基于响应面法分析乌梅和抗生素对哈维氏弧菌的协同抑制作用

钟志鸿, 王菲, 陈永贵, 邓恒为, 王世锋, 孙云, 陈雪芬, 郭伟良, 周永灿

钟志鸿, 王菲, 陈永贵, 邓恒为, 王世锋, 孙云, 陈雪芬, 郭伟良, 周永灿. 基于响应面法分析乌梅和抗生素对哈维氏弧菌的协同抑制作用[J]. 南方水产科学, 2018, 14(6): 81-88. DOI: 10.12131/20180056
引用本文: 钟志鸿, 王菲, 陈永贵, 邓恒为, 王世锋, 孙云, 陈雪芬, 郭伟良, 周永灿. 基于响应面法分析乌梅和抗生素对哈维氏弧菌的协同抑制作用[J]. 南方水产科学, 2018, 14(6): 81-88. DOI: 10.12131/20180056
ZHONG Zhihong, WANG Fei, CHEN Yonggui, DENG Hengwei, WANG Shifeng, SUN Yun, CHEN Xuefen, GUO Weiliang, ZHOU Yongcan. Synergism between Fructus mume and antibiotics against Vibrio harveyi based on response surface methodology[J]. South China Fisheries Science, 2018, 14(6): 81-88. DOI: 10.12131/20180056
Citation: ZHONG Zhihong, WANG Fei, CHEN Yonggui, DENG Hengwei, WANG Shifeng, SUN Yun, CHEN Xuefen, GUO Weiliang, ZHOU Yongcan. Synergism between Fructus mume and antibiotics against Vibrio harveyi based on response surface methodology[J]. South China Fisheries Science, 2018, 14(6): 81-88. DOI: 10.12131/20180056

基于响应面法分析乌梅和抗生素对哈维氏弧菌的协同抑制作用

基金项目: 国家自然科学基金项目(31560725);海洋公益性行业科研专项经费项目(201405020);海南省自然科学基金创新研究团队项目(2016CXTD005);南海海洋生物健康养殖团队(hdkytg201704)
详细信息
    作者简介:

    钟志鸿(1993 — ),男,硕士研究生,从事水产养殖病害防治研究。E-mail: zhongzh@hainu.edu.cn

    通讯作者:

    郭伟良(1983 — ),男,博士,副教授,从事水产养殖病害防治研究。E-mail: guowl07@mails.jlu.edu.cn

    周永灿(1968 — ),男,博士,教授,从事水产养殖病害防治研究。E-mail: zychnu@163.com

  • 中图分类号: R 931.71

Synergism between Fructus mume and antibiotics against Vibrio harveyi based on response surface methodology

  • 摘要: 为了给哈维氏弧菌(Vibrio harveyi)疾病防治新手段的开发提供基础实验数据,筛选了协同抗哈维氏弧菌的乌梅(Fructus mume)水提液与抗生素复合物。首先绘制药物浓度对数对抑菌圈直径标准曲线,采用全组合法筛选与乌梅水提液具有协同抗菌活性的抗生素,然后采用中心组合设计法(CCD)结合响应面法(RSM)分析乌梅水提液与筛出抗生素复合后两两药物间的交互作用,并确定最佳复合配比。全组合法筛出的四环素、土霉素、金霉素和强力霉素分别与乌梅水提液具有协同抗菌作用,RSM分析显示将这4种药物复合后,乌梅水提液与土霉素对哈维氏弧菌存在显著协同抗菌作用;土霉素分别与金霉素和强力霉素存在交互抑制作用;乌梅水提液、土霉素、金霉素和强力霉素最佳复合配比为45∶0.12∶0.00∶0.00 (mg·mL–1)。模型预测最优复合物对哈维氏弧菌的抑菌圈直径为18.54 mm,琼脂扩散法平行3次测得该复合物的抑菌圈直径为(19.03±0.07) mm,相对误差为2.6%,表明该方法结果可靠,为考察药物间的交互作用提供了新思路。
    Abstract: To provide basic experimental data for developing protocols to prevent and cure the disease caused by Vibrio harveyi, we collected the compound of Fructus mume water extract and antibiotics, which has synergism of antibacterial activity against V. harveyi. First, we plotted the standard curves of concentration logarithms versus inhibitory zone diameters of the test drugs, and used comprehensive combination experimental design method to screen the antibiotics which had synergism effect with F. mume water extract. Then, we applied central concentration design (CCD) with response surface methodology (RSM) to investigate the interaction among F. mume water extract and antibiotics against V. harveyi and to find their optimum combination. Results show that significant synergism existed between F. mume water extract and tetracycline, oxytetracycline, aureomycin and deoxytetracycline. RSM results indicate that the synergism between F. mume water extract and oxytetracycline contributed to the most significant effect on the antibacterial activity against V. harveyi. However, antagonism effect existed between oxytetracycline and aureomycin, and between oxytetracycline and deoxytetracycline. The optimum ratio of F. mume water extract, oxytetracycline, aureomycin and deoxytetracycline was 45∶0.12∶0.00∶0.00 (mg·mL–1). For this optimum combination, the predictive inhibitory zone diameter was 18.54 mm. According to cup method, agar diffusion method with three replicates, the practical maximum inhibitory zone diameter was (19.03±0.07) mm, and the relative error between predictive values and actual values was 2.6%. Thus, RSM is a reliable approach to describe the relationship among test drugs and inhibitory zone diameter.
  • 北盘江发源于云南宣威马雄山西北麓,流经滇东、黔西南,在贵州省望谟县蔗香双江口与南盘江汇合后称红水河,其水能资源十分丰富,有多处优良水力坝址。随着11座梯级水电站在北盘江上陆续建成运行,势必对该流域鱼类资源产生重要影响。为了防止水利工程对河道鱼类产生不利影响,结合工程实际情况决定采用增殖放流措施来保护鱼类资源。近期正在放流的对象有长臀(Cranoglanis bouderius)、光倒刺鲃(Spinibarbus hollandi)、白甲鱼(Onychostoma sima)、花(Hemibarbus maculatus),其中长臀已被列入《中国濒危动物红皮书—鱼类》[1]。贵州北盘江鱼类增殖放流站已于2009年12月和2010年9月在光照电站库区和董箐电站库区放流光倒刺鲃、长臀、花和白甲鱼共计624 310尾[2]。根据近期的回捕调查报告以及对当地渔民的采访得知,目前白甲鱼的放流效果最好,许多河段都能捕到持有荧光标记的白甲鱼,而效果最差的为长臀

    根据国外研究报道,对于放流的幼鱼,在放流后7 d内能否生存取决于其游泳能力,且有过逃避捕食经验的鱼会比无经验的鱼更好地逃避敌害而幸存下来[3]。其中突进游泳是鱼类在逃避敌害、捕获食物、短暂急促环境刺激、穿越高速水流等情况下表现出的游泳行为[4-6],在一定程度上决定了鱼类野外生存的能力。可以认为放流鱼的突进游速与其野外生存能力之间存在着一定的联系。

    突进游速持续时间在20 s以内,是鱼类无氧运动的重要测量指标[7],是鱼类3种常规判定鱼类游泳能力指标之一[8],而中国学者对鱼的突进游速研究甚少,仅见史航等[9]对许氏平鲉(Sebastods schlegelii)、大泷六线鱼(Hexagrammos otakii)的临界游速与爆发游速及其生理指标的研究和乔云贵等[10]对不同淡水鱼类游泳速度的初步研究。而且中国对于游泳能力的研究主要是为近年来兴起的鱼道建设提供设计参考资料,对于游泳能力与增殖放流之间联系的探索并不多。对已有的长臀以及白甲鱼这些经济鱼类的研究更多侧重于生物特性、养殖繁育方面[11-13],而关于2种鱼类的游泳行为的研究目前还未见报道。文章通过对长臀和白甲鱼2种放流鱼种突进游速的测试,为增殖放流活动以及后期放流效果评估提供基础资料。

    测试研究所用装置为实验室自制装置[14](图 1)。装置的体积为54 L(长×宽×高:86 cm×37 cm×17 cm),观察区体积为4.50 L(长×宽×高:37 cm×11 cm×11 cm)。试验装置通过调频器改变电机的转速来实现水流流速的改变,在水流进入观察区处设置整流器,使得试验鱼能在较为平稳的近似等速的水流中游泳,当试验鱼在迎流的游动中保持相对位置不变时可认为鱼在用一个与水流流速十分接近的游速在游动,最后认为此时水流的流速等于试验鱼的游速。整个装置中的水流处于循环流动中,在螺旋桨的旁边开一圆形小孔,可以补充与大气连接的水体进入密闭空间,使水流获得一定的溶氧,进一步减小溶氧因素对鱼类游泳能力的影响。

    图  1  测试鱼类游泳能力装置示意图
    1.电动机;2.变频器;3.拦网;4.外箱;5.摄像机;6.游泳槽;7.整流器;8. 螺旋桨
    Fig. 1  Device for testing swimming ability of fish
    1. pump; 2. frequency controller; 3. net; 4. tank; 5. camera; 6. swimming tunnel; 7. flow streamer; 8. propeller

    试验鱼由贵州北盘江光照鱼类增殖放流站提供,选取即将要放流的白甲鱼和长臀各20尾,试验前在循环控温水池中(水容量8.50 m3)暂养2 d,暂养期间每天用饵料投足喂饱。采用曝气自来水,水中溶解氧质量浓度大于7 mg·L-1,水温控制在(22±1)℃,光照为室内自然光。2 d后再从中挑出体质状况良好、未受伤的样本各10尾进行测试。其中长臀体长为6.50~15.50 cm,白甲鱼的体长为8.20~23.40 cm。

    通过调节变频器控制电机转速从而改变试验水槽中的水流流速,频率步长为4 Hz。此次试验在游泳槽的观察区选取3个断面,每个断面上选取上、中、下3个点进行测速,水流的速度由Vectrino小威龙点式流速仪(Nortek)测定,每一频率下各个点读取3次读数,最后取平均值。建立流速(y) 与调节频率(x) 之间的线性关系:y=0.035 1x-0.003 9,R2=0.998 2 (图 2)。

    图  2  速度与频率的关系
    Fig. 2  Relationship between speed and frequency

    第一步需要进行临界游速Ucrit预试验。选取1尾体质状况良好的鱼放于水槽游泳区内,给鱼一个极小的流速适应20 min,之后每1min以0.5 BL·s-1(BL:体长)的速度升高水流速度,直到试验鱼疲劳。由频率与速度关系得出临界游速粗略值,作为随后正式试验的调节参数。

    正式试验时,在循环控温水池中选取状况良好、未受伤的2种鱼各10尾进行逐条试验。将每尾试验鱼用直径为20 cm的小塑料盆舀至试验水槽测试区,封上测试区顶盖,开启调频电机,在0.5 BL·s-1的水流速度下适应1 h后,每隔5 min将流速调高0.5 BL·s-1直至60%的Ucrit估计值[15],以后每隔20 s将流速提高15%Ucrit,直到试验鱼达到力竭状态(疲劳判定准则为试验鱼被水冲至游泳槽尾部拦网并停留20 s以上)。整个游泳试验过程溶解氧质量浓度不低于7 mg·L-1,游泳装置内水温控制在(22.0±0.5)℃。记录试验鱼的力竭时刻,并将其从观察区中取出,测定体长、体质量。Uburst计算公式参照临界游速公式[16]

    $$ U_{\text {burst }}=U+(t / T) \Delta U $$ (1)

    式中T为在各速度梯度下设定时间(min),U为鱼力竭前一档速度,ΔU为各速度梯度的速度增量(15% Ucrit估计值),t为未能完成设定时间的实际持续游泳时间(t<20 s)。实测Uburst即为绝对临界游泳速度$U_{\text {burst }}^a$ ,为了消除体长对Uburst的影响、以便更有效地比较各种鱼的游泳能力,一般采用相对临界游泳速度(Ur,单位为BL·s-1),其计算公式表示为:

    $$ U_{\text {burst }}^r=U_{\text {burst }}^a/ B L $$ (2)

    试验测试所得数据用Excel 2003进行计算绘图并用SPSS 19.0软件进行了鱼种之间数据比较,分析比较2种鱼类的突进游速及相对突进游速之间的差异。统计值以平均数±标准差(X ±SD)描述,差异显著以P<0.05表示。通过回归分析对鱼类体长与临界游速、体长与突进游速的关系进行拟合。

    根据鱼类游速公式计算,经分析得出长臀和白甲鱼的突进游速与相对突进游速(表 1)。试验水温控制在(22±1)℃的情况下,白甲鱼的突进游速和相对突进游速都高于长臀的相应游速,大体可看出长臀的突进游泳能力比白甲鱼要弱。经统计检验得出长臀和白甲鱼2种鱼的突进游速和相对突进游速均存在显著差异(P < 0.05)。

    表  1  长臀和白甲鱼的突进游速
    Table  1  Burst swimming speed of C.bouderius and O.sima
    种类
    species
    体长/cm
    length
    突进游速/cm·s-1
    burst swimming speed
    相对突进游速/BL·s-1
    relative burst swimming speed
    长臀(C.bouderius) 11.44±3.31 94.10±10.93a 8.67±1.75a
    白甲鱼(O.sima) 14.99±4.46 153.70±9.97b 10.94±2.71b
    注:表中的值为平均值±标准差(n=10);同一列中具有不同字母标记的数值表示差异显著(P < 0.05)
    Note: Data are shown in X ±SD(n=10);values with different superscript letters in the same column are different from each other(P < 0.05).
    下载: 导出CSV 
    | 显示表格

    2种鱼的突进游速随体长的增长呈递增趋势(图 3),而相对突进游速随体长的增长则呈递减趋势,并且线性关系比较显著(图 4)。其中长臀的突进游速与体长的曲线估计回归拟合关系式为y1=3.209 5x+57.383,R2=0.943 4;白甲鱼的突进游速与体长的曲线估计回归拟合关系式为y2=2.096 8x+122.27,R2=0.878 6;长臀的相对突进游速与体长的曲线估计回归拟合关系式为y3=-0.511 1x+14.512,R2=0.934 4;白甲鱼的相对突进游速与体长的曲线估计回归拟合关系式为y4=-0.579 4x+19.629,R2=0.908 7。

    图  3  长臀(a)和白甲鱼(b)的突进游速与体长关系
    Fig. 3  Relationship between burst swimming speed and body length of C.bouderius (a) and O.sima (b)
    图  4  长臀(a)和白甲鱼(b)的相对突进游速与体长关系
    Fig. 4  Relationship between relative burst swimming speed and body length of C.bouderius (a) and O.sima (b)

    衡量突进游泳行为的指标——突进游速与持续时间,与鱼的规格等因素有关,就绝对速度而言,突进游速与鱼的体长成正比例关系,而相对游速则与鱼的体长成反比例关系[17-18]。此研究结果表明,白甲鱼的突进游速大于长臀,且2种鱼的突进游速随体长增加而近似线性增大,而相对突进游速随着体长的增加而近似线性减小,这与之前其他研究[17-18]所得结论相一致。目前对于鱼类突进游速的研究报道较少。此研究中体长为(11.44±3.31)cm的长臀相对爆发游速为(8.67±1.75)BL·s-1,与乔云贵等[10]研究所得体长为(16.88±1.99)cm的鲫(Carassius auratus)相对爆发游速为(8.64±0.60) BL·s-1的结果相近。史航等[9]研究表明体长为10.00~22.00 cm的许氏平鲉其爆发游速为76.68~118.18 cm·s-1、体长为10.00~22.00 cm的大泷六线鱼其爆发游速为81.69~121.25 cm·s-1,而此研究所得的长臀(体长6.50~15.50 cm)的突进游速范围为79.00~110.00 cm·s-1,与史航等[9]的测试结果相符。笔者研究中白甲鱼的相对突进游速为(10.94±2.71)BL·s-1,这与一般情况下对多数鱼而言突进游泳速度都可近似采用10.00 BL·s-1进行估算的结论[19-20]也相一致。另外,从此研究结果可知在体长基本相同的情况下,白甲鱼的突进游速明显高于长臀的突进游速,并且高于之前中国学者研究的鱼类的突进游速,表现了很强的游泳能力。

    长臀和白甲鱼的突进游速随着体长的增加而增大的现象,可能是由于鱼在水中发生游泳行为时,其单位体质量所需要的前进功率与其体长大小成反比[21],即体长越长的鱼消耗的推进能量越少,体长越短的鱼需要更多的能量来保持推进。笔者研究的试验鱼暂养与试验期间,白甲鱼常从循环水池或游泳槽中跃出,表明白甲鱼具有较强的跳跃能力。有学者认为,采用动量守恒的原理,通过公式Vburst =(2gh)1/2可以看出跳跃能力越高具备的突进游速也越大[22]。笔者认为白甲鱼突出的游泳能力主要体现在体型特征上,白甲鱼呈典型纺锤型体,侧扁,背部在背鳍前方隆起,与大洋性鱼类旗鱼(Histiophorus orientalis)的形体特征十分相似,而据报道旗鱼有很强的游泳能力[23]。因为笔者研究测试的2种鱼苗均为增殖放流鱼种,两者均生活在人工饲养环境下,生活水流都趋于平缓,摄食依靠人工喂养,并未在野外生活过,可认为此研究中2种鱼类游泳能力的差异受培苗期间栖息环境及生活习性等因素的影响较小。而在野外栖息环境中,鱼类游泳速度与众多因素有关,包括温度和溶解氧、生理状况、发育阶段等[24],都会造成长臀与白甲鱼在突进游速上的差异。

    笔者认为,白甲鱼的增殖放流效果显著可能得益于其突出的游泳能力,而其体型特征是突出游泳能力的根本原因;长臀由于突进游速较小再加上环境适应能力较差,可能导致野外成活率降低,从而影响放流效果。因此,在增殖放流活动中,条件允许的情况下选择具备白甲鱼体型特征的鱼类,有利于提高其放流效果。

    研究表明,大规格的放流鱼苗成活率要高于小规格的鱼苗[25],这与鱼类的突进游速随着体长的增大而增加存在一定的关系。可以根据鱼类体长与突进游速的关系得出鱼类在野外生存所需最佳突进游速下的体长参数。由于研究鱼类野外生存所需最佳突进游速涉及众多因素,目前没有相关的概念阐述,笔者研究仅从捕食关系来选定野外生存最佳突进游速。北盘江中分布着一定数量的平均体长在20.00 cm左右的鳜(Simiperca)、鳡(Elopichthys bambusa)、鲶(Silurus)等野生鱼,这些鱼种在遇到尺寸合适的放流幼鱼时会进行猎食,由于绝大多数鱼类的突进游速可近似采用10.00 BL·s-1进行估算,笔者研究采用9.00 BL·s-1估算,认为3种捕食鱼的突进游速为180.00 cm·s-1。则放流鱼类要想逃脱捕食鱼类的攻击至少需要具备180.00 cm·s-1的突进游速,因此选择该游速为放流鱼类野外生存的最佳突进游速。根据笔者研究得出的突进游速与体长的关系,计算出长臀的野外生存最佳突进游速对应的体长为38.20 cm,白甲鱼的野外生存最佳突进游速对应的体长为27.53 cm。放流的2种鱼中白甲鱼的平均体长更接近于其野外生存最佳突进游速对应的体长,长臀的放流鱼体长与相应的最佳突进游速下的体长差距较大,这也很好地解释了实践中白甲鱼显著的放流效果。此研究结论可为增殖放流鱼苗规格的选择提供较好的参考资料。

    目前对于突进游速的测试方法还不成熟,笔者仅参照相对较为成熟的临界游速测试方法测定长臀和白甲鱼的突进游速,结果能否体现2种鱼类的真实突进游速有待深入验证。突进游泳能力在放流后的关键成活阶段所发挥作用的程度也有待在研究北盘江各种鱼类之间的竞争与捕食关系的基础上深入探讨,此外对于文章中关于最佳突进游速下的体长参数的应用也有很多局限,如并未真正地获得北盘江捕食鱼类的突进游速资料,放流鱼苗规格的选择也应考虑成本、遗传效应[26]等因素,需要综合各因素来决定具体鱼苗尺寸。

  • 图  1   Y=f $({X_1},{X_2})$的响应面图和等高线图

    Figure  1.   Responsive surfaces and contours of Y=f $({X_1},{X_2})$

    图  2   Y=f $({X_1},{X_3})$的响应面图和等高线图

    Figure  2.   Responsive surfaces and contours of Y=f $({X_1},{X_3})$

    图  3   Y=f $({X_1},{X_4})$的响应面图和等高线图

    Figure  3.   Responsive surfaces and contours of Y=f $({X_1},{X_4})$

    图  4   Y=f $({X_2},{X_3})$的响应面图和等高线图

    Figure  4.   Responsive surfaces and contours of Y=f $({X_2},{X_3})$

    图  5   Y=f $({X_2},{X_4})$的响应面图和等高线图

    Figure  5.   Responsive surfaces and contours of Y=f $({X_2},{X_4})$

    图  6   Y=f $({X_3},{X_4})$的响应面图和等高线图

    Figure  6.   Responsive surfaces and contours of Y=f $({X_3},{X_4})$

    表  1   各药物的标准方程及其参数

    Table  1   Standard functions and parameters of each drug

    药物名称
    drug
    标准曲线
    standard curve
    质量浓度范围/mg·mL–1
    range of concentration
    R2
    乌梅水提液 F. mume water extractY=8.688 0lgC−5.799 020~1000.939 6
    四环素 tetracyclineY=7.088 0lgC+18.893 80.07~0.520.986 9
    土霉素 oxytetracyclineY=5.400 1lgC+14.388 40.03~0.580.961 9
    强力霉素 deoxytetracyclineY=3.927 2lgC+15.835 60.10~1.550.935 5
    金霉素 aureomycinY=3.667 4lgC+16.121 00.03~0.580.991 4
    新霉素 neomycinY=7.116 0lgC+15.598 00.10~0.800.941 0
    链霉素 streptomycinY=10.134 1lgC+15.950 40.15~0.650.927 4
    下载: 导出CSV

    表  2   全组合实验结果

    Table  2   Experimental design and results of combination of F. mume water extract and antibiotics

    抗生素
    antibiotics
    质量浓度/mg·mL–1
    concentration
    抑菌圈直径范围/mm
    inhibitory zone diameter
    相互促进效率/%
    synergism efficiency
    乌梅水提液
    F. mume water extract
    抗生素
    antibiotics
    估算值
    predicted value
    测量值
    actual value
    四环素 tetracycline500.1313.43~13.8315.47±0.0611.88
    土霉素 oxytetracycline0.2712.05~12.9316.60±0.0828.37
    强力霉素 deoxytetracycline0.2013.23~14.1816.27±0.0914.73
    金霉素 aureomycin0.1313.01~14.0216.32±0.0716.35
    新霉素 neomycin0.2012.04~12.5010.64±0.09
    链霉素 streptomycin0.2011.53~11.96 8.35±0.04
     注:− 表示无交互促进作用
     Note: − indicates no synergism effect.
    下载: 导出CSV

    表  3   乌梅水提液与抗生素复合CCD设计因素水平表

    Table  3   Factors and levels of CCD for combination of F. mume water extract and antibiotics mg·mL–1

    水平
    level
    乌梅水提液 (X1)
    F. mume water extract
    土霉素 (X2)
    oxytetracycline
    金霉素 (X3)
    aureomycin
    强力霉素 (X4)
    deoxytetracycline
    –1150.060.050.02
    0300.090.080.04
    1450.120.110.06
    下载: 导出CSV

    表  4   CCD设计方案及其实验结果

    Table  4   Design and results of CCD

    序号
    No.
    X1X2X3X4Y/mm序号
    No.
    X1X2X3X4Y/mm
    1–1 –1 0016.96±0.021501–1 017.06±0.07
    2–1 10016.66±0.0316011016.81±0.09
    31–1 0016.51±0.1417–1 0–1 016.53±0.16
    4110017.20±0.1318–1 01016.33±0.08
    500–1 –1 16.67±0.041910–1 016.85±0.05
    600–1 116.92±0.0720101017.21±0.09
    7001–1 16.72±0.05210–1 0–1 15.83±0.04
    8001117.01±0.04220–1 0116.97±0.08
    9–1 00–1 16.67±0.0623010–1 17.33±0.12
    10–1 00116.55±0.0324010116.59±0.08
    11100–1 16.87±0.0825000016.61±0.08
    12100116.79±0.0726000016.68±0.05
    130–1 –1 016.55±0.0927000016.66±0.04
    140–1 1016.47±0.08
    下载: 导出CSV

    表  5   RSM统计分析结果

    Table  5   Statistical results of RSM analysis

    来源
    source
    自由度
    df
    平方和
    SS
    均方差
    MS
    FPr>F
    X110.243 70.243 76.953 80.021 7
    X210.469 70.469 713.402 7 0.003 3
    X310.000 00.000 00.000 60.980 7
    X410.047 60.047 61.359 20.266 3
    X1210.022 40.022 40.640 60.439 1
    X1X210.242 60.242 66.921 90.021 9
    X1X310.077 30.077 32.205 50.163 3
    X1X410.000 30.000 30.008 70.927 1
    X2210.008 80.008 80.251 20.625 3
    X2X310.007 20.007 20.206 20.657 9
    X2X410.895 90.895 925.565 5 0.000 3
    X3210.021 40.021 40.611 30.449 5
    X3X410.000 30.000 30.007 30.933 3
    X4210.008 30.008 30.236 00.635 9
    模型 model142.018 10.144 14.113 60.009 4
    线性项 linear40.761 00.190 35.429 10.009 9
    平方项 quadratic40.033 60.008 40.239 60.910 5
    交互项 cross product61.223 50.203 95.819 20.004 8
    残差 error120.420 50.035 0
    失拟项 lack of fit100.417 60.041 828.793 5 0.034 0
    净误差 pure error20.002 90.001 5
    总和 total262.438 6
    下载: 导出CSV
  • [1] 叶乃好, 庄志猛, 王清印. 水产健康养殖理念与发展对策[J]. 中国工程科学, 2016, 18(3): 101-104.
    [2] 吴淑勤, 王亚军. 我国水产养殖病害控制技术现状与发展趋势[J]. 中国水产, 2010(8): 9-10.
    [3] 杨蕾, 舒廷飞, 温琰茂. 我国海水养殖及其可持续发展的对策[J]. 水产科学, 2003, 22(4): 45-48.
    [4] 蒋魁, 徐力文, 苏友禄, 等. 2012年~2014年南海海水养殖鱼类病原菌哈维弧菌分离株的耐药性分析[J]. 南方水产科学, 2016, 12(6): 99-107.
    [5] 闫茂仓, 陈少波, 单乐州, 等. 海水养殖动物致病弧菌的研究进展[J]. 水产科学, 2009, 28(8): 475-481.
    [6] 张晓华, 钟英斌, 陈吉祥. 哈维氏弧菌的生物学特性、流行病学及检测技术[J]. 中国海洋大学学报(自然科学版), 2007, 37(5): 740-748.
    [7]

    CHENG G Y, HAO H H, XIE S Y, et al. Antibiotic alternatives: the substitution of antibiotics in animal husbandry?[J]. Front Microbiol, 2014, 5: 217.

    [8]

    LIU X, STEELE J C, MENG X Z. Usage, residue, and human health risk of antibiotics in Chinese aquaculture: a review[J]. Environ Pollut, 2017, 223: 161-169.

    [9]

    CABELLO F C. Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment[J]. Environ Microbiol, 2006, 8(7): 1137-1144.

    [10]

    CITARASU T. Herbal biomedicines: a new opportunity for aquaculture industry[J]. Aquacult Int, 2010, 18(3): 403-414.

    [11]

    SYAHIDAH A, SAAD C R, DAUD H M, et al. Status and potential of herbal applications in aquaculture: a review[J]. Iranian J Fish Sci, 2015, 14(1): 27-44.

    [12]

    AIYEGORO O, ADEWUSI A, OYEDEMI S A, et al. Interactions of antibiotics and methanolic crude extracts of Afzelia africana (Smith.) against drug resistance bacterial isolates[J]. Int J Mol Sci, 2011, 12(7): 4477-4487.

    [13]

    KUMAR S N, SIJI J V, NAMBISAN B, et al. Activity and synergistic interactions of stilbenes and antibiotic combinations against bacteria in vitro[J]. World J Microbiol Biotechnol, 2012, 28(11): 3143-3150.

    [14]

    ANANTHARAMAN A, RIZVI M S, SAHAL D. Synergy with rifampin and kanamycin enhances potency, kill kinetics, and selectivity of de novo-designed antimicrobial peptides[J]. Antimicrob Agents Chemother, 2010, 54(5): 1693-1699.

    [15] 邓恒为, 郭伟良, 孙晓飞, 等. 响应面法优化丹参中抗无乳链球菌活性成分的提取工艺[J]. 渔业科学进展, 2014, 35(4): 132-140.
    [16] 逯家辉, 李国庆, 张华飞, 等. 八角茴香油提取工艺优化[J]. 农业工程学报, 2008, 24(6): 254-257.
    [17] 王智云, 孙玉刚, 王麟, 等. 乌梅的药理活性研究进展[J]. 实用临床医药杂志, 2015, 19(19): 200-202.
    [18]

    GAO G S, ZHANG Y Y, SHI Q M, et al. Isolation and identification of the pathogen causing skin ulcer disease in Cynoglossus semilaevis Günther and its sensitivity to Chinese herbal medicine[J]. Agr Sci Technol, 2015, 16(10): 2221-2224, 2276.

    [19] 贾春红, 李淑芳, 林红英, 等. 8株方斑东风螺病原菌对17种中草药敏感性测定[J]. 中兽医学杂志, 2012(6): 6-9.
    [20] 王玉娥, 邢晨光, 王国良. 5种海洋致病弧菌对34种中草药敏感性的测定[J]. 水产科学, 2008, 27(5): 221-225.
    [21]

    TRAMER J, FOWLER G G. Estimation of nisin in foods[J]. J Sci Food Agric, 1964, 15: 522-528.

    [22] 李焯新, 蔡小辉, 黄瑜, 等. 中草药与抗生素联用对罗非鱼源无乳链球菌的体外抑菌作用[J]. 广东海洋大学学报, 2016, 36(4): 45-49.
    [23]

    GUO W L, WANG W H, HU W T, et al. Antibacterial synergisms of Ji Xue Teng, Spatholobus suberectus, extract and selected antibiotics against Streptococcus agalactiae from nile tilapia, Oreochromis niloticus (L.), in vitro and in vivo[J]. J World Aquacult Soc, 2018, early view.

    [24]

    BLESSON D, SAJI C V, NIVYA R M, et al. Synergistic antibacterial activity of natural plant extracts and antibiotics against methicillin resistant Staphylococcus aureus (MRSA)[J]. World J Pharm Pharmaceu Sci, 2015, 4(3): 741-763.

    [25]

    RAND K H, HOUCK H J, BROWN P, et al. Reproducibility of the microdilution checkerboard method for antibiotic synergy[J]. Antimicrob Agents Chemother, 1993, 37(3): 613-615.

    [26]

    AIYEGORO O A, OKOH A I. Use of bioactive plant products in combination with standard antibiotics: implications in antimicrobial chemotherapy[J]. J Med Plants Res, 2009, 3(13): 1147-1152.

    [27]

    WHITE R L, BURGESS D S, MANDURU M, et al. Comparison of three different in vitro methods of detecting synergy: time-kill, checkerboard, and E test[J]. Antimicrob Agents Ch, 1996, 40(8): 1914-1918.

    [28] 姚远, 董庆利, 叶维, 等. 乳酸钠、茶多酚与壳聚糖协同抑制铜绿假单胞菌的效果[J]. 生物加工过程, 2014, 12(4): 60-65.
    [29] 张小琼, 侯晓军, 杨敏, 等. 乌梅的药理作用研究进展[J]. 中国药房, 2016, 27(25): 3567-3570.
    [30] 孙广龙, 胡立宏. 四环素类抗生素的研究进展[J]. 药学研究, 2017, 36(1): 1-5.
  • 期刊类型引用(4)

    1. 王永猛,柯森繁,林晨宇,张奔,杨国党,雷青松,邓晓川,石小涛. 红河(元江)流域的典型鱼类游泳能力探究及在过鱼设施流速设计中的应用. 湖泊科学. 2021(06): 1820-1831 . 百度学术
    2. 周艳波,陈丕茂,冯雪,袁华荣. 广东主要海洋经济物种增殖放流初期存活率探讨. 安徽农业科学. 2020(22): 103-106+140 . 百度学术
    3. 刘慧杰,王从锋,刘德富,陈明明,朱良康. 不同运动状态下鳙幼鱼的游泳特性研究. 南方水产科学. 2017(02): 85-92 . 本站查看
    4. 刘岩,孙典荣,耿倩,杨长平,赵静,段妍. 茜素红与钙黄绿素标记不同规格黑鲷幼鱼的比较研究. 南方水产科学. 2016(06): 17-24 . 本站查看

    其他类型引用(2)

推荐阅读
基于reca基因的qpcr与raa-lfd检测鳗败血假单胞菌方法的建立与应用
王一霖 et al., 南方水产科学, 2025
不同脱腥方法对薛氏海龙肽粉的脱腥效果比较
陈茂森 et al., 南方水产科学, 2025
Hctlr1通过myd88-nf-κb信号通路参与三角帆蚌抗菌免疫应答
路俊怡 et al., 南方水产科学, 2024
抗副溶血弧菌卵黄抗体制备及其与不同血清型菌株交叉反应研究
陈静妮 et al., 南方水产科学, 2024
4类抗生素对水华藻类生长抑制效应及其作用机制
水生态学杂志, 2025
没食子酸对溶藻弧菌的抑菌活性及机理研究
WANG Chunyuan et al., PROGRESS IN FISHERY SCIENCES, 2025
Antibiotic action and resistance: updated review of mechanisms, spread, influencing factors, and alternative approaches for combating resistance
Halawa, Esraa M., FRONTIERS IN PHARMACOLOGY, 2024
Antibiotic adjuvants: a versatile approach to combat antibiotic resistance
Dhanda, Geetika et al., ACS OMEGA, 2023
Curcumin-primed olfactory mucosa-derived mesenchymal stem cells mitigate cerebral ischemia/reperfusion injury-induced neuronal panoptosis by modulating microglial polarization
PHYTOMEDICINE
The efficacy and safety of ceftazidime/avibactam or polymyxin b based regimens for carbapenem-resistant pseudomonas aeruginosa infection: a multicenter real-world and propensity score-matched study
FRONTIERS IN PHARMACOLOGY, 2025
Powered by
图(6)  /  表(5)
计量
  • 文章访问数:  3900
  • HTML全文浏览量:  1811
  • PDF下载量:  29
  • 被引次数: 6
出版历程
  • 收稿日期:  2018-04-03
  • 修回日期:  2018-05-23
  • 网络出版日期:  2018-12-05
  • 刊出日期:  2018-12-04

目录

/

返回文章
返回