Residues and health risk assessment of pesticides in river crab by integrated rice field aquaculture in northeast China
-
摘要: 为全面掌握东北地区稻田养殖中华绒螯蟹 (Eriocheir sinensis) 的农药残留情况,利用气相色谱串联质谱法 (GC-MS/MS)和液相色谱串联质谱法 (HPLC-MS/MS)调查了东北三省主要稻-蟹产区中华绒螯蟹体内42种农药的残留水平,并采用食品安全指数法(IFS)评价了农药的潜在健康风险。在采集的56份样品中,除β-HCH、p, p′-DDE、乙氧氟草醚、丁草胺、乙草胺、莠去津等14种农药检出外,其余28种农药均未检出。其中,检出率最高的为β-HCH (89.3%)和p, p′-DDE (82.1%);检出农药含量最高的为乙氧氟草醚(256 μg·kg–1)和丁草胺(185 μg·kg–1)。健康风险评价结果表明,检出农药的IFS均远小于1,平均安全指数
$\overline {{\rm{IFS}}} $ 为0.000 7,调查的东北三省稻田养殖中华绒螯蟹农药残留水平在安全范围内。Abstract: In order to fully understand the pesticide residues of river crab (Eriocheir sinensis) cultured in rice fields in northeast China, a total of 42 pesticide residues were determined in E. sinensis obtained from major integrated rice-crab aquaculture field in Jilin, Liaoning and Heilongjiang Provinces in northeast China by gas chromatography/mass spectrometry and liquid chromatography/mass spectrometry. Index of food safety (IFS) method was used for health risk assessment. Fourteen pesticides, such as β-HCH, p, p′-DDE, oxyfluorfen, butachlor, acetochlor and atrazine were found in the samples. The other 28 pesticides were not detected. β-HCH (89.3%) and p, p′-DDE (82.1%) were the most frequently detected residues. The maximum residues were found in oxyfluorfen (256 μg·kg–1) and butachlor (185 μg·kg–1). The IFS value of detected pesticides were all less than 1 and the average$\overline {{\rm{IFS}}} $ was 0.000 7. The health risk of pesticide residues in river crab from rice field in northeast China is at safe level.-
Keywords:
- Eriocheir sinensis /
- pesticide /
- health risk assessment /
- rice field aquaculture /
- northeast China
-
黄鳝 (Monopteru albus),俗名鳝鱼,广泛分布于我国各湖泊、水库和稻田等淡水水域。其肉质鲜美,含有丰富的必需氨基酸和脂肪酸及其他特殊营养素,具有很高的药用和滋补功能,一直深受消费者青睐[1]。黄鳝是目前我国大力推广养殖的重要名特优水产品之一,2016年我国人工养殖黄鳝产量达到38.6万吨。从市场角度看,规格一致的鱼苗或成鱼有利于养殖品种的商品化,但在鱼类养殖过程中,总有部分鱼生长缓慢,这不仅浪费养殖空间,也导致饲料浪费,严重影响了养殖经济效益。黄鳝养殖在这方面尤为突出,即使是同一亲本所产、在相同环境中生长的黄鳝,这种生长差异依然存在且显著。影响鱼类生长的因素很多,如种质差异、营养水平、温度、密度、水质等[2],但目前对黄鳝生长差异产生的机制尚不清楚,亟待研究探讨。
近年来,转录组学被广泛应用于生物学研究,对于功能基因发掘、转录调控机制、分子标记开发和信号通路等各方面的研究具有重要作用[3]。目前,转录组学已广泛应用于鱼类发育[4]、进化[5]、免疫[6]和抗病机理[7]研究中。本文通过转录组测序发掘黄鳝生长差异基因及其调控通路,初步阐明造成黄鳝生长差异的基因调控机制,以期为促进黄鳝工业化养殖提供理论依据。
1. 材料与方法
1.1 实验材料
实验鳝苗取自江西农业大学水产基地,均为饲养在相同水箱中、同一亲本黄鳝当年产卵孵化的鳝苗;黄鳝养殖用的配合饲料大宗原料购买于南昌大佑农生物技术有限公司。养殖1年后,从同一水箱中取个体差异显著的健康黄鳝,个体较大的为实验组 (AEG),个体较小的为对照组 (ACG),具体数据见表1,取其肝脏液氮冷冻后放−80 ℃冰箱备用。
表 1 样品信息Table 1. Information of samples样品Sample 体质量Body mass/g 全长Total length/cm 实验组Treatment group AEG1 42.27 35.8 AEG2 44.10 36.5 AEG3 35.78 34.6 对照组Control group ACG1 6.30 19.8 ACG2 6.61 18.9 ACG3 6.12 20.2 1.2 实验方法
取50~100 mg肝脏组织,加入一定比例的TRIzol,在低温下迅速匀浆,室温放置5 min,使其充分裂解,经氯仿抽提、异丙醇沉淀、75%乙醇洗涤后,室温开盖晾约5 min,用适量RNase-free水溶解RNA后于−80 ℃保存备用。使用1%的琼脂糖凝胶电泳检测其完整性。
总RNA提取以后,使用美国纽英伦生物技术公司试剂盒 (#E7530) 进行cDNA建库。首先用带有Oligo (dT) 磁珠富集真核生物的mRNA加入fragmentation buffer将mRNA打断成短片段并用六碱基随机引物合成cDNA第一条链。然后加入缓冲液、DNA聚合酶Ⅰ、dNTP、RNase和缓冲溶液合成cDNA第二条链。使用快速PCR抽提试剂盒,尾端修复,纯化双链cDNA片段,并引入单碱基“A”使其与IIIumina测序接头链接。最后进行PCR扩增,通过琼脂糖凝胶电泳分离连接产物,PCR扩增富集目标片段。文库构建完成后,使用Agilent 2100 Bioanalyzer对文库进行检测以及使用ABI StepOnePlus Real-Time PCR System对文库浓度进行定量检测,合格后用IIIumina HiSeq TM 4000对cDNA文库进行测序。测序服务由北京博云华康基因科技有限公司提供。
1.3 数据分析与处理
转录组测序后原始数据Raw reads含有低质量的reads,经过筛选过滤得到高质量的Clean reads。使用HISAT程序将得到的Clean reads比对到参考基因组上。利用DEGseq差异分析软件包进行差异基因筛选,首先计算差异倍数 (Fold change,FC) log2值和P,只有同时符合log2绝对值大于2和P的绝对值小于0.001的基因才被确定为显著差异基因 (Differentially expressed gene, DEG),然后对差异基因进行KEGG通路和GO功能富集性分析。
1.4 荧光定量PCR验证
对于筛选到的7个与生长相关的差异表达基因进行qPCR验证。引物设计见表2,18 S作为内参基因。荧光定量PCR反应条件为95预变性90 s,95 ℃变性5 s,60 ℃退火15 s,72 ℃延伸20 s,共40个循环。每个样品重复3次,实验数据按照Livak的2−△△Ct方法处理。
表 2 荧光定量PCR引物信息Table 2. Information of primers used for qPCR基因Gene qPCR引物序列 (5'–3')Primer sequence of qPCR 退火温度Annealing temperature/℃ 片段大小Fragment size/bp col1α1 F:AGTTGTTTGCGGACCGAGAT 60.0 110 R:GCAATCTGGCATTTCCTCACA 59.2 nkx6.1 F:GGACAAAGATGGGAAACGAAA 56.7 96 R:GCCAGGTATTTGGTCTGTTCA 58.2 nnos F:CTATCAGTCTGGATGCCACAAC 58.8 115 R:CAGAGCCCAACAGAAACATTAG 57.3 plexina4 F:TGCTGAGAACCCTGAGTGGATA 60.6 159 R:TAGCATTTGCGGTTGTCTTCAT 58.9 pcgf1 F:CAGCCCTTACTCAACCTCAAA 57.9 167 R:GCATCTGGCACAGCATCTACG 61.7 igfbp1 F:CAGAGAGCCTTGGAAAAGATTG 57.3 171 R:CTTGCCGTTCCAGGAGTGT 59.9 h3.3 F:ATTTTGAGTTGCGGCGATTA 56.4 181 R:GTAACGATGGGGCTTCTTCAC 59.0 18S F:GTGGAGCGATTTGTCTGGTTA 57.8 162 R:CGGACATCTAAGGGCATCAC 57.7 2. 结果
2.1 测序结果
本实验共测6个样本,平均每个样本产出约41 000 000 Clean reads,约合6.0 Gb数据量 (表3)。用Q20 (单个碱基的测序错误率低于1%) 和Q30 (单个碱基的测序错误率低于0.1%) 对这些数据的质量进行检测,Q20 和Q30值分别为98.02%和94.75%以上,说明测序质量很好。将测序结果与参考基因组进行比对,匹配率在74.32%以上。将匹配到参考基因的Reads组装成基因,共得到19 149个基因。以长势差的ACG组为对照,使用RSEM计算基因与转录表达水平,分析发现差异表达基因有598个,其中有303个基因上调,295个下调。差异表达基因的火山图和统计图分别见图1-a和图1-b。
表 3 测序结果统计Table 3. Statistics of sequencing results样品Sample 过滤后ReadsFiltered Reads Q20/% Q30/% GC含量GC content/% 匹配率Matching ratio/% 对照组Control group ACG1 41201168 98.03 94.75 46.78 75.48 ACG2 41047704 98.04 94.77 46.61 75.48 ACG3 40926540 98.02 94.78 48.12 75.98 实验组Treatment group AEG1 41004324 98.09 94.96 46.87 74.32 AEG2 40984046 98.12 95.00 47.09 74.44 AEG3 40999366 98.07 94.88 47.33 75.21 2.2 差异表达基因的GO分类和KEGG通路富集分析
将598个差异表达基因进行GO分析 (图2),这些基因分属于生物过程、细胞组分和分子功能三大类下的42个分支。生物过程组中含有19个分支,其中单生物体过程、细胞过程和代谢过程占比最高分别为19.57%、19.23%和15.72%;细胞组分组中有15个分支,其中细胞、细胞部分和膜分占比最高,分别为11.87%、11.87%和10.87%;在分子功能分组中有8个分支,其中结合、催化活性和运输活性占比最高,分别为16.22%、13.38%和3.51%。
图 2 差异表达基因GO功能分类图1. 单生物体过程;2. 细胞过程;3. 代谢过程;4. 生物调节;5. 生物过程调节;6. 定位;7. 刺激应答;8. 发展过程;9. 多细胞生物体过程;10. 生物体细胞组成或起源;11. 信号传导;12. 正调节生物过程;13. 负调节生物过程;14;生长;15. 运动;16. 免疫系统过程;17. 行为;18多生物体过程;19. 节律过程;20. 细胞;21. 细胞部分;22. 膜;23. 膜部分;24. 细胞器;25. 复杂大分子;26. 细胞器部分;27. 细胞外区域;28. 细胞外区域部分;29. 膜封闭腔;30. 细胞连接;31. 细胞外模型;32. 超分子纤维;33. 突触;34. 突触部分;35. 结合;36. 催化活性;37. 运输活性;38. 分子功能调节;39. 信号传感活性;40. 结构分子活性;41. 分子传感活性;42. 核苷酸结合转录因子活性Figure 2. GO functional classification map of differentially expressed genes1. Single-organism process; 2. Cellular process; 3. Metabolic process; 4. Biological regulation; 5. Regulation of biological regulation; 6. Localization; 7. Response to stimulus; 8. Developmental process; 9. Multicellular organismal process; 10. Cell compent organization or biogenesis; 11. Signaling; 12. Positive regulation of biological process; 13. Negative regulation of biological process; 14. Gowth; 15. Locomotion; 16. Immune system process; 17. Behavior; 18. Multi-organism process; 19. Rhythmic process; 20. Cell; 21. Cell part; 22. Membrane; 23. Membrane part; 24. Organelle; 25. Macromolecular complex; 26. Organelle part; 27. Extracellular region; 28. Extracellular region part; 29. Membrane-enclosed lumen; 30. Cell junction; 31. Extracellular matrix; 32. Supramolecular fiber; 33. Synapse; 34. Synapse part; 35. Binding; 36. Catalytic activity; 37. Transporter activity; 38. Molecular function regulation; 39. Signal transducer activity; 40. Structural molecule activity; 41. Molecular transducer activity; 42. Nucleic acid binding transcription factor activity将差异表达基因序列与KEGG数据库中的数据进行BlastX比对注释,结果显示598个差异表达基因分布在262条KEGG通路中,其中显著富集的通路有38条 (P<0.05),在这38条通路中有11条代谢相关通路富集效果极显著 (P<0.01)。
2.3 生长相关的差异表达基因
GO功能注释分析发现,与生长相关的差异表达基因有7个,分别为Ⅰ型胶原α1 (collagen typeⅠalpha 1,col1α1)、转录因子nkx6.1 (NK6 homebox 1)、神经性一氧化氮合酶 (Neuronal nitric oxide synthase,nnos)、神经丛蛋白家族A4 (plexina4)、类胰岛素生长因子结合蛋白-1 (Insulin-like growth factors binding protein 1, igfbp1)、多梳环指蛋白1 (Polycomb group RING finger protein 1, pcgf1) 和组蛋白3.3 (histone 3.3,h3.3)。这7个基因中,除col1α1和nkx6.1基因显著下调外,其余5个基因明显上调。这7个基因分属不同的通路 (表4),这些通路分属于4种类型,其中col1α1、nkx6.1和h3.3基因所在通路属于人类疾病,nnos基因所在通路属于新陈代谢,plexina4基因所在通路属于环境信息加工,igfbp1和pcgf1基因所在通路属于细胞过程。这些通路中只有col1α1所在的利什曼病通路和nnos所在的精氨酸和脯氨酸代谢通路是显著富集的 (P<0.05),其他5个差异基因所在通路富集效果不显著 (P>0.05)。
表 4 生长相关差异表达基因Table 4. Growth-related differentially expressed genes基因名称Gene name 基因IDGene ID 差异倍数Fold change 所属通路Belonged pathway 通路IDPathway ID col1α1 109951101 −2.5 利什曼病 Ko05140 nkx6.1 109952563 −3.3 青少年成熟性糖尿病 Ko04950 nnos 109959109 4.0 精氨酸和脯氨酸代谢 Ko00330 plexina4 109959815 3.4 细胞黏附分子 Ko04514 igfbp1 109961253 2.3 p53信号通路 Ko04115 pcgf1 109972045 3.3 干细胞潜能调节通路 Ko04550 h3.3 109974907 2.2 癌症的转录失调 Ko05202 2.4 荧光定量PCR验证结果分析
荧光定量PCR结果表明 (图3),所选的7个差异表达基因与转录组测序结果表达趋势一致。col1α1和nkx6.1这两个基因表达量均为对照组高于实验组 (实验组为1,对照组分别为3.807和1.725),nnos、plexina4、igfbp1、pcgf1和h3.3这5个基因表达量则是实验组高于对照组 (实验组为1,对照组分别为0.497、0.511、0.012、0.872和0.168)。通过荧光定量PCR验证,表明转录组测序结果可靠。
3. 讨论
生长分化是鱼类生长过程中的普遍现象。有观点认为,摄食不足会导致生长分化的产生[8],但杨帆等[9]研究表明,饱食投喂且增加投喂频率并不能改善黄鳝的生长分化现象。为了解黄鳝生长分化的调节机制,本研究进行了转录组测序。本次测序共得到19 149个基因,其中差异表达基因有598个,303个基因上调,295个下调。对这些差异基因进行KEGG通路分析发现,富集的KEGG通路多数与代谢相关。本研究发现,差异表达基因显著富集的38条通路中有15条与代谢有关,其中与脂肪代谢相关的有8条。在前20条富集极显著的通路中,更是有11条与代谢相关,其中影响最显著的代谢通路为类固醇生物合成。
GO功能注释分析发现,与生长相关的差异表达基因有7个,分别为col1α1、nkx6.1、nnos、plexina4、igfbp1、pcgf1和h3.3。col1α1基因显著下调,说明在ACG组的黄鳝中col1α1表达水平显著高于AEG组。Ⅰ型胶原 (COL1) 是由α1和α2两条肽链组成的,col1α1基因的过度表达使α1和α2链的比例发生变化,当比例超过2∶1时会导致骨骼密度、骨骼结构和骨骼质量发生变化从而引起骨质疏松性骨折进而影响生物体正常发育[10]。转录因子nkx6.1基因最早在胰腺β细胞中发现,与胰腺的发育相关[11]。研究发现nkx6.1基因参与调控胰腺β细胞的二次分化,胰腺β细胞能够分泌胰岛素,nkx6.1基因的突变会导致胰腺β细胞无法形成,影响胰岛素的分泌。对鸡胚胎发育的研究发现,过量表达的nkx6.1基因在胚胎发育早期能够促进脊髓Olig2的表达,但在晚期反而会抑制Olig2的表达,这说明nkx6.1在不同时期功能会发生变化。本实验中,ACG组的nkx6.1表达量明显高于AEG组,说明ACG组黄鳝过量表达nkx6.1可能会抑制胰腺β细胞的二次分化,减少胰岛素的分泌,从而影响黄鳝的生长发育。nnos存在于神经元和神经纤维中,其主要的功能就是在细胞间传递信息,具有传递和调节的作用[12]。正常状态下nnos可以产生少量NO维持细胞的生理活动。NO参与多种生理活动调节,对于生长因子增殖、T细胞活化、神经发育和神经再生都有促进作用。除此之外,对美国红鱼 (Sciaenops ocellatus) 添加维生素C的实验表明,nnos基因可以像inos一样被诱导表达参与机体的免疫应答[13]。本实验中nnos表达差异倍数最大 (4倍),NO含量水平的降低会导致胰岛素抗体的出现,使胰岛素不能正常发挥作用,最终导致黄鳝生长发育受阻。plexina4是神经丛蛋白a家族 (a1—a4) 最晚被发现的一个,plexina4对于中枢神经和外周神经的修复和再生具有重要作用[14]。plexina4在脑信号蛋白3的信号传递中,起到重要的转导作用[15]。作为膜结合脑信号蛋白6A和6B的受体和信号转导因子,plexina4对于皮质脊髓束和海马组织中苔藓纤维的形成和发育至关重要[16]。有研究发现,在视觉神经和运动神经的发育信号通路中plexina4起到了指导作用,另外对于通路的维持和再生也具有重要作用[17]。本实验中,ACG组plexina4的表达量降低,有可能造成黄鳝神经系统发育不完全从而导致生长受阻。
类胰岛素生长因子结合蛋白 (Insulin-like growth factors binding protein, Igfbps) 负责保护Igf防止其降解并调节它的生物活性[18]。Igfbps家族目前已知含有6种,从Igfbp1至Igfbp6,对硬骨鱼类的研究发现,不同组织至少含有1种Igfbp而在鱼类血液中至少含有3种主要的Igfbps[19]。在鱼类胚胎发育的各个时期都能检测到igfbp1的表达,孵化后主要在肝脏中表达。无论是成鱼还是胚胎,低氧诱导都可以使igfbp1的表达量显著增加。Igfbp1的主要功能是运输类胰岛素生长因子1 (Igf1)。Igfbp1通过与Igf1结合,调控Igf1的生物学功能:例如,介导Igf与受体之间的亲和力;控制Igf1的运输与代谢;延长Igf1的半衰期;决定Igf1的细胞通透率;调节Igf1的作用位点等。除此之外,Igfbp1自身也具有其他不依赖Igf1的生物学功能,包括控制细胞增殖、抑制机体代谢、参与肿瘤抑制、诱导细胞凋亡和促进血糖升高等。相关研究还发现许多内分泌疾病 (甲亢、糖尿病和性腺发育障碍等) 与Igfbp1有着重要联系[20],虽然对其作用机制尚不了解,但研究发现类固醇激素 (胰岛素、促肾上腺激素和雌激素等) 对igfbp1的表达有调控作用。本实验中igfbp1在ACG组中表达量显著降低,这可能造成Igf1不能完全发挥其生物学功能,从而导致黄鳝发育受阻。Pcgf1是多梳蛋白家族的一种,属于多梳抑制复合体 (Polycomb repression complex, Pcr) Pcr1。Pcgf1在神经系统高度表达因此又称为神经系统多梳蛋白1 (Nervous system polycomb 1, Nspc1)。Pcgf1蛋白在哺乳动物中可以对细胞周期进行调控,对造血干细胞的增殖和分化具有重要作用[21]。Pcr1环指部分的亲水性表面具有E3泛素连接酶活性,它可以通过改变染色质的状态来抑制基因表达[22]。有研究表明pcgf1基因的敲除会使细胞增殖能力下降[23],本实验中ACG组的pcgf1表达量降低可能导致了造血干细胞的增殖下降,从而影响黄鳝的生长发育。组蛋白H3的变体H3.3是一种重要的母源因子,能在受精后替换精子中的鱼精蛋白,参与雄性原核的重编程[24]。母源H3.3会重新激活细胞核的多潜能基因oct4,敲除h3.3后关键的多潜能基因转录水平降低,体细胞核不能被完全重编程导致胚胎不能正常发育[25-26]。注入外源h3.3 mRNA可以弥补这种缺陷。h3.3被认为是转录活性的标志[27],h3.3能够促进基因的转录表达,维持基因组稳定,保证rDNA的转录,促进rDNA的表达,重编码供体细胞核使其成为具有全能性的胚胎[28]。本实验中,ACG组h3.3表达量的降低可能导致了一些关键生长基因 (例如igfbp1、nnos、plexina4和pcgf1等) 的转录表达降低,从而影响了黄鳝的生长发育。
本文通过对生长差异显著的黄鳝进行转录组测序分析,找到了7个与黄鳝生长相关的差异表达基因,这些基因与黄鳝的神经系统、代谢系统和内分泌系统等有密切关系。结合KEGG通路分析,发现col1α1所在的利什曼病通路和nnos所在的精氨酸和脯氨酸代谢通路富集显著,说明其对黄鳝生长具有重要影响,但具体调节机制还需要进一步研究。在7个生长相关的差异表达基因中h3.3与胚胎发育相关,它既能维持基因组稳定,又能保证DNA的正确转录,还能激活多潜能基因重新编程体细胞;由于h3.3具有调节基因转录表达的功能,所以这些差异表达基因的出现是否与h3.3基因 (ACG组) 的表达下调相关还需进一步研究。
-
图 2 空白样品与加标样品的色谱图对比
a. 空白基质样品GC-MS/MS色谱图;b. 基质加标样品GC-MS/MS色谱图;c. 空白基质样品LC-MS/MS色谱图;d. 基质加标样品LC-MS/MS色谱图;数字代表的农药组分见表1~表2
Figure 2. Representative chromatograms of control and spiked samples
a. GC-MS/MS chromatogram of blank sample; b. GC-MS/MS chromatogram of spiked sample; c. LC-MS/MS chromatogram of blank sample; d. LC-MS/MS chromatogram of spiked sample; pesticides represented by numbers are shown in Tab.1–Tab.2.
表 1 GC-MS/MS条件下农药的保留时间、监测离子对、碰撞电压、线性范围、线性方程、相关系数、检出限和定量限
Table 1 Retention time, monitoring ion pair, collision energy, linear range, linear equation, correlation coefficient, limits of detection (LOD) and limit of quantitation (LOQ) of pesticides for GC-MS/MS
组分编号
No.农药组分
pesticide保留时间/min
retention time监测离子对 (m/z)
monitoring ion-pair碰撞能量/eV
collision energy线性范围/μg·L–1
linear range线性方程
linear equation相关系数
correlation coefficient检出限/μg·kg–1
LOD定量限/μg·kg–1
LOQ1 α-六六六 α-HCH 10.287 216.9>181.0*,218.9>183.0 5,5 0.1~200 y=729.872 545x+558.440 737 0.999 12 0.05 0.2 2 β-六六六 β-HCH 10.799 216.9>181.0*,181.0>145.0 5,15 0.1~200 y=290.473 202x+92.752 499 0.999 86 0.05 0.2 3 γ-六六六 γ-HCH 11.026 216.9>181.0*,181.0>145.0 5,15 0.1~200 y=536.311 817x+95.210 411 0.999 85 0.05 0.2 4 δ-六六六 δ-HCH 11.544 216.9>181.0*,181.0>145.0 5,15 0.1~200 y=228.313 291x+72.483 185 0.999 45 0.05 0.2 5 嗪草酮 metribuzin 12.421 184.9>154.9*,174.9>111.0 15,10 0.5~1 000 y=345.219 226x−168.658 133 0.999 91 0.25 1.0 6 2, 4-滴丁酯 2, 4-D butyl ester 12.467 198.0>82.0*,198.0>55.0 15,30 0.5~1 000 y=167.522 180x−37.266 189 0.999 89 0.25 1.0 7 p, p′-滴滴伊 p, p′-DDE 17.060 246.0>176.2*,248.0>176.2 30,30 0.1~200 y=1 251.203 913x+250.470 954 0.999 79 0.05 0.2 8 噁草酮 oxadiazon 17.276 174.9>112.0*,174.9>76.0* 15,35 0.1~200 y=561.289 759x−129.333 269 0.999 97 0.05 0.2 9 乙氧氟草醚 oxyfluorfen 17.365 252.0>196.0*,252.0>146.0 20,30 2.0~1 000 y=24.575 104x−9.844 996 0.999 70 1.0 4.0 10 p, p′-滴滴滴 p, p′-DDD 18.680 235.0>165.2*,237.0>165.2 20,20 0.1~200 y=3 571.806 202x−879.978 680 0.999 82 0.05 0.2 11 o, p′-滴滴涕 o, p′-DDT 18.799 235.0>165.2*,237.0>165.2 20,20 0.1~200 y=2 408.525 425x−798.203 004 0.999 88 0.05 0.2 12 p, p′-滴滴涕 p, p′-DDT 19.633 235.0>165.2*,237.0>165.2 20,20 0.1~200 y=1 269.453 742x−349.635 918 0.999 86 0.05 0.2 13 氯氰菊酯-1 cypermethrin 1 23.549 163.0>127.0*,163.0>91.0 5,10 10~2 000 y=337.204 714x+159.832 396 0.997 41 5.0 20 14 氯氰菊酯-2 cypermethrin 2 23.712 163.0>127.0*,163.0>91.0 5,10 10~2 000 y=280.053 277x−57.967 540 0.998 10 5.0 20 15 氯氰菊酯-3 cypermethrin 3 23.766 163.0>127.0*,163.0>91.0 5,10 10~2 000 y=220.206 528x−75.093 013 0.997 65 5.0 20 16 氯氰菊酯-4 cypermethrin 4 23.854 163.0>127.0*,163.0>91.0 5,10 10~2 000 y=211.308 526x+69.956 598 0.997 66 5.0 20 注:*. 定量离子 Note: *. ions for quantitation 表 2 LC-MS/MS条件下农药的保留时间、监测离子对、碰撞电压、线性范围、线性方程、相关系数、检出限和定量限
Table 2 Retention time, monitoring ion pair, collision energy, linear range, linear equation, correlation coefficient, limits of detection (LOD) and limit of quantitation (LOQ) of pesticides for LC-MS/MS
组分编号
No.农药组分
pesticide保留时间/min
retention time监测离子对 (m/z)
monitoring ion-pair碰撞能量/eV
collision energy线性范围/μg·L–1
linear range线性方程
linear equation相关系数
correlation coefficient检出限/μg·kg–1
LOD定量限/μg·kg–1
LOQ1 氧化乐果 folimat 1.03 216.1,132.1*,174.1 22,15/17,20 0.1~200 y=83 195.6x+110 381.6 0.995 69 0.05 0.2 2 涕灭威亚砜 aldicarb-sulfoxide 1.31 229.1,109.1*,166.1 16,12/11,20 0.1~200 y=75 673.6x+108 194.7 0.997 96 0.05 0.2 3 敌百虫 trichlorfon 3.09 257.0,109.1*,127.1 18,18/20,19 0.1~200 y=89 156.4x+118 065.4 0.998 76 0.05 0.2 4 乐果 rogor 3.27 230.1,125.0*,171.0 20,18/15,23 0.1~200 y=74 494x+92 859.2 0.996 40 0.05 0.2 5 涕灭威 aldicarb 3.57 213.1,89.1*,116.1 13,20/10,18 0.1~200 y=72 104.9x+105 986 0.999 18 0.05 0.2 6 敌敌畏 dichlorvos 3.81 221.0,109.1*,127.1 19,20/20,16 0.1~200 y=80 974.1x+95 277.4 0.996 91 0.05 0.2 7 甲硫威 methiocarb 3.92 226.1,121.1*,169.1 19,20/9,13 0.1~200 y=89 101.7x+112 329.5 0.998 61 0.05 0.2 8 呋喃丹 carbofuran 4.05 222.1,123.1*,165.1 20,20/13,16 0.1~200 y=81 049x+96 786.9 0.995 22 0.05 0.2 9 莠去津 atrazine 4.30 216.1,174.1*,132.1 17,22/20,18 0.1~200 y=75 293.8x+112 950.4 0.995 25 0.05 0.2 10 苄嘧磺隆 bensulfuron methyl 4.76 411.1,91.0*,149.1 54,18/18,26 0.1~200 y=74 647.5x+103 267.2 0.997 95 0.05 0.2 11 吡嘧磺隆 pyrazosulfuron 4.77 437.2,178.1*,282.0 20,15/14,25 10~2 000 y=4 535.61x+56 619.7 0.995 12 5.0 20 12 敌稗 propanil 4.90 218.1,127.0*,162.0 23,20/14,20 0.1~200 y=76 140.6x+114 025.8 0.995 20 0.05 0.2 13 水胺硫磷 isocarbophos 4.98 312.0,236.1*,270.1 15,20/14,16 0.1~200 y=82 520.2x+91 781.4 0.996 29 0.05 0.2 14 禾草敌 molinate 5.19 188.2,83.1*,126.1 17,21/12,16 0.1~200 y=89 924.5x+109 990 0.995 88 0.05 0.2 15 苯噻酰草胺 mefenacet 5.21 299.1,120.1*,148.1 26,20/15,18 0.1~200 y=83 823.2x+119 017.1 0.995 35 0.05 0.2 16 马拉硫磷 malathion 5.41 331.0,99.0,127.0 21,20/12,18 0.1~200 y=71 230.2x+101 322.6 0.995 91 0.05 0.2 17 三唑磷 triazophos 5.42 314.1,119.2*,162.2 30,17/19,26 0.1~200 y=72 984.7x+96 797.4 0.996 09 0.05 0.2 18 乙草胺 acetochlor 5.45 270.1,224.1*,148.1 10,18/19,20 0.1~200 y=80 300.4x+97 904.7 0.995 11 0.05 0.2 19 对硫磷 parathion 5.66 292.1,234.1*,264.1 14,23/10,16 0.1~200 y=77 804.6x+105 553 0.998 24 0.05 0.2 20 甲基对硫磷 parathion-methyl 5.84 259.1,89.1*,182.0 20,20/15,15 0.1~200 y=86 841.3x+97 381.3 0.998 09 0.05 0.2 21 伏杀硫磷 phosalone 5.84 368.1,182.0*,322.0 18,19/9,15 0.1~200 y=77 128.6x+119 572.7 0.999 78 0.05 0.2 22 丙溴磷 profenophos 5.95 374.0,304.7*,346.9 20,16/13,20 0.1~200 y=70 773.4x+111 438.7 0.998 25 0.05 0.2 23 丙草胺 pretilachlor 5.95 312.1,252.2*,176.2 17,33/23,15 0.1~200 y=89 659.5x+96 842.2 0.995 38 0.05 0.2 24 丁草胺 butachlor 6.19 312.3,238.1*,162.1 11,23/15,18 0.1~200 y=78 042.7x+100 284.6 0.997 53 0.05 0.2 25 毒死蜱 chlorpyrifos 6.20 350.0,97.0*,197.9 30,16/18,15 0.1~200 y=85 329.2x+119 633.6 0.995 60 0.05 0.2 26 阿维菌素 avermectin 6.42 895.5,449.4*,327.3 44,25/50,29 0.5~1 000 y=40 409.4x+91 893.2 0.996 65 0.25 1.0 注:*. 定量离子 Note: *. ions for quantitation 表 3 中华绒螯蟹中农药残留结果
Table 3 Residue concentration of pesticides in river crab
农药组分
pesticide范围*/μg·kg–1
range of concentration平均值±标准差/μg·kg–1
$ \overline X $±SD检出率/%
detection rate农药组分
pesticide范围*/μg·kg–1
range of concentration平均值±标准差/μg·kg–1
$ \overline X $±SD检出率/%
detection rateα-六六六 α-HCH ND~1.25 0.27±0.32 78.6 氧化乐果 folimat ND ND 0 β-六六六 β-HCH ND~18.7 3.19±4.60 89.3 涕灭威亚砜 aldicarb-sulfoxide ND ND 0 γ-六六六 γ-HCH ND~0.16 0.04±0.05 35.7 敌百虫 trichlorfon ND ND 0 δ-六六六 δ-HCH ND~0.93 0.16±0.26 42.9 乐果 rogor ND ND 0 嗪草酮 metribuzin ND~2.96 0.55±0.76 35.7 涕灭威 aldicarb ND ND 0 2, 4-滴丁酯 2,4-D butyl ester ND ND 0 敌敌畏 dichlorvos ND ND 0 p, p′-滴滴伊 p, p′-DDE ND~6.45 1.35±1.81 82.1 甲硫威 methiocarb ND ND 0 噁草酮 oxadiazon ND~0.72 0.16±0.24 25.0 呋喃丹 carbofuran ND ND 0 乙氧氟草醚 oxyfluorfen ND~256 14.4±48.9 28.6 苄嘧磺隆 bensulfuron methyl ND ND 0 p, p′-滴滴滴 p, p′-DDD ND~1.57 0.35±0.41 71.4 吡嘧磺隆 pyrazosulfuron ND ND 0 o, p′-滴滴涕 o, p′-DDT ND ND 0 敌稗 propanil ND ND 0 p, p′-滴滴涕 p, p′-DDT ND~1.16 0.26±0.35 42.9 水胺硫磷 isocarbophos ND ND 0 氯氰菊酯-1 cypermethrin 1 ND ND 0 禾草敌 molinate ND ND 0 氯氰菊酯-2 cypermethrin 2 ND ND 0 马拉硫磷 malathion ND ND 0 氯氰菊酯-3 cypermethrin 3 ND ND 0 三唑磷 triazophos ND ND 0 氯氰菊酯-4 cypermethrin 4 ND ND 0 对硫磷 parathion ND ND 0 莠去津 atrazine ND~1.32 0.32±0.40 46.4 甲基对硫磷 parathion-methyl ND ND 0 乙草胺 acetochlor ND~3.46 0.78±1.19 39.3 伏杀硫磷 phosalone ND ND 0 丙草胺 pretilachlor ND ND 0 丙溴磷 profenophos ND ND 0 丁草胺 butachlor ND~185 9.81±34.1 53.6 毒死蜱 chlorpyrifos ND ND 0 苯噻酰草胺 mefenacet ND~0.07 0.03±0.01 10.7 阿维菌素 avermectin ND ND 0 注:*. 湿质量;ND. 未检出 Note: *. wet mass; ND. not detected 表 4 中华绒螯蟹中农药残留风险评价
Table 4 Risk assessment of pesticides in river crab
农药
pesticide检出最大值/μg·kg–1
maximum concentration每日允许摄入量/mg·kg–1
ADI食品安全指数
IFS水产品中限量值/μg·kg–1
maximum residue limits超标率/%
over-standard rate六六六 HCHs 20.0 0.005 0.001 6 100① 0 滴滴涕 DDTs 7.32 0.01 0.000 3 500① 0 嗪草酮 metribuzin 2.96 0.013 0.000 1 10② 0 噁草酮 oxadiazon 0.72 0.003 6 0.000 1 10② 0 乙氧氟草醚 oxyfluorfen 256 0.03 0.003 4 10② 17.9 莠去津 atrazine 1.32 0.02 0.000 0 10② 0 乙草胺 acetochlor 3.46 0.02 0.000 1 10② 0 丁草胺 butachlor 185 0.10 0.000 7 10② 14.3 苯噻酰草胺 mefenacet 0.07 0.007 0.000 0 10② 0 注:①. 限量依据GB 2763—2016《食品安全国家标准 食品中农药最大残留限量》;②. 限量参照日本肯定列表制度[26] Note: ①. The maximum residue limits were according to the GB 2763—2016 National Food Safety Standard: maximum residue limits for pesticides in food; ②. The maximum residue limits from Japanese Positive List System were used. -
[1] 肖放. 新形势下稻渔综合种养模式的探索与实践[J]. 中国渔业经济, 2017, 35(3): 4-8. [2] 张显良. 大力发展稻渔综合种养助推渔业转方式调结构[J]. 中国水产, 2017(5): 3-5. [3] 刘巧荣, 黄磊, 黎玉林, 等. 稻田养殖水产品农残安全性调查与分析[J]. 中国渔业质量与标准, 2013, 3(3): 8-13. [4] BERG H. Pesticide use in rice and rice-fish farms in the Mekong Delta, Vietnam[J]. Crop Prot, 2001, 20(10): 897-905.
[5] 王常安, 徐奇友, 闫有利, 等. 我国东北地区稻田养殖的模式概况[J]. 水产学杂志, 2017, 30(3): 57-60. [6] 乔丹, 刘小静, 张华威, 等. 山东沿海贝类中除草剂污染特征及风险评价[J]. 中国渔业质量与标准, 2017, 7(3): 22-29. [7] 李聪, 张艺兵, 李朝伟, 等. 暴露评估在食品安全状态评价中的应用[J]. 检验检疫科学, 2002, 12(1): 11-12, 7. [8] 国家卫生和计划生育委员会疾病预防控制局. 中国居民营养与慢性病状况报告[M]. 北京: 人民卫生出版社, 2015: 13. [9] 覃东立, 高磊, 黄晓丽, 等. 水体与底泥中有机氯和除草剂农药残留的气相色谱串联质谱同步测定方法[J]. 环境化学, 2017, 36(11): 2366-2374. [10] 高磊, 覃东立, 吴松, 等. 用液相色谱串联质谱法测定渔业水样中6种农药的含量[J]. 水产学杂志, 2017, 30(4): 44-48. [11] 于志勇, 金芬, 孙景芳, 等. 北京市场常见淡水食用鱼体内农药残留水平调查及健康风险评价[J]. 环境科学, 2013, 34(1): 251-256. [12] 张祖麟, 洪华生, 陈伟琪, 等. 闽江口水、间隙水和沉积物中有机氯农药的含量[J]. 环境科学, 2003, 24(1): 117-120. [13] DANNENBERGER D. Chlorinated microcontaminants in surface sediments of the Baltic Sea: investigations in the Belt Sea, the Arkona Sea and the Pomeranian Bight[J]. Mar Pollut Bull, 1996, 32(11): 772-781.
[14] 余柳青, 韩逢春, 玄松南, 等. 东北水稻生产与杂草防除[J]. 杂草科学, 2009(4): 7-10. [15] 马殿民, 徐静. 240克/升乙氧氟草醚乳油防除水稻田杂草药效试验[J]. 北方水稻, 2017, 47(3): 33-34, 37. [16] 陈志石, 李贵, 吴竞仑. 玉米田化学除草剂的发展及其在我国的应用[J]. 杂草科学, 2008(2): 1-4. [17] 张喜成, 刘辉. 不同除草剂对大豆田杂草的防治效果研究[J]. 北京农业, 2008(9): 27-28. [18] GRAYMORE M, STAGNITTI F, ALLINSON G. Impacts of atrazine in aquatic ecosystems[J]. Environ Int, 2001, 26(7/8): 483-495.
[19] 杨阳, 刘霞, 毛禄刚, 等. 食品中莠去津残留检测方法的研究进展[J]. 食品安全质量检测学报, 2014(2): 316-322. [20] KOLPIN D W, KALKHOFF S J. Atrazine degradation in a small stream in Iowa[J]. Environ Sci Technol, 1999, 27(1): 134-139.
[21] ACCINELLI C, DINELLI G, VICARI A, et al. Atrazine and metolachlor degradation in subsoils[J]. Biol Fert Soils, 2001, 33(6): 495-500.
[22] 乔丹, 刘小静, 韩典峰, 等. 气相色谱-质谱法测定动物源性水产品中16种除草剂[J]. 渔业科学进展, 2017, 38(4): 172-179. [23] 陈家长, 孟顺龙, 胡庚东, 等. 鲫鱼对除草剂阿特拉津的生物富集效应研究[J]. 农业环境科学学报, 2009, 28(6): 1313-1318. [24] 徐佳艳, 彭自然, 和庆, 等. 长三角地区池塘养殖水产品体内农药类污染与食用风险评价[J]. 生态毒理学报, 2017, 12(3): 485-495. [25] JIN F, WANG J, SHAO H, et al. Pesticide use and residue control in China[J]. J Pestic Sci, 2010, 35(2): 138-142.
[26] 吴晓丰, 沈毅诚, 孙蓓玲. 日本“肯定列表制度”——我国出口水产品面临的严峻挑战[J]. 中国动物检疫, 2006, 23(6): 49-50. -
期刊类型引用(2)
1. 林彬彬,袁泉,田志新,潘显斌,周文宗,徐震. 基于SSA- LSTM模型的黄鳝池溶氧预测研究. 渔业现代化. 2023(01): 71-79 . 百度学术
2. 曹晓莉,李昭林,胡毅. 低鱼粉饲料中添加牛磺酸对黄鳝生长、消化率及肠道酶活性的影响. 南方水产科学. 2021(05): 64-70 . 本站查看
其他类型引用(2)