Shrimp Improvement Systems Group (SIS)等。将采集的7个养殖群体分别命名为TH-A1、TH-A2、TH-B、US-C1、US-C2、US-C3和US-C4,每个群体随机选取24尾个体。各群体的具体信息见表1。
表 1 凡纳滨对虾7个养殖群体的取样信息Table 1. Sampling information of seven cultured populations of L. vannamei群体
population亲虾来源
parental origin采样地点
sampling location种苗来源
sample source采样时间
sampling dateTH-A1 CP 中山,正大神湾虾苗场育苗车间 正大神湾虾苗场 2017年8月 TH-A2 CP 茂名,广东冠利海洋生物有限责任公司工厂化养殖池 中海水产种苗科技有限公司 2017年8月 TH-B SyAqua 茂名,广东冠利海洋生物有限责任公司工厂化养殖池 – 2017年8月 US-C1 SIS 茂名,广东冠利海洋生物有限责任公司工厂化养殖池 海威水产养殖有限公司 2017年9月 US-C2 SIS 茂名,广东冠利海洋生物有限责任公司土塘养殖池 海威水产养殖有限公司 2017年9月 US-C3 SIS 茂名,广东冠利海洋生物有限责任公司土塘养殖池 海威水产养殖有限公司 2017年9月 US-C4 SIS 汕尾,红海湾养殖基地工厂化养殖池 海尚种苗培育基地 2017年8月 1.2 实验方法
1.2.1 基因组DNA提取
剪取约30 mg凡纳滨对虾幼虾尾部肌肉组织,参照E.Z.N.A. Tissue DNA Kit (Omega Bio-tek)试剂盒说明书提取基因组DNA。采用1%的琼脂糖凝胶电泳检测DNA完整性,用NanoDrop 2000紫外分光光度计(NanoDrop Technologies)测定DNA浓度,于– 80 ℃保存备用[9]。
1.2.2 扩增引物及荧光标记
根据文献报道的具有高多态性的微卫星位点[10-16],通过合成普通引物进行预扩增,选取其中13个特异性强的位点,在其上游扩增引物5'端分别进行6-FAM、ROX、HEX或TAMRA荧光标记。引物信息详见表2,所有引物委托北京睿博兴科生物技术有限公司合成。
表 2 凡纳滨对虾微卫星位点扩增所用引物及其荧光标记Table 2. Primers and their fluorescence labeling for PCR amplification of L. vannamei microsatellite loci位点
locus序列 (5'−3') 和荧光标记类型
sequence (5'−3') and fluorescence type重复序列
repeat motif参考文献
ReferenceM1 F: TAMRA-CTAACCCAATATCGAATC
R: GTGTGTTGCCGAATCGAA(TTTC)4...(TTTC)5...(TTTC)6 [10] Pvan1758 F: TAMRA-TATGCTCGTTCCCTTTGCTT
R: TTGAAGGAAAAGTGTTGGGG(T)10(TC)7...(T)4(TC) [11] Pvan1815 F: ROX-GATCATTCGCCCCTCTTTTT
R: ATCTACGGTTCGAGAGCAGA(T)7(CT)2(CTTT)4…(CT)6 [11] HLJN-008 F: HEX-CGTAAGTCCTGCAAAAGAAACT
R: GCCGTTCAACTATATATCAGCA(TA)12(GA)(TAGA)4A(AT)(AG)49A(AG)10(AT)(AG)A(AG)10TG(GA)(AG)3A(AT)(AG)6 [12] HLJN-023 F: HEX-AAGAGAGATGGAAGGAGTAAGTGC
R: GATCAATACCTTGCAGCGAAA(AG)3T(GA)24A(AG)15AAA(GA)2(AG)(GA)9 [12] TUMXLv7.121 F: 6-FAM-GGCACACTGTTTAGTCCTCG
R: CGAACAGAATGGCAGAGGAG(GTT)3…(GA)3…(TC)3…(GT)3…(TC)3…(TC)3…(TC)3 [13] TUMXLv8.256 F: 6-FAM-GGACTCACACTTCTGGTTC
R: GGCTGCACCTTGTAAGTC(AAT)4 [13] TUMXLv9.43 F: ROX-GAGAGCAAATAAGAAAGGGC
R: AGGATGCAAATGATAACGAG(TG)4C(GT)4TC(GT)6(GC)3…(GT)3TTA(TG)4…(GGA)3(GA)3…(CT)3CC(CT)3CC(CCCT)6(CT)10…(TC)6…(TC)3 [13] TUMXLv10.312 F: HEX-ATACGAAACACCCCATCCC
R: GTGGTCTTACCTCGTGGCTC(AG)30…(AG)5 [13] TUSWLvSU233 F: TAMRA-CCCGACTTGGCTTTTAGTTG
R: GAGATTGCTATCCTCGGCTG(TGA)3ATG(GA)3…(GA)4AGTA(AGC)3 [14-15] TUYFLvL16.1a F: ROX-ATGGCACAAATAGGATCTTG
R: GACTGGAAGAGCACTGATTC(AAT)4…(AC)3 [14-15] TUDGLv1-3.224 F: 6-FAM-ACTAGTGGATCTGTCTATTCAT
R: ATACCCACCCATGCATGTTA(TAGA)3…(TAGA)3…(ACAG)4(AG)21A(AG)30 [16] TUGAPv7-9.95 F: ROX-GATCCTGCGAGTCACTTTATCTC
R: TTTATTGCGTATCCCAGAAGC(TC)3…(AT)3…(AG)3…(TC)13…(AT)24G(TA)5TG(TA)4TG(TA)4…(AT)3…(AT)24 [16] 1.2.3 基因分型
每个微卫星位点的PCR扩增体系为15μL,包含基因组DNA (50 ng·μL–1) 1 μL,Premix TaqTM mix (TaKaRa) 7.5 μL,上下游引物(10 μmol·L–1)各0.5 μL,ddH2O 5.5 μL。PCR扩增程序为95 ℃预变性3 min;95 ℃变性30 s,50 ℃退火30 s,72 ℃延伸20 s,32个循环;72 ℃延伸6 min,4 ℃保存产物。
取5 μL扩增产物,利用1%的琼脂糖凝胶电泳检测目的条带,随后送北京睿博兴科生物技术有限公司进行毛细管电泳基因分型。根据PCR产物大小及荧光标记类型,设置3个混检组合:a) M1、HLJN-008、TUMXLv8.256、TUYFLvL16.1a;b) TUMXLv7.121、TUMXLv9.43、TUMXLv10.312、TUSWLvSU233;c) Pvan1758、Pvan1815、HLJN-023、TUDGLv1-3.224、TUGAPv7-9.95。分型结果使用Gene Marker 2.2.0读取。
1.3 数据分析
根据各群体在各个位点的基因型,利用POPGENE 1.32[17]进行统计分析,计算各位点的等位基因数(Na)、期望杂合度(He)、观测杂合度(Ho)、Nei's遗传相似度和遗传距离[18]。采用PIC_CALC 0.6软件计算多态信息含量(PIC)[19]。利用卡方检验(Chi-square test)进行哈迪-温伯格平衡(Hardy-Weinberg equilibrium,HWE)检验。根据Nei's遗传距离以UPGMA法通过MEGA 5软件构建聚类[20]。
2. 结果
2.1 13个微卫星位点的基因型检测
本研究所采用的13个微卫星位点的基因分型结果见图1。图1扩增所用DNA样品来源于TH-A1,3组位点均可以获得较好的检测效果,其中,HLJN-008 (图1-a)、HLJN-023 (图1-c)和TUDGLv1-3.224 (图1-c) 3个位点扩增结果出现明显的叠峰,数值读取时统一选取最高荧光强度所对应的产物大小。另外,经检测位点TUSWLvSU233在各群体中仅发现大小为292/292的单一基因型,无多态性,因此后续分析中不考虑此位点,依据其余12个位点的扩增结果进行分析。
图 1 凡纳滨对虾微卫星位点M1、HLJN-008、TUMXLv8.256、TUYFLvL16.1a (a),TUMXLv7.121、TUMXLv9.43、TUMXLv10.312、TUSWLvSU233 (b) 和Pvan1758、Pvan1815、HLJN-023、TUDGLv1-3.224、TUGAPv7-9.95 (c) 的毛细管电泳基因分型Figure 1. Genotyping of microsatellite loci M1, HLJN-008, TUMXLv8.256, TUYFLvL16.1a (a), TUMXLv7.121, TUMXLv9.43, TUMXLv10.312, TUSWLvSU233 (b) and Pvan1758, Pvan1815, HLJN-023, TUDGLv1-3.224, TUGAPv7-9.95 (c) in L. vannamei by capillary electrophoresis2.2 养殖群体的遗传多样性
凡纳滨对虾7个养殖群体在各位点呈现出不同程度的多态性(表3),各群体Na、He、Ho以及PIC的平均值分别为3.333~6.167、0.477~0.670、0.370~0.505和0.414~0.623。其中,US-C1的平均Na和Ho最高(Na=6.167,Ho=0.505),TH-A2的平均He最高(0.670),US-C2的平均PIC最高(0.623),而TH-B的平均Na、He、Ho和PIC均为最低(Na=3.333,He=0.477,Ho=0.370,PIC=0.414)。实验所用12个微卫星位点中,Pvan1758和TUMXLv9.43在各群体中均表现为高多态性,平均PIC分别为0.714和0.708。TUMXLv8.256和TUYFLvL16.1a在各群体中均表现中低多态性,平均PIC分别为0.321和0.189。另外,TUYFLvL16.1a在群体TH-B和US-C4中仅存在1种等位基因,大小为178 bp。其余位点在不同养殖群体中均表现为中等到高度多态性。
表 3 凡纳滨对虾7个养殖群体在12个微卫星位点的多态性信息Table 3. Polymorphic information at 12 microsatellite loci in seven cultured populations of L. vannamei群体
population参数
parameter位点 locus M1 Pvan1758 Pvan1815 HLJN-008 HLJN-023 TUMX Lv7.121 TUMX Lv8.256 TUMX Lv9.43 TUMX Lv10.312 TUYF LvL16.1a TUDG Lv1-3.224 TUGA Pv7-9.95 均值
averageTH-A1 Na 5 6 4 7 8 4 3 8 4 3 9 5 5.500 He 0.719 0.730 0.624 0.817 0.799 0.504 0.385 0.769 0.496 0.254 0.774 0.678 0.629 Ho 0.167 0.526 0.667 0.136 0.625 0.333 0.083 0.400 0.458 0.125 0.625 0.417 0.380 PIC 0.675 0.686 0.572 0.794 0.771 0.458 0.325 0.743 0.442 0.231 0.754 0.631 0.590 PHWE 0.000 0.056 0.260 0.000 0.000 0.119 0.000 0.000 0.269 0.011 0.001 0.000 0.060 TH-A2 Na 7 7 5 5 7 4 3 11 3 3 7 3 5.417 He 0.746 0.774 0.731 0.646 0.787 0.626 0.443 0.865 0.570 0.536 0.804 0.518 0.670 Ho 0.304 0.375 0.500 0.417 0.625 0.667 0.391 0.625 0.583 0.250 0.875 0.292 0.492 PIC 0.714 0.742 0.684 0.608 0.755 0.567 0.399 0.850 0.496 0.476 0.776 0.404 0.622 PHWE 0.000 0.000 0.153 0.003 0.018 0.800 0.155 0.000 0.045 0.001 0.101 0.083 0.113 TH-B Na 3 5 2 5 4 3 3 5 3 1 4 2 3.333 He 0.508 0.719 0.080 0.559 0.555 0.556 0.503 0.583 0.633 0.000 0.532 0.500 0.477 Ho 0.125 0.435 0.083 0.417 0.583 0.708 0.375 0.250 0.625 0.000 0.500 0.333 0.370 PIC 0.428 0.673 0.077 0.461 0.482 0.496 0.435 0.503 0.556 0.000 0.488 0.375 0.414 PHWE 0.000 0.000 0.882 0.000 0.868 0.090 0.033 0.002 0.166 − 0.062 0.082 0.199 US-C1 Na 8 7 6 7 7 4 3 11 3 3 11 4 6.167 He 0.837 0.768 0.743 0.796 0.790 0.539 0.348 0.861 0.555 0.344 0.797 0.463 0.653 Ho 0.217 0.478 0.750 0.739 0.542 0.625 0.250 0.583 0.542 0.167 0.750 0.417 0.505 PIC 0.816 0.732 0.703 0.767 0.759 0.501 0.316 0.846 0.456 0.307 0.772 0.401 0.615 PHWE 0.000 0.001 0.835 0.294 0.011 0.908 0.061 0.204 0.939 0.004 0.042 0.643 0.329 US-C2 Na 8 5 6 6 7 4 3 7 3 3 8 4 5.333 He 0.785 0.747 0.700 0.819 0.816 0.679 0.430 0.835 0.570 0.292 0.760 0.541 0.664 Ho 0.217 0.250 0.583 0.542 0.625 0.667 0.333 0.667 0.583 0.083 0.667 0.292 0.459 PIC 0.760 0.704 0.657 0.794 0.791 0.622 0.388 0.813 0.496 0.272 0.727 0.450 0.623 PHWE 0.000 0.000 0.317 0.006 0.001 0.750 0.159 0.000 0.617 0.000 0.337 0.000 0.182 US-C3 Na 5 5 3 6 8 4 3 6 4 2 9 3 4.833 He 0.674 0.739 0.284 0.735 0.790 0.669 0.260 0.695 0.598 0.041 0.701 0.617 0.567 Ho 0.083 0.667 0.333 0.500 0.917 0.667 0.125 0.583 0.667 0.042 0.708 0.542 0.486 PIC 0.632 0.703 0.254 0.689 0.760 0.601 0.244 0.666 0.519 0.040 0.676 0.544 0.527 PHWE 0.000 0.000 0.843 0.007 0.589 0.895 0.000 0.551 0.551 1.000 0.825 0.019 0.440 US-C4 Na 4 7 3 5 8 3 2 4 3 1 7 3 4.167 He 0.738 0.785 0.403 0.733 0.773 0.562 0.153 0.600 0.594 0.000 0.745 0.539 0.552 Ho 0.182 0.333 0.292 0.458 0.565 0.583 0.167 0.625 0.708 0.000 0.833 0.458 0.434 PIC 0.689 0.757 0.363 0.694 0.740 0.482 0.141 0.533 0.511 0.000 0.708 0.432 0.504 PHWE 0.000 0.000 0.146 0.000 0.000 0.788 0.703 0.942 0.681 / 0.669 0.380 0.392 12个位点在7个养殖群体的哈迪-温伯格平衡检验结果显示,在0.05置信水平上,Pvan1815和TUMXLv7.121位点在各群体均符合哈迪-温伯格平衡,而M1位点在各群体显著偏离平衡。Pvan1758位点仅在TH-A1群体满足哈迪-温伯格平衡,HLJN-008位点仅在US-C1群体满足哈迪-温伯格平衡。此外,亲虾来源于泰国的3个群体中,TH-A1在TUMXLv10.312位点,TH-A2在TUMXLv8.256、TUDGLv1-3.224和TUGAPv7-9.95位点以及TH-B在HLJN-023、TUMXLv10.312、TUDGLv1-3.224和TUGAPv7-9.95位点均满足哈迪-温伯格平衡。亲虾来源于美国的4个群体中,US-C1在HLJN-023、TUYFLvL16.1a和TUDGLv1-3.224位点,US-C2在HLJN-023、TUMXLv9.43、TUYFLvL16.1a和TUGAPv7-9.95位点,US-C3在TUMXLv8.256和TUGAPv7-9.95位点以及US-C4在HLJN-023位点上偏离平衡。
2.3 养殖群体高频等位基因的分布特征
凡纳滨对虾7个养殖群体在不同的微卫星位点上的等位基因分布不同。图2统计了高频等位基因(任一群体中出现频率均大于0.25的等位基因)在各群体中的分布特征。在微卫星位点TUMXLv8.256和TUYFLvL16.1a上,各群体高频等位基因分别集中于154 bp和178 bp,且P值均在0.65以上。在其他10个位点上,各群体的高频等位基因分布差异较大。TH-A1群体在M1位点上高频等位基因为206 bp (P=0.42)和210 bp (P=0.25),TH-A2群体为218 bp (P=0.41),而在US-C3和US-C4群体中并未检测到以上3个等位基因。TH-A1群体在Pvan1815和TUDGLv1-3.224位点的高频等位基因分别为133 bp (P=0.54)和204 bp (P=0.42),而其余6个群体分别集中在139 bp (P值为0.35~0.96)和176 bp (P值为0.29~0.65)。在7个养殖群体中均存在特有等位基因,但多数特有基因出现的频率过低。各群体的高频等位基因中,也发现特有等位基因存在,如TH-A1群体在HLJN-008位点上的高频等位基因429 bp (P=0.30),以及US-C3和US-C4群体在HLJN-023位点上的高频等位基因224 bp (P值分别为0.31和0.35)。
2.4 养殖群体的聚类分析
7个养殖群体间的Nei's遗传相似度为0.508 5~0.944 3,遗传距离为0.057 3~0.676 4 (表4)。群体US-C1和US-C2的遗传距离最近,而群体TH-A1和TH-B的遗传距离最远。根据Nei's遗传距离构建的UPGMA聚类图(图3)显示,US-C1、US-C2和TH-A2聚为一支,US-C3、US-C4和TH-B 3个群体聚为一支,群体TH-A1形成独立的一支。
表 4 凡纳滨对虾7个养殖群体的Nei's遗传相似度 (对角线上方) 和遗传距离 (对角线下方)Table 4. Nei's genetic identity (above diagonal) and genetic distance (below diagonal) among seven cultured populations of L. vannamei种群
populationTH-A1 TH-A2 TH-B US-C1 US-C2 US-C3 US-C4 TH-A1 – 0.669 4 0.508 5 0.731 5 0.709 6 0.652 0 0.562 2 TH-A2 0.401 4 – 0.703 1 0.921 0 0.921 9 0.758 3 0.669 2 TH-B 0.676 4 0.352 2 – 0.695 0 0.769 6 0.858 7 0.767 5 US-C1 0.312 7 0.082 3 0.363 9 – 0.944 3 0.788 4 0.661 8 US-C2 0.343 1 0.081 3 0.261 9 0.057 3 – 0.847 0 0.738 7 US-C3 0.427 7 0.276 7 0.152 3 0.237 8 0.166 1 – 0.883 1 US-C4 0.575 9 0.401 7 0.264 7 0.412 8 0.302 8 0.124 3 – 3. 讨论
微卫星DNA在种内有高度的遗传变异,是群体遗传分化分析的有效标记[21]。关于凡纳滨对虾微卫星标记开发和筛选的工作已有大量报道[22-23],本研究所选用的微卫星标记均源于已经开发的高多态性微卫星标记。传统的微卫星分析采用聚丙烯酰胺凝胶电泳结合放射显影或银染进行片段分离,分辨率低。本研究利用荧光标记的微卫星引物进行PCR,通过对标记产物和分子量内标的毛细管电泳检测,实现精确的片段长度读取。
PIC和杂合度(H)均是衡量群体遗传多样性的重要指标,其中PIC值反映了群体等位基因的多态水平,以0.25和0.5为界限分为低度多态(PIC<0.25)、中度多态(0.25<PIC<0.5)以及高度多态(PIC>0.5)。7个群体中除SyAqua群体TH-B表现为中度多态(PIC=0.414)外,其他群体均表现为高度多态,而SIS公司群体US-C1、US-C2和CP公司群体TH-A2的PIC最高(0.615~0.623)。如果考虑到SIS公司群体US-C3和US-C4,则源自SIS公司的4个群体平均PIC为0.567,这和先前工作[8]基于7个微卫星标记获得的SIS群体PIC平均值接近(PIC=0.589,样本数n=30),两者均大于谢丽等[24]利用9个微卫星标记得到的SIS群体平均PIC (PIC=0.366,样本数n=20)。群体TH-A1和TH-A2的平均PIC均大于包秀凤[8]获得的CP群体平均PIC (PIC=0.448,样本数n=30)。群体内等位基因杂合度能够反映群体的遗传变异水平[25],群体中杂合子比重越高,其遗传结构越稳定。Zhang等[6]及谢丽等[24]研究得到国外不同种苗公司引进群体的He为0.421~0.956,Ho为0.318~0.949,本研究中各群体平均He和Ho分别为0.477~0.670和0.370~0.505,在上述范围之内。哈迪-温伯格平衡检验可以反映Ho与He的平衡关系,当群体满足哈迪-温伯格平衡时,其He接近于Ho;反之,如果He超过或者低于Ho会导致偏离哈迪-温伯格平衡[26-27]。在12个微卫星位点和7个对虾群体共计84个群体位点中,有44个群体位点显著偏离哈迪-温伯格平衡,这个现象和本研究中He大于Ho的结果相对应。
等位基因数和频率分布信息是群体遗传特征的重要参数,本研究中不同养殖群体间的等位基因频率差异较大。7个养殖群体的高频等位基因仅在位点TUMXLv8.256和TUYFLvL16.1a相似,等位基因大小分别为154 bp和178 bp,而在其他位点上,各群体高频等位基因分布不同。源自美国SIS公司的4个养殖群体在多个微卫星位点的高频等位基因一致,如位点Pvan1758大小为192 bp的等位基因,Pvan1815大小为137 bp的等位基因和TUMXLv10.312大小为174 bp、176 bp的等位基因,但SIS公司4个养殖群体共有高频等位基因在来自泰国的养殖群体中也有相似的频率分布。来自泰国CP的2个群体高频等位基因分布情况类似,不存在有别于其他公司群体的高频等位基因。虽然本研究未发现同一公司所有群体特有的高频等位基因存在,但在选育群体中筛选特有的或高频分布的等位基因,和其他群体加以区分,是进行选育群体鉴别的重要方向。国外种苗公司的选育过程实质上也对目标性状的基因型进行了选择,群体遗传结构发生定向改变,通过分子标记分析群体遗传特性,或有可能实现选育群体的鉴别。群体遗传多样性主要表现为群体遗传结构的变异,以等位基因频率计算的群体间遗传距离可以反映遗传关系。通过7个养殖群体两两间的遗传距离分析发现,泰国CP群体间的遗传距离为0.401 4,美国SIS群体间遗传距离为0.057 3~0.412 8,而两个公司群体间的遗传距离为0.081 3~0.575 9,这表明受试群体间的遗传距离和其来源没有显著相关性,同一公司的养殖群体遗传结构变化较大。造成这种现象的原因可能是由于系谱信息不透明,各个种苗公司或存在选育过程中基础群体混杂的现象。
谢丽等[24]针对4个引进群体的遗传距离分析表明,OI与Kona Bay群体亲缘关系最近,而SIS与Molokai群体亲缘关系最远。同样基于微卫星标记分析,包秀凤[8]却得出了不同的结论,在SIS、CP、OI与Kona Bay等4个引进群体中,SIS、CP以及Kona Bay的亲缘关系接近,而OI群体亲缘关系较远。此外,孙成波等[28]利用对虾形态比例参数的主成分分析法研究了SIS、Molokai、OI与Kona Bay等4个引进群体的亲缘关系,推测Kona Bay与Molokai是同一种群,SIS和OI为独立的种群。综上,在针对引进群体的遗传结构分析中,针对不同批次引进群体的研究得出的结论往往差异较大。这是由于研究方法和标记不同导致,另外也在一定程度上反映出引进群体不同批次种苗的遗传特征变化较大。
种苗处于对虾产业链上游,其质量对养殖成败起着关键作用,由进口亲虾繁育产生的一代苗既是重要的养殖对象,又在养殖后期常常作为二代苗和普通苗的亲虾来源。本文所分析的一代苗养殖群体具有较高的遗传多样性,然而不同批次种苗间的遗传特征存在一定差异。在当前对虾养殖风险日益突出的形势下,有必要深入研究遗传因素与养殖生产性能的关联性。此外,针对国内的育种工作和养殖实践,只有充分掌握基础群体遗传特征,才能合理利用杂交优势进行种苗繁育。
-
图 1 凡纳滨对虾微卫星位点M1、HLJN-008、TUMXLv8.256、TUYFLvL16.1a (a),TUMXLv7.121、TUMXLv9.43、TUMXLv10.312、TUSWLvSU233 (b) 和Pvan1758、Pvan1815、HLJN-023、TUDGLv1-3.224、TUGAPv7-9.95 (c) 的毛细管电泳基因分型
Figure 1. Genotyping of microsatellite loci M1, HLJN-008, TUMXLv8.256, TUYFLvL16.1a (a), TUMXLv7.121, TUMXLv9.43, TUMXLv10.312, TUSWLvSU233 (b) and Pvan1758, Pvan1815, HLJN-023, TUDGLv1-3.224, TUGAPv7-9.95 (c) in L. vannamei by capillary electrophoresis
表 1 凡纳滨对虾7个养殖群体的取样信息
Table 1 Sampling information of seven cultured populations of L. vannamei
群体
population亲虾来源
parental origin采样地点
sampling location种苗来源
sample source采样时间
sampling dateTH-A1 CP 中山,正大神湾虾苗场育苗车间 正大神湾虾苗场 2017年8月 TH-A2 CP 茂名,广东冠利海洋生物有限责任公司工厂化养殖池 中海水产种苗科技有限公司 2017年8月 TH-B SyAqua 茂名,广东冠利海洋生物有限责任公司工厂化养殖池 – 2017年8月 US-C1 SIS 茂名,广东冠利海洋生物有限责任公司工厂化养殖池 海威水产养殖有限公司 2017年9月 US-C2 SIS 茂名,广东冠利海洋生物有限责任公司土塘养殖池 海威水产养殖有限公司 2017年9月 US-C3 SIS 茂名,广东冠利海洋生物有限责任公司土塘养殖池 海威水产养殖有限公司 2017年9月 US-C4 SIS 汕尾,红海湾养殖基地工厂化养殖池 海尚种苗培育基地 2017年8月 表 2 凡纳滨对虾微卫星位点扩增所用引物及其荧光标记
Table 2 Primers and their fluorescence labeling for PCR amplification of L. vannamei microsatellite loci
位点
locus序列 (5'−3') 和荧光标记类型
sequence (5'−3') and fluorescence type重复序列
repeat motif参考文献
ReferenceM1 F: TAMRA-CTAACCCAATATCGAATC
R: GTGTGTTGCCGAATCGAA(TTTC)4...(TTTC)5...(TTTC)6 [10] Pvan1758 F: TAMRA-TATGCTCGTTCCCTTTGCTT
R: TTGAAGGAAAAGTGTTGGGG(T)10(TC)7...(T)4(TC) [11] Pvan1815 F: ROX-GATCATTCGCCCCTCTTTTT
R: ATCTACGGTTCGAGAGCAGA(T)7(CT)2(CTTT)4…(CT)6 [11] HLJN-008 F: HEX-CGTAAGTCCTGCAAAAGAAACT
R: GCCGTTCAACTATATATCAGCA(TA)12(GA)(TAGA)4A(AT)(AG)49A(AG)10(AT)(AG)A(AG)10TG(GA)(AG)3A(AT)(AG)6 [12] HLJN-023 F: HEX-AAGAGAGATGGAAGGAGTAAGTGC
R: GATCAATACCTTGCAGCGAAA(AG)3T(GA)24A(AG)15AAA(GA)2(AG)(GA)9 [12] TUMXLv7.121 F: 6-FAM-GGCACACTGTTTAGTCCTCG
R: CGAACAGAATGGCAGAGGAG(GTT)3…(GA)3…(TC)3…(GT)3…(TC)3…(TC)3…(TC)3 [13] TUMXLv8.256 F: 6-FAM-GGACTCACACTTCTGGTTC
R: GGCTGCACCTTGTAAGTC(AAT)4 [13] TUMXLv9.43 F: ROX-GAGAGCAAATAAGAAAGGGC
R: AGGATGCAAATGATAACGAG(TG)4C(GT)4TC(GT)6(GC)3…(GT)3TTA(TG)4…(GGA)3(GA)3…(CT)3CC(CT)3CC(CCCT)6(CT)10…(TC)6…(TC)3 [13] TUMXLv10.312 F: HEX-ATACGAAACACCCCATCCC
R: GTGGTCTTACCTCGTGGCTC(AG)30…(AG)5 [13] TUSWLvSU233 F: TAMRA-CCCGACTTGGCTTTTAGTTG
R: GAGATTGCTATCCTCGGCTG(TGA)3ATG(GA)3…(GA)4AGTA(AGC)3 [14-15] TUYFLvL16.1a F: ROX-ATGGCACAAATAGGATCTTG
R: GACTGGAAGAGCACTGATTC(AAT)4…(AC)3 [14-15] TUDGLv1-3.224 F: 6-FAM-ACTAGTGGATCTGTCTATTCAT
R: ATACCCACCCATGCATGTTA(TAGA)3…(TAGA)3…(ACAG)4(AG)21A(AG)30 [16] TUGAPv7-9.95 F: ROX-GATCCTGCGAGTCACTTTATCTC
R: TTTATTGCGTATCCCAGAAGC(TC)3…(AT)3…(AG)3…(TC)13…(AT)24G(TA)5TG(TA)4TG(TA)4…(AT)3…(AT)24 [16] 表 3 凡纳滨对虾7个养殖群体在12个微卫星位点的多态性信息
Table 3 Polymorphic information at 12 microsatellite loci in seven cultured populations of L. vannamei
群体
population参数
parameter位点 locus M1 Pvan1758 Pvan1815 HLJN-008 HLJN-023 TUMX Lv7.121 TUMX Lv8.256 TUMX Lv9.43 TUMX Lv10.312 TUYF LvL16.1a TUDG Lv1-3.224 TUGA Pv7-9.95 均值
averageTH-A1 Na 5 6 4 7 8 4 3 8 4 3 9 5 5.500 He 0.719 0.730 0.624 0.817 0.799 0.504 0.385 0.769 0.496 0.254 0.774 0.678 0.629 Ho 0.167 0.526 0.667 0.136 0.625 0.333 0.083 0.400 0.458 0.125 0.625 0.417 0.380 PIC 0.675 0.686 0.572 0.794 0.771 0.458 0.325 0.743 0.442 0.231 0.754 0.631 0.590 PHWE 0.000 0.056 0.260 0.000 0.000 0.119 0.000 0.000 0.269 0.011 0.001 0.000 0.060 TH-A2 Na 7 7 5 5 7 4 3 11 3 3 7 3 5.417 He 0.746 0.774 0.731 0.646 0.787 0.626 0.443 0.865 0.570 0.536 0.804 0.518 0.670 Ho 0.304 0.375 0.500 0.417 0.625 0.667 0.391 0.625 0.583 0.250 0.875 0.292 0.492 PIC 0.714 0.742 0.684 0.608 0.755 0.567 0.399 0.850 0.496 0.476 0.776 0.404 0.622 PHWE 0.000 0.000 0.153 0.003 0.018 0.800 0.155 0.000 0.045 0.001 0.101 0.083 0.113 TH-B Na 3 5 2 5 4 3 3 5 3 1 4 2 3.333 He 0.508 0.719 0.080 0.559 0.555 0.556 0.503 0.583 0.633 0.000 0.532 0.500 0.477 Ho 0.125 0.435 0.083 0.417 0.583 0.708 0.375 0.250 0.625 0.000 0.500 0.333 0.370 PIC 0.428 0.673 0.077 0.461 0.482 0.496 0.435 0.503 0.556 0.000 0.488 0.375 0.414 PHWE 0.000 0.000 0.882 0.000 0.868 0.090 0.033 0.002 0.166 − 0.062 0.082 0.199 US-C1 Na 8 7 6 7 7 4 3 11 3 3 11 4 6.167 He 0.837 0.768 0.743 0.796 0.790 0.539 0.348 0.861 0.555 0.344 0.797 0.463 0.653 Ho 0.217 0.478 0.750 0.739 0.542 0.625 0.250 0.583 0.542 0.167 0.750 0.417 0.505 PIC 0.816 0.732 0.703 0.767 0.759 0.501 0.316 0.846 0.456 0.307 0.772 0.401 0.615 PHWE 0.000 0.001 0.835 0.294 0.011 0.908 0.061 0.204 0.939 0.004 0.042 0.643 0.329 US-C2 Na 8 5 6 6 7 4 3 7 3 3 8 4 5.333 He 0.785 0.747 0.700 0.819 0.816 0.679 0.430 0.835 0.570 0.292 0.760 0.541 0.664 Ho 0.217 0.250 0.583 0.542 0.625 0.667 0.333 0.667 0.583 0.083 0.667 0.292 0.459 PIC 0.760 0.704 0.657 0.794 0.791 0.622 0.388 0.813 0.496 0.272 0.727 0.450 0.623 PHWE 0.000 0.000 0.317 0.006 0.001 0.750 0.159 0.000 0.617 0.000 0.337 0.000 0.182 US-C3 Na 5 5 3 6 8 4 3 6 4 2 9 3 4.833 He 0.674 0.739 0.284 0.735 0.790 0.669 0.260 0.695 0.598 0.041 0.701 0.617 0.567 Ho 0.083 0.667 0.333 0.500 0.917 0.667 0.125 0.583 0.667 0.042 0.708 0.542 0.486 PIC 0.632 0.703 0.254 0.689 0.760 0.601 0.244 0.666 0.519 0.040 0.676 0.544 0.527 PHWE 0.000 0.000 0.843 0.007 0.589 0.895 0.000 0.551 0.551 1.000 0.825 0.019 0.440 US-C4 Na 4 7 3 5 8 3 2 4 3 1 7 3 4.167 He 0.738 0.785 0.403 0.733 0.773 0.562 0.153 0.600 0.594 0.000 0.745 0.539 0.552 Ho 0.182 0.333 0.292 0.458 0.565 0.583 0.167 0.625 0.708 0.000 0.833 0.458 0.434 PIC 0.689 0.757 0.363 0.694 0.740 0.482 0.141 0.533 0.511 0.000 0.708 0.432 0.504 PHWE 0.000 0.000 0.146 0.000 0.000 0.788 0.703 0.942 0.681 / 0.669 0.380 0.392 表 4 凡纳滨对虾7个养殖群体的Nei's遗传相似度 (对角线上方) 和遗传距离 (对角线下方)
Table 4 Nei's genetic identity (above diagonal) and genetic distance (below diagonal) among seven cultured populations of L. vannamei
种群
populationTH-A1 TH-A2 TH-B US-C1 US-C2 US-C3 US-C4 TH-A1 – 0.669 4 0.508 5 0.731 5 0.709 6 0.652 0 0.562 2 TH-A2 0.401 4 – 0.703 1 0.921 0 0.921 9 0.758 3 0.669 2 TH-B 0.676 4 0.352 2 – 0.695 0 0.769 6 0.858 7 0.767 5 US-C1 0.312 7 0.082 3 0.363 9 – 0.944 3 0.788 4 0.661 8 US-C2 0.343 1 0.081 3 0.261 9 0.057 3 – 0.847 0 0.738 7 US-C3 0.427 7 0.276 7 0.152 3 0.237 8 0.166 1 – 0.883 1 US-C4 0.575 9 0.401 7 0.264 7 0.412 8 0.302 8 0.124 3 – -
[1] 王兴强, 马甡, 董双林. 凡纳滨对虾生物学及养殖生态学研究进展[J]. 海洋湖沼通报, 2004(4): 94-100. doi: 10.3969/j.issn.1003-6482.2004.04.016 [2] 农业部渔业渔政管理局. 2017中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2017: 22-61. [3] 童馨, 龚世圆, 喻达辉, 等. 凡纳滨对虾(Litopenaeus vannanamei)不同世代养殖群体的遗传多样性分析[J]. 海洋与湖沼, 2009, 40(2): 214-220. doi: 10.3321/j.issn:0029-814X.2009.02.017 [4] 颉晓勇, 苏天凤, 陈文. 凡纳滨对虾6个养殖群体遗传多样性的比较分析[J]. 南方水产, 2008, 4(6): 42-49. doi: 10.3969/j.issn.2095-0780.2008.06.006 [5] 代平, 孔杰, 栾生. 我国凡纳滨对虾种质资源引进与分析[J]. 科学养鱼, 2018(1): 3-5. [6] ZHANG K, WANG W J, LI W Y, et al. Analysis of genetic diversity and differentiation of seven stocks of Litopenaeus vannamei using microsatellite markers[J]. J Ocean Univ China, 2014, 13(4): 647-656. doi: 10.1007/s11802-014-2208-2
[7] 马春艳, 马洪雨, 马凌波, 等. 凡纳滨对虾引进群体和2个养殖群体遗传变异的微卫星分析[J]. 海洋渔业, 2011, 33(1): 1-8. doi: 10.3969/j.issn.1004-2490.2011.01.001 [8] 包秀凤. 凡纳滨对虾选育群体遗传多样性分析[D]. 湛江: 广东海洋大学, 2014: 11-26. [9] HU X J, CAO Y C, WEN G L, et al. Effect of combined use of Bacillus and molasses on microbial communities in shrimp cultural enclosure systems[J]. Aquacult Res, 2017, 48(6): 2691-2705. doi: 10.1111/are.2017.48.issue-6
[10] GARCIA D K, DHAR A K, ALCIVAR-WARREN A. Molecular analysis of a RAPD marker (B20) reveals two microsatellites and differential mRNA expression in Penaeus vannamei[J]. Mol Mar Biol Biotechnol, 1996, 5(1): 71-83. doi: 10.1007/BF02762417
[11] CRUZ P, MEJIA-RUIZ C H, PEREZ-ENRIQUEZ R, et al. Isolation and characterization of microsatellites in Pacific white shrimp Penaeus (Litopenaeus) vannamei[J]. Mol Ecol Resour, 2002, 2(3): 239-241.
[12] JIA Z, SUN X, LIANG L, et al. Isolation and characterization of microsatellite markers from Pacific white shrimp (Litopenaeus vannamei)[J]. Mol Ecol Resour, 2006, 6(4): 1282-1284.
[13] MEEHAN D, XU Z, ZUNIGA G, et al. High frequency and large number of polymorphic microsatellites in cultured shrimp, Penaeus (Litopenaeus) vannamei[J]. Mar Biotechnol, 2003, 5(4): 311-330. doi: 10.1007/s10126-002-0092-z
[14] ALCIVAR-WARREN A, MEEHAN-MEOLA D, PARK S W, et al. ShrimpMap: a low-density, microsatellite-based linkage map of the pacific whiteleg shrimp, Litopenaeus vannamei: identification of sex-linked markers in linkage group 4[J]. J Shellfish Res, 2007, 26(4): 1259-1277. doi: 10.2983/0730-8000(2007)26[1259:SALMLM]2.0.CO;2
[15] ALCIVAR-WARREN A, SONG L, MEEHAN D, et al. Mapping simple sequence repeat markers identified in ESTs from a subtracted cDNA library of white spot virus-challenged shrimp Litopenaeus vannamei[J]. J Shellfish Res, 2007, 26(4): 1247-1258. doi: 10.2983/0730-8000(2007)26[1247:CAMOES]2.0.CO;2
[16] GARCIA D K, ALCIVAR-WARREN A. Characterization of 35 new microsatellite genetic markers for the pacific whiteleg shrimp, Litopenaeus vannamei: their usefulness for studying genetic diversity of wild and cultured stocks, tracing pedigree in breeding programs, and linkage mapping[J]. J Shellfish Res, 2007, 26(4): 1203-1216. doi: 10.2983/0730-8000(2007)26[1203:CONMGM]2.0.CO;2
[17] YEH F C, BOYLE T J B. Population genetic analysis of co-dominant and dominant markers and quantitative traits[J]. Belg J Botany, 1997, 129(2): 157.
[18] NEI M. Estimation of average heterozygosity and genetic distance from a small number of individuals[J]. Genetics, 1978, 89(3): 583-590.
[19] NAGY S, POCZAI P, CERNÁK I, et al. PICcalc: An online program to calculate polymorphic information content for molecular genetic studies[J]. Biochem Genet, 2012, 50(9/10): 670-672.
[20] TAMURA K, PETERSON D, PETERSON N, et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods[J]. Mol Biol Evol, 2011, 28(10): 2731-2739. doi: 10.1093/molbev/msr121
[21] 孙效文, 张晓锋, 赵莹莹, 等. 水产生物微卫星标记技术研究进展及其应用[J]. 中国水产科学, 2008, 15(4): 689-703. doi: 10.3321/j.issn:1005-8737.2008.04.022 [22] 杨铭, 于洋, 张晓军, 等. 基于转录组数据的凡纳滨对虾微卫星标记开发[J]. 海洋科学, 2017, 41(2): 96-102. [23] YU Y, ZHANG X J, YUAN J B, et al. Genome survey and high-density genetic map construction provide genomic and genetic resources for the Pacific white shrimp Litopenaeus vannamei[J]. Sci Rep, 2015, 5: 15612. doi: 10.1038/srep15612
[24] 谢丽, 陈国良, 叶富良, 等. 凡纳滨对虾4个选育群体遗传多样性的SSR分析[J]. 广东海洋大学学报, 2009, 29(4): 5-9. doi: 10.3969/j.issn.1673-9159.2009.04.002 [25] LEBERG P L. Estimating allelic richness: effects of sample size and bottlenecks[J]. Mol Ecol, 2002, 11(11): 2445-2449.
[26] CHANG Y M, LIANG L Q, MA H T, et al. Microsatellite analysis of genetic diversity and population structure of Chinese mitten crab (Eriocheir sinensis)[J]. J Genet Genomics, 2008, 35(3): 171-176. doi: 10.1016/S1673-8527(08)60023-5
[27] QUAN Y C, SUN X W, LIANG L Q. Genetic popymorphism of microsatellite DNA in two populations of nothern sheatfish (Silurus soldatovi)[J]. Acta Genet Sin, 2006, 33: 908-916. doi: 10.1016/S0379-4172(06)60125-X
[28] 孙成波, 陈国良, 童汉荣, 等. 美国4个凡纳滨对虾(Litopenaeus vannamei)种群形态差异与判别分析[J]. 海洋与湖沼, 2009, 40(1): 27-32. doi: 10.3321/j.issn:0029-814X.2009.01.005 -
期刊类型引用(9)
1. 陈文淳,彭凯,黄敏伟,赵吉臣,张志豪,郭慧,刘锦上,刘振兴,鲁慧杰,黄文. 基于SSR标记分析15个凡纳滨对虾家系遗传多样性和遗传结构. 生物工程学报. 2024(12): 4628-4644 . 百度学术
2. 张哲,杨章武,郑雅友,李正良,葛辉,杨志宏,许智海. 凡纳滨对虾2个选育群体自交和杂交F_1的形质差异分析. 安徽农业科学. 2023(13): 81-85 . 百度学术
3. 曲旻,谭建,栾生,强光峰,罗坤,隋娟,孟宪红,孔杰. 凡纳滨对虾幼虾耐高温性状的遗传力评估. 水产科学. 2023(05): 805-812 . 百度学术
4. 刘峻宇,刘均辉,孔杰,代平,于洋,孟宪红,罗坤,曹宝祥,陈宝龙,高焕,栾生. 凡纳滨对虾SNP标记开发与家系亲缘关系验证分析. 渔业科学进展. 2021(01): 108-116 . 百度学术
5. 唐芳,温贝妮,刘红. 不同凡纳滨对虾养殖群体的微卫星遗传多样性分析. 南方农业学报. 2021(04): 1108-1115 . 百度学术
6. 彭敏,陈慧芳,李强勇,杨春玲,曾地刚,刘青云,赵永贞,陈晓汉,林勇,陈秀荔. 凡纳滨对虾连续3个世代选育群体的遗传多样性分析. 南方农业学报. 2020(06): 1442-1450 . 百度学术
7. 方振朋,孟宪红,李旭鹏,栾生,曹家旺,陈宝龙,孔杰,闫茂仓,胡利华. 基于微卫星分子标记的凡纳滨对虾商业苗种遗传多样性分析. 渔业科学进展. 2020(05): 101-109 . 百度学术
8. 韩叶,郑伟,康学会,闫春梅,李忠强,刘慧吉,李秀颖,柳鹏,陈伟强. 基于微卫星标记的图们江大麻哈鱼亲子鉴定技术研究. 南方水产科学. 2020(04): 84-89 . 本站查看
9. 申淑慧,戴习林. 基于生长和抗逆功能基因SNP分子标记的凡纳滨对虾野生及选育群体遗传多样性分析. 南方农业学报. 2020(11): 2836-2845 . 百度学术
其他类型引用(3)