Preliminary analysis of the Bahaba taipingensis' acoustic spectrum characteristics
-
摘要: 文章通过被动声学方法监听黄唇鱼(Bahaba taipingensis)的声音,初步分析了其声谱特征,旨在为黄唇鱼声学无损调查、水下噪声影响分析和发声的生物学行为等物种保护研究提供基础数据。2017年3—5月,用microMARS型声学记录仪对东莞黄唇鱼市级自然保护区室内水族箱和室外2个驯养池中救护驯养的96尾黄唇鱼进行了2个时段、每个时段连续7个昼夜的声学监听。监听到黄唇鱼共发声246次,发出7类声音,分别是类鼓声、咔嚓声、雀鸣声、嗡嗡声、嗒嗒声、嚓咕声和其他声音等。黄唇鱼昼夜发声次数没有明显差异。黄唇鱼发声以类鼓声为主(175次),类鼓声由1~3个脉冲组成,又以单脉冲类鼓声为主(139次)。类鼓声为类正弦波形,能量集中在0~1 000 Hz,声纹与时间轴平行,谱峰中心频率为50~140 Hz。嗒嗒声与类鼓声相似,其能量也集中在0~1 000 Hz,但谱峰中心频率范围为180~190 Hz。嗡嗡声、咔嚓声、雀鸣声和嚓咕声同时包含低频(0~1 000 Hz)与高频(3 000~12 500 Hz)成分。类鼓声时长、脉冲宽度和脉冲间隔范围分别为67~1 333 ms、35~733 ms和0~1 130 ms,平均值分别为279 ms、70 ms和183 ms;类鼓声时长和脉冲间隔随着声信号脉冲数的增加而增长,脉冲宽度则减短。Abstract: We analyzed the acoustic spectrum of Bahaba taipingensis by monitoring its sound with passive acoustic method to provide basic data for the non-destructive investigation method, underwater noise environment analysis and sounding behavior of B. taipingensis. We carried out acoustic monitoring on 96 individuals of B. taipingensis by microMARS acoustic recorder in the indoor aquarrium and the two outdoor pools of Dongguan B. taipingensis Nature Reserve from March to May in 2017 (two periods and each period had 7 days and nights). We had monitored 246 sounds in total, belonging to seven types (drum sound, humming sound, cracking sound, clacking sound, bird sound, cha goo sound and other sounds). No significant difference was observed in the number of sounds between day and night. The drum sound was the main sound of B. taipingensis (175 times). The drum sound was composed of 1−3 pulses, being dominated by a single pulse type of drum (139 times). The drum sound had some sine shaped waveform (energy: 0−1 000 Hz), and its voiceprint was parallel to the timeline. The drum sound's spectral frequency peak ranged from 50 Hz to 140 Hz. The energy distribution of cracking sound was similar to that of drum sound (0−1 000 Hz), while the spectral frequency peak was 180−190 Hz. The energy distribution and frequency of the humming sound, cracking sound, birds sound and cha goo sound were both at low frequency (0−1 000 Hz) and high frequency (3 000−12 500 Hz). The pulse length, width and interval of drum sound were 67−1 333 ms, 35−733 ms and 0−1 130 ms, respectively (the average values were 279 ms, 70 ms and 183 ms, respectively). The length of drum sound and the pulse interval increased with increasing number of pulse of sound signals, while the pulse width decreased.
-
方斑东风螺 (Babylonia areolata)属软体动物门、腹足纲、蛾螺科,俗称“花螺”、“海猪螺”和“南风螺”,分布于中国东南沿海、东南亚及日本等地,是中国东南沿海主要的养殖海珍品和经济贝类,因其肉质鲜美、营养丰富,成为畅销国内外且具有推广前景的优质海水养殖贝类品种[1]。近年来,方斑东风螺的养殖生产在中国部分地区如广东、广西和海南等有较快发展,但在养殖过程中常受到氨氮 (NH4-N)毒性的影响。积累的氨以离子氨 (
$ {\rm{NH}}_4^ + $ )或非离子氨 (NH3)的形式存在于水体,从而影响水生动物的生长[2]。NH4-N是水产养殖水环境中的主要有毒物质和重要的水体环境指标之一,被认为是水产养殖中的常见胁迫因子,其浓度受养殖水体中动物排泄物、分泌物、残饵、动植物尸体等含氮有机物分解的影响[3-4]。研究表明,多数水生生物对NH4-N毒性非常敏感。关于NH4-N对鱼类、虾类等水生生物消化系统和抗氧化系统酶活力影响的研究已有不少报道[5-8],但NH4-N胁迫对方斑东风螺消化酶活力影响的研究仍属空白。徐武杰等[9]研究NH4-N胁迫对三疣梭子蟹 (Portunus trituberculatus) 消化酶活力的影响时发现,在NH4-N胁迫下其中肠腺中的胃蛋白酶和脂肪酶活力表现出明显的诱导作用,而对3种消化器官中淀粉酶活力表现出明显的抑制作用;胡炜等[10]研究发现慢性NH4-N胁迫会对刺参 (Stichopus japonicus) 摄食、消化与生长产生不利影响,在质量浓度低于4 mg·L–1的NH4-N胁迫下,刺参消化酶活力短期可被显著诱导上调,高NH4-N质量浓度对消化酶活力起抑制效应并可导致生理紊乱,且该响应存在体质量、规格上的差异;王程昊等[11]研究发现,NH4-N胁迫也会影响泥蚶 (Arca granosa)体内的几种免疫酶活力。NH4-N还可降低水生动物生长速度,影响其血液生化指标并伤害免疫功能、组织机构及繁殖能力[12-13]。当水体中NH4-N质量浓度低于生物体耐受限度时,机体能够自行调节其体内相关酶的活力从而适应外界环境的变化,但当一定质量浓度的NH4-N持续长时间刺激且超过机体调节限度时,机体的非特异性免疫系统及消化系统就会受到破坏,相关酶活力下降[14-16]。另外,NH4-N胁迫还会增加水生动物的致病性[17],从而影响水生动物健康。为探究方斑东风螺在NH4-N刺激下其体内消化酶活力变化,进而揭示其消化酶应对急性胁迫时的调节机制,本文通过开展方斑东风螺不同质量浓度的NH4-N胁迫实验,测定NH4-N对其常见消化酶活力的影响,以期充实NH4-N对贝类毒理实验消化酶层面的基础数据,并为其他贝类NH4-N胁迫实验提供科学依据。
1. 材料与方法
1.1 实验材料
方斑东风螺由中国水产科学研究院南海水产研究所热带水产研究开发中心 (海南陵水)提供,并在该基地进行实验。实验所用方斑东风螺平均体质量为 (0.392±0.080) g,体长为(0.65±0.15) cm,实验开始前先暂养2 d。养殖过程中水质参数为温度 (26.0±1.0) ℃,盐度33±0.8,溶解氧 (DO)质量浓度大于6.5 mg·L–1,亚硝酸盐质量浓度小于0.04 mg·L–1,NH4-N质量浓度小于0.01 mg·L–1,pH为8.0±0.2。实验用水为过滤的海水。
1.2 实验方法
1.2.1 饲养管理及实验设计
将氯化铵 (NH4Cl,AR)配置成质量浓度为0~500 mg·L–1的溶液,按实验要求放入健康状况良好且大小均一的方斑东风螺,观察其行为、活动及存活状况,得到24 h和 96 h 100%死亡浓度 [ (LC100, 24 h)和 (LC100, 96 h)],根据实验结果确定出实验液NH4-N质量浓度的上、下限。实验过程中停止投饵。
根据所确定的上、下限设置5个NH4-N质量浓度,分别为0 mg·L–1、22 mg·L–1、47 mg·L–1、102 mg·L–1和220 mg·L–1,各组均为3个平行,每个实验容器 (3 L)内投放30只健康状况良好的方斑东风螺,分别于第6、第12、第24、第36、第48、第72和第96小时从各养殖桶中随机取样3只,检测其消化酶活力的变化情况。同时,每隔3 h从每个容器中取水样,及时调整至设定的表观质量浓度。
每日换水1次,每次换水50%,并将养殖桶中的排泄物以及死去的方斑东风螺及时除去。间隔观察并记录各实验组方斑东风螺的状态、行为活动、中毒症状及死亡率。判断死亡的标准为实验东风螺置于塑料板上无明显活动迹象,用解剖刀触碰无反应。
1.2.2 样品处理
用0.2 mol·L–1生理盐水将各实验组所取样品 (整个螺)按1∶2 (m∶V)进行研磨,研磨液于5 000 r·min–1、4 ℃下离心10 min,取1 mL上清液于洁净EP (eppendorf)管中,−80 ℃保存待测,分别采用相关试剂盒测定蛋白及各消化酶活力,试剂盒购自南京建成生物工程研究所。
1.2.3 数据处理与分析
利用SPSS 21.0对实验数据进行统计分析,先对数据作单因素方差分析 (One-Way ANOVA),处理间若有显著差异,再用Duncan法比较均值间的差异显著性 (P<0.05),本文数据均采用“平均值±标准差 (
$\overline X \pm {\rm SD}$ )”表示。2. 结果
2.1 NH4-N胁迫对方斑东风螺的急性毒性作用
NH4Cl处理组中,随着NH4Cl浓度的升高,方斑东风螺呈现不同的应激行为甚至死亡,主要表现为运动缓慢,对外界刺激反应迟钝,爬壁运动减少,逐渐翻背,沉于水桶底部,身体僵硬直至死亡。死亡状态的东风螺,吻管向外凸出,螺肉外翻、惨白僵硬。300 mg∙L–1 NH4Cl处理组第48小时开始出现死亡,第96小时成活率为 (60.0±1.6)%,而500 mg·L–1 NH4-N处理组于第24 小时便出现 (20.3±2.1)%的死亡率,死亡个体吻稍微张开、出现体色变红现象,且第96小时成活率为0,其余各组成活率为100% (表1)。可见,NH4-N浓度越大,其毒性作用越强,方斑东风螺死亡率越高;相同条件下,NH4-N胁迫时间越久,方斑东风螺死亡率也越高。
表 1 氨氮对方斑东风螺急性毒性实验结果Table 1. Acute toxicity experiment of NH4-N to B. areolataρ(NH4Cl)/mg·L–1 死亡率/% mortality rate 第24小时 第48小时 第72小时 第96小时 对照 control 0 0 0 0 25 0 0 0 0 50 0 0 0 0 75 0 0 0 0 100 0 0 0 0 200 0 0 0 0 300 0 21.4±3.3 40.1±2.9 60.0±1.6 500 20.3±2.1 50.0±2.7 73.6±4.2 100.0 2.2 NH4-N胁迫对方斑东风螺溶菌酶活力的影响
不同浓度NH4-N对方斑东风螺溶菌酶活力的影响显著 (P<0.05),而处理时间对方斑东风螺溶菌酶活力影响极显著 (P<0.01)。第6小时时各NH4-N浓度处理组个体溶菌酶活力与对照组相比均呈降低趋势,但随着时间的延长,溶菌酶活力呈先增后降 (22 mg·L–1 和102 mg·L–1处理组)或先增后降再增 (47 mg·L–1和220 mg·L–1处理组)的趋势 (图1-a)。综上,溶菌酶活力表现出“抑制−诱导”的趋势。
图 1 氨氮胁迫对方斑东风螺4种消化酶活力的影响不同字母表示同一组不同处理时间之间存在显著性差异,字母下标数字代表组号,分别为22 mg∙L–1、47 mg∙L–1、102 mg∙L–1和220 mg∙L–1Figure 1. Effect of NH4-N stress on activities of four digestive enzymes of B. areolataDifferent letters indicate significant difference. The subscript letters represent group No., which are 122 mg∙L–1, 47 mg∙L–1, 102 mg∙L–1 and 220 mg∙L–1, respectively.2.3 NH4-N胁迫对方斑东风螺胃蛋白酶活力的影响
处理时间和不同质量浓度的NH4-N均极显著影响方斑东风螺胃蛋白酶活力 (P<0.01)。相比对照组,22 mg·L–1处理组个体胃蛋白酶活力随时间的延长呈“诱导−抑制”变化趋势,但47 mg·L–1处理组个体胃蛋白酶活力随时间的延长却呈现“抑制−诱导−抑制”变化趋势,而其他各处理组个体胃蛋白酶活力随时间的变化趋势为“抑制−诱导”且峰值均出现在第72 小时,谷值均出现在第6小时 (图1-b)。
2.4 NH4-N胁迫对方斑东风螺脂肪酶活力的影响
处理时间对方斑东风螺脂肪酶活力影响极显著 (P<0.01),不同浓度的NH4-N胁迫导致各组处理个体脂肪酶活力变化趋势也存在显著差异 (P<0.05)。各处理组脂肪酶活力较对照组在总体上呈抑制作用或与对照组呈相似水平,但中质量浓度处理组 (47 mg·L–1、102 mg·L–1)个体脂肪酶活力在第6小时时表现出诱导作用,低、高质量浓度处理组 (22 mg·L–1、220 mg·L–1)个体脂肪酶活力于第48小时时表现出诱导作用 (图1-c)。
2.5 NH4-N胁迫对方斑东风螺淀粉酶活力的影响
处理时间对方斑东风螺淀粉酶活力影响极显著 (P<0.01),不同浓度的NH4-N胁迫导致各组处理个体淀粉酶活力变化趋势存在明显差异 (P<0.05)。各处理组淀粉酶活力相比对照组在处理时间较短的情况下并无太大的诱导或抑制作用,NH4-N质量浓度为47 mg·L–1和102 mg·L–1的处理组在第72和第96小时才表现出明显的诱导作用,而NH4-N质量浓度为220 mg·L–1的处理组在第6小时表现出明显的抑制作用,并在第36和第96小时时具有一定的诱导作用 (图1-d)。
3. 讨论
3.1 NH4-N对方斑东风螺生存状况和成活率的影响
研究表明,对水生动物造成危害甚至死亡的NH4-N成分主要是NH3[2]。NH3因不带电荷且具有较强的脂溶性而对水生动物有极大毒性,能够穿透贝体细胞膜表现出毒性效应,但
${\rm{NH}}_4^ + $ 对水生动物毒性很小[7,11,18]。本实验结果显示,方斑东风螺对NH4-N具有一定的耐受性,因此高质量浓度 (500 mg∙L–1) NH4-N处理24 h仅 (20.3±2.1)%的死亡率,但在96 h后全部死亡,说明该NH4-N浓度已超过方斑东风螺最大耐受浓度。师尚丽等[2]指出,NH4-N的浓度越大,其毒性作用越强,与本实验结果一致。因此,养殖生产中应尽可能地降低养殖水体中NH4-N的浓度,及时清理投喂的冰鲜鱼、虾蟹肉等残渣及死亡的东风螺等,防止含氮有机物分解产生NH4-N。另外,方斑东风螺对NH4-N的应激行为表现为运动缓慢、对外界刺激反应迟钝和爬壁运动减少等,可能是NH4-N影响了东风螺的组织器官,如影响肌肉伸缩能力和神经介质传递。研究表明,水体中的NH4-N会影响鱼、贝类等水产动物的生长摄食、组织器官和免疫机能等 [12,19-23]。洪美玲等[24]在研究NH4-N对中华绒螯蟹 (Eriocheir sinensis)幼体的免疫指标及肝胰腺组织结构影响时指出,NH4-N不仅损伤机体非特异性免疫防御系统,还对机体细胞和组织造成伤害。王琨[25]研究发现,在NH4-N的影响下鲤 (Cyprinus carpio)幼鱼的各个组织器官 (鳃、肠、心肌、肾脏、脾脏和肝脏)均受到不同程度的损伤,且高浓度的NH4-N使鲤幼鱼的红细胞数量和血红蛋白浓度下降,而组织器官的损伤和免疫机能的下降正是造成鲤容易患病、死亡的主要原因。
3.2 NH4-N对方斑东风螺个体消化酶活力的影响
大量研究表明,NH4-N作为养殖水质污染源之一,除了对鱼、贝类等水产动物机体的血液指标、组织结构和免疫机能造成损害,还能降低鱼虾贝类的产卵能力[26],引起血淋巴理化因子和抗病能力的变化[27-28],使血淋巴中血细胞 (如透明细胞、颗粒细胞和半颗粒细胞)数量下降[7],还会对水生生物消化系统酶活力造成影响[5]。本研究结果表明,不同质量浓度的NH4-N对消化酶活力均产生影响,且随着处理时间的延长表现出不同的诱导或抑制作用。NH4-N对方斑东风螺个体溶菌酶活力表现出“抑制−诱导”的趋势,说明贝类溶菌酶活力的提高可能也是一种防御反应外的被动病理显示[29]。相比对照组,22 mg·L–1处理组个体胃蛋白酶活力随时间的延长呈“诱导−抑制”变化趋势,但47 mg·L–1处理组个体胃蛋白酶活力随时间的延长呈“抑制−诱导−抑制”变化趋势;而其他各处理组个体胃蛋白酶活力均在NH4-N处理一段时间后表现出抑制作用。可以看出在NH4-N急性胁迫下,由于NH4-N的毒性作用,使得机体的相关代谢酶活力降低,而机体的应激反应又在短时间内诱导酶活力上升,其恢复正常水平的时间反映了机体对环境的适应能力。最终酶活力的显著降低说明对处理个体已经造成毒害作用。而不同NH4-N质量浓度对方斑东风螺处理个体脂肪酶活力的总体抑制,更表明了NH4-N的毒害作用。赵海涛[30]通过南方鲶 (Silurus meridionalis)幼鱼的NH4-N胁迫实验得出,经NH4-N胁迫后南方鲶幼鱼的造血机能受损,机体无法将氧 (O2)顺利携带进入,猜测NH4-N急性中毒引起死亡的主要原因是由机体组织缺氧造成。而乔顺风等[31-32]认为,NH4-N的毒性大小取决于存在状态,当水体中的NH4-N以NH3状态存在时,便会对水生动物产生很强的神经性毒害,造成急性氨中毒。李波等[33]在研究亚硝酸 (HNO2)和NH4-N对黄颡鱼 (Pelteobagrus fulvidraco)的急性毒性时发现,NH4-N对黄颡鱼的毒性明显大于HNO2对黄颡鱼的毒性,因而把NH4-N作为黄颡鱼养殖过程中毒性危害的重要影响因子。
此外,虽然各消化酶活力随着NH4-N处理浓度显著变化,但并不存在明显的线性关系或一致规律,变化规律较特异,这可能与东风螺的高抗逆性等生理习性或所处发育阶段不同有关,也可能是NH4-N的胁迫对其消化系统造成了一定的紊乱效应,但并未引起死亡是因为胁迫处理计量仍在其适应范围内。有研究表明,NH4-N胁迫程度的差异性与对象规格、养殖密度和个体差异等有关[34]。NH4-N处理组方斑东风螺消化酶活力的变化规律很好地指引了养殖过程中水体NH4-N的控制范围,从而防止因超过最大承受能力而造成重大养殖损失。
-
图 7 语谱图和频谱图
a1~a2. 类鼓声语谱图和声频谱图; b1~b2. 嗡嗡声语谱图和频谱图; c1~c2. 咔嚓声语谱图和频谱图; d1~d2. 嗒嗒声语谱图和频谱图; e1~e2. 雀鸣声语谱图和频谱图; f1~f2. 嚓咕声语谱图和频谱图
Figure 7. Spectrogram and spectrum map
a1−a2. spectrogram and spectrum map of drum sound; b1−b2. spectrogram and spectrum map of humming sound; c1−c2. spectrogram and spectrum map of cracking sound; d1−d2. spectrogram and spectrum map of clacking sound; e1−e2. spectrogram and spectrum map of bird sound; f1−f2. spectrogram and spectrum map of cha goo sound
表 1 各类别发声次数
Table 1 Number of different sound types
监听区
monitored area时间 (月-日)
time (month-date)总发声数
total number of sounds
平均发声密度/次·h–1
mean sound density类鼓声
drum sound咔嚓声
cracking sound雀鸣声
birds sound嗡嗡声
humming sound嗒嗒声
clacking sound嚓咕声
cha goo sound其他声
other sound1#池
Pool 103-28—04-04 7
0.0400 0 0 6 0 0 1 04-21—04-28 10
0.0587 3 0 0 0 0 0 2#池
Pool 204-05—04-12 19
0.1115 6 1 0 5 0 2 05-22—05-29 63
0.36450 5 0 2 0 0 6 水族箱aquarium 05-02—05-04 24
0.52221 0 0 0 0 0 3 05-10—05-17 123
0.71292 3 1 0 0 1 26 合计 total 246 175 17 2 8 5 1 38 表 2 类鼓声时域特征统计
Table 2 Pulse width and pulse interval of drum sound
脉冲类型
number of pulse时长/ms
duration time脉冲宽度
pulse width脉冲间隔
pulse interval单脉冲 single pulse drum sound 67~733 243 67~733 243 − 双脉冲 double-pulse drum sound 100~1 333 370 35~350 113 0~1 130 143 三脉冲 three-pulse drum sound 333~1 268 655 47~333 100 0~834 179 总平均值 overall mean 279 70 183 表 3 部分鱼类声信号谱峰中心频率
Table 3 Spectral frequency peak of sound signal of servaral fishes
种类
species谱峰中心频率/Hz
spectral frequency peak文献来源
Reference黄唇鱼 Bahaba taipingensis 类鼓声50~140;嗒嗒声180~190;嗡嗡声40~140;咔嚓声3 200~3 600;
雀鸣声400~500、2 000~2 500;嚓咕声50~150本研究 大黄鱼 Larimichthys crocea 630~800 [7,23,28] 梅童鱼 Collichthys lucidus 1 000 [8] 黄姑鱼 Nibea albiflora 650±20.12 [23] 尖头黄姑鱼 Nibea acuta 630±15.57 [23] 白姑鱼 Argyrosomus argentatus 400 [29] 叫姑鱼 Johnius belengeri 2 000 [29] 拟石首鱼 Sciaenops ocellatus 139 [30] 金尾贝氏石首鱼 Bairdiella chrysoura 1 046 [30] 狗䱛 Cynoscion regails 347 [30] 云斑狗䱛 Cynoscion nebulosus 300 [30] 红牙䱛 Otolithes ruber 632±10.06 [23] 褐菖鲉 Sebasticus marmoratus 83~174 [25] 金眼鲷 Beryx splendens Lowe 337±8.50 [23] 带鱼 Trichiurus haumela 628±11.40 [23] 白鱼 Salangichthysm icrodon Bleeker 536±10.39 [23] 刺鱼 Gasterosteus aculeatus Linnaeus 420±0 [23] 大斑石鲈 Pomadasysmaculatus 415±9.40 [23] 粗纹鲾鱼 Leiognathus lineolatus 757±24.70 [23] 黑鳍叶鲹 Atule malam 542±16.90 [23] 游鳍叶鲹 Atule mate Cuvier et Va lenciennes 528±9.67 [23] 白舌尾甲鲹 Uraspis helvola 534±17.92 [23] 海鲶 Arius sp. 735±12.39 [23] 东方豹鲂鮄鱼 Dactyloptena orientalis 348±0 [23] 鳓鱼 Ilisha elongata 251±18.41 [23] 白腹豆娘鱼 Abudefduf luridus 356 [31] 鼬鳚 Ophidion marginatum 1 200 [32] 红棘胸鲷 Gadidae mediterraneus 180 [33] -
[1] HE W, LU W, LI X. Taxonomic status of Chinese bahaba (Bahaba taipingensis) and its phylogenetic relationship with otherspecies in the family Sciaenidae[J]. Mitochondrial DNA, 2012, 23(2): 53-61. doi: 10.3109/19401736.2011.653797
[2] 李希国, 卢伟华, 张汉霞. 野生黄唇鱼救护技术研究[J]. 现代渔业信息, 2011, 26(4): 14-15. doi: 10.3969/j.issn.1004-8340.2011.04.004 [3] 伍汉霖. 中国鱼类及药用鱼类新志[M]. 北京: 中国农业出版社, 2002: 500-670. [4] 卢伟华, 叶普仁. 东莞黄唇鱼资源调查[J]. 水产科技, 2002(3): 8-20. [5] WANG Y J, HU M H. Threatened fishes of the world: Bahaba taipingensis Herre, 1932 (Sciaenidae) [J]. Environ Biol Fish, 2009, 85: 335-336. doi: 10.1007/s10641-009-9507-2
[6] 陈毓桢. 鱼类的发声、听觉及其在渔业上的应用[J]. 海洋湖沼通报, 1983(3): 72-78. [7] 齐孟鹗, 张思照, 朱鉴平. 大黄鱼噪声谱分析[J]. 海洋湖沼通报, 1979(1): 59-64. [8] 齐孟鹗, 张思照, 宋政修. 梅童鱼的群体发声[J]. 海洋与湖沼, 1982, 13(6): 491-495. [9] ZAUGG S, SCHAAR M V, HOUÉGNIGAN L, et al. Real-time acoustic classification of sperm whale clicks and shipping impulses from deep-sea observatories[J]. Appl Acoust, 2010, 71: 1011-1019. doi: 10.1016/j.apacoust.2010.05.005
[10] HOUÉGNIGAN L, ZAUGG S, SCHAAR M V, et al. Space-time and hybrid algorithms for the passive acoustic localisation of sperm whales and vessels[J]. Appl Acoust, 2010, 71: 1000-1010. doi: 10.1016/j.apacoust.2010.05.017
[11] PACE F, BENARD F, GLOTIN H, et al. Subunit definition and analysis for humpback whale call classification[J]. Appl Acoust, 2010, 71: 1107-1112. doi: 10.1016/j.apacoust.2010.05.016
[12] LÓPEZ-RIVAS R M, BAZÚA-DURÁN C. Who is whistling? Localizing and identifying phonating dolphins in captivity[J]. Applied Acoust, 2010, 71: 1057-1062. doi: 10.1016/j.apacoust.2010.05.006
[13] CRANFORD T W, ELSBERRY W R, BONN W G, et al. Observation and analysis of sonar signal generation in the bottlenose dolphin (Tursiops truncatus): evidence for two sonar sources[J]. J Exp Mar Bio Ecol, 2011, 407: 81-96. doi: 10.1016/j.jembe.2011.07.010
[14] ESFAHANIAN M, ZHUANG H Q, ERDOL N. On contour-based classification of dolphin whistles by type[J]. Appl Acoust, 2014, 76: 274-279. doi: 10.1016/j.apacoust.2013.08.018
[15] 何大仁, 蔡厚才. 鱼类行为学[M]. 厦门: 厦门大学出版社, 1998: 288-291. [16] 粘宝卿, 黄衍镇, 王军. 对声屏障圈养大黄鱼的展望[J]. 海洋科学, 1999(4): 30-31. doi: 10.3969/j.issn.1000-3096.1999.04.013 [17] 袁华荣, 陈丕茂, 贾晓平, 等. 200 Hz方波连续音对真鲷幼鱼驯化反应的研究[J]. 渔业现代化, 2012, 39(1): 27-33. doi: 10.3969/j.issn.1007-9580.2012.01.006 [18] 袁华荣, 陈丕茂, 贾晓平, 等. 利用500 Hz方波连续音驯化南海真鲷幼鱼的效果[J]. 南方水产科学, 2012, 8(1): 36-42. doi: 10.3969/j.issn.2095-0780.2012.01.006 [19] 魏翀, 张宇, 张赛, 等. 网箱养殖大黄鱼合成声信号特性研究[J]. 声学学报, 2013, 38(3): 300-305. [20] 王克雄. 长江江豚行为和声学观察研究[D]. 北京: 中国科学院研究生院, 2005: 62-79. [21] 宋知用. MATLAB在语音信号分析与合成中的应用[M]. 北京: 北京航空航天大学出版社, 2013: 12-29. [22] 张登奇, 蒋敏. 基于MATLAB的音频信号处理技术实现[J]. 电脑知识与技术, 2009(5): 1211-1213. doi: 10.3969/j.issn.1009-3044.2009.05.081 [23] 任新敏, 高大治, 姚玉玲. 大黄鱼的发声及信号特性研究[J]. 大连水产学院学报, 2007, 22(2): 123-128. doi: 10.3969/j.issn.1000-9957.2007.02.009 [24] SPRAGUE M W. The single sonic muscle twitch model for the sound-production mechanism in theweakfish, Cynoscion regalis[J]. J Acoust Soc Am, 2000, 108(5): 2430-2437. doi: 10.1121/1.1315296
[25] 谢伟. 褐菖鲉的发声及发声肌的特性[D]. 上海: 上海海洋大学, 2015: 5-14. [26] 刘博. 基于MATLAB的语音信号采集和语谱图分析[J]. 电脑知识与技术, 2015, 11(11): 177-178. [27] WANG Z T, NOWACEK D P, AKAMATSU T, et al. Diversity of fish sound types in the Pearl River Estuary, China[J]. Peer J, 2017, 5: 1-33. doi: 10.17159/1727-3781/2002/v5i1a2875
[28] 殷雷明, 黄洪亮, 张旭光. 网箱养殖大黄鱼水下声音与行为反应[J]. 海洋渔业, 2017, 39(1): 92-99. doi: 10.3969/j.issn.1004-2490.2017.01.011 [29] 许兰英, 齐孟鹗. 黄、渤海两种鱼噪声谱的水下观测[J]. 海洋科学, 1999(4): 13-14. doi: 10.3969/j.issn.1000-3096.1999.04.006 [30] SPRAGUEM W, LCZKOVICH J J, PULLINGER R C, et al. Using spectral analysis to identify drumming sounds of some North Carolina fishes in the family Sciaenidae[J]. J Elish Mitch Sci Soc, 2000, 116(2): 124-145.
[31] SANTIAGO J A, CASTRO J J. Acoustic behaviour of Abudefduf luridus[J]. J Fish Biol, 1997, 51: 952-959. doi: 10.1111/jfb.1997.51.issue-5
[32] SPRAGUE M W, LUCZKOVICH J J. Do striped cusk-eels Ophidion marginatum produce the chatter sound attributed to weak fish Cynoscion regails? [J]. Copeia, 2001(3): 854-859.
[33] ALMADA V C, AMORIMM C P, PEREIRA E, et al. A gonistic behaviour and sound production in Gadidae mediterraneus (Gadidae)[J]. J Fish Biol, 1996, 49: 363-366.
[34] LI S H, WANG K X, AKAMATSU T. Echolocation signals of the free-ranging Yangtze finless porpoise (Neophocaena phocaenoides asiaeorientialis)[J]. J Acoust Soc Am, 2005, 117(5): 3288-3296. doi: 10.1121/1.1882945
[35] 汪启铭. 海上风电场建设水下噪声对中华白海豚影响研究[D]. 厦门: 厦门大学, 2014: 33-44. -
期刊类型引用(10)
1. 孙阿君,丁炜东,曹丽萍,曹哲明,邴旭文. 氨氮胁迫对翘嘴鳜幼鱼抗氧化酶、消化酶活性及应激相关基因表达的影响. 水产科技情报. 2024(01): 44-51 . 百度学术
2. 王筱,冼健安,张秀霞,张泽龙,李军涛,郑佩华,吴恒梅,鲁耀鹏. 方斑东风螺人工养殖、环境生理和营养需求研究进展. 中国饲料. 2024(03): 83-88+117 . 百度学术
3. 张钰伟,赵旺,邓正华,黄星美,温为庚,孙敬锋,王瑞旋. 芽孢杆菌对方斑东风螺生长、存活、免疫及消化酶活性的影响. 南方水产科学. 2023(01): 106-115 . 本站查看
4. 梁晶,邢诒炫,吕布,臧战,刘子岭,唐贤明,於锋,Hebert Ely Vasquez,战欣,郑兴,顾志峰. 底砂粒径对方斑东风螺生长、消化、抗氧化及底质的影响. 水产科技情报. 2023(03): 137-145 . 百度学术
5. 梅泊承,张晓东,赵淳朴,徐继林,王丹丽,郭春阳. 串联养殖模式下的凡纳滨对虾(Litopenaeus vannamei)与缢蛏(Sinonovacula constricta)生长特性、消化免疫及水生态效应. 海洋与湖沼. 2023(03): 907-920 . 百度学术
6. 赵旺,温为庚,谭春明,黄星美,杨蕊,陈明强,杨其彬,陈旭. 饥饿胁迫对猛虾蛄溶菌酶和消化酶活性的影响. 水产科技情报. 2022(01): 30-35 . 百度学术
7. 谭春明,赵旺,马振华,于刚. 红腹海参消化道指标、组织学和酶活性的季节变化. 南方水产科学. 2022(05): 39-45 . 本站查看
8. 周建聪,顾志峰,叶丙聪,刘闯,羊玉梅,刘春胜,王爱民,石耀华. 盐度和氨氮对方斑东风螺存活和能量收支的影响. 海洋科学. 2022(10): 104-112 . 百度学术
9. 韩朝婕,陈屹洋,贺振楠,张严匀,周文礼,高金伟,贾旭颖. 氨氮胁迫对水产动物生长、消化酶及免疫影响的研究进展. 河北渔业. 2021(05): 32-35 . 百度学术
10. 丁炜东,曹丽萍,曹哲明,邴旭文. 氨氮胁迫对翘嘴鳜幼鱼鳃、消化道酶活力的影响. 南方水产科学. 2020(03): 31-37 . 本站查看
其他类型引用(6)