Residues and health risk assessment of pesticides in river crab by integrated rice field aquaculture in northeast China
-
摘要: 为全面掌握东北地区稻田养殖中华绒螯蟹 (Eriocheir sinensis) 的农药残留情况,利用气相色谱串联质谱法 (GC-MS/MS)和液相色谱串联质谱法 (HPLC-MS/MS)调查了东北三省主要稻-蟹产区中华绒螯蟹体内42种农药的残留水平,并采用食品安全指数法(IFS)评价了农药的潜在健康风险。在采集的56份样品中,除β-HCH、p, p′-DDE、乙氧氟草醚、丁草胺、乙草胺、莠去津等14种农药检出外,其余28种农药均未检出。其中,检出率最高的为β-HCH (89.3%)和p, p′-DDE (82.1%);检出农药含量最高的为乙氧氟草醚(256 μg·kg–1)和丁草胺(185 μg·kg–1)。健康风险评价结果表明,检出农药的IFS均远小于1,平均安全指数
$\overline {{\rm{IFS}}} $ 为0.000 7,调查的东北三省稻田养殖中华绒螯蟹农药残留水平在安全范围内。Abstract: In order to fully understand the pesticide residues of river crab (Eriocheir sinensis) cultured in rice fields in northeast China, a total of 42 pesticide residues were determined in E. sinensis obtained from major integrated rice-crab aquaculture field in Jilin, Liaoning and Heilongjiang Provinces in northeast China by gas chromatography/mass spectrometry and liquid chromatography/mass spectrometry. Index of food safety (IFS) method was used for health risk assessment. Fourteen pesticides, such as β-HCH, p, p′-DDE, oxyfluorfen, butachlor, acetochlor and atrazine were found in the samples. The other 28 pesticides were not detected. β-HCH (89.3%) and p, p′-DDE (82.1%) were the most frequently detected residues. The maximum residues were found in oxyfluorfen (256 μg·kg–1) and butachlor (185 μg·kg–1). The IFS value of detected pesticides were all less than 1 and the average$\overline {{\rm{IFS}}} $ was 0.000 7. The health risk of pesticide residues in river crab from rice field in northeast China is at safe level.-
Keywords:
- Eriocheir sinensis /
- pesticide /
- health risk assessment /
- rice field aquaculture /
- northeast China
-
止血敷料常用于伤口的基础治疗,以达到快速止血的目的。然而传统的止血敷料存在很多问题,例如材料来源单一、止血时间较长、易粘连伤口、体内降解性较差、力学性能较差等,已不能满足伤者们的紧急医疗需求[1]。因此,针对传统医用敷料的局限性,开发一种具有良好机械性能、保水性能和止血性能的新型可吸收医用敷料,成为目前生物医学材料领域研究的热点和难点之一[2]。目前,常用的止血材料包含以下几种:1) 沸石类敷料,具有多孔结构,能够迅速吸收血液中的水分促进凝血,但容易引发炎症反应;2) 氧化纤维素类敷料,通过羧基与血红蛋白中的铁离子形成凝胶状物质进行止血,但在过程中产生的酸性环境会引起神经损伤;3) 明胶、胶原和多糖类敷料,生物相容性较高,具有较高的止血活性,是目前研究的热点,但单独使用时存在机械性能较差、易脱落等缺点。因此,本研究考虑将不同的天然高分子材料进行共混交联,改善单一材料的局限性,并发挥其在止血性能中的复配协同作用[3]。
明胶作为一种可吸收的天然生物材料,因具有生物相容性、生物降解性、低免疫原性而受到广泛关注[4]。明胶具有良好的止血活性,能够吸收大量血液,并能激活血小板的附着和凝血因子释放,封闭创面伤口实现快速止血[5]。目前,牛或猪来源的明胶止血海绵已应用于外科手术之中[6]。太平洋鳕 (Gadus macrocephalus) 是世界上重要的经济鱼类,从鳕鱼皮副产物中提取明胶可以避免陆地源疾病和宗教的影响,避免资源浪费和环境污染。但纯明胶海绵存在机械性能较差、易破损、难止住大伤口出血等缺点,所以要获得高性能的明胶止血产品,需将其与其他类型的止血材料复配进行改性[7-9]。褐藻来源的海藻酸钠是一种由β-1,4-d-甘露糖醛酸和α-1,4-d-古洛糖醛酸构成的天然线性共聚物[10],具有生物降解性好、生物相容性高和易于进行化学改性的优点,且具有止血活性以及易于形成凝胶的性质,可以作为明胶复配的良好选择[11]。已研究开发出明胶海藻酸钠水凝胶支架用于骨组织缺损修复[12]和细胞迁移[13],但对其复合材料的止血效果尚未探究。
本研究将鳕鱼皮源明胶与海藻酸钠进行共混并交联,制备出一种具有良好机械性能和止血活性的可吸收型复合止血敷料。通过测定该复合止血敷料的力学性能、结构特征等指标从而确定其制备的最佳工艺条件,并评价了该敷料的止血性能、生物相容性,初步探究了其止血机制,为新型止血医用材料的开发提供重要参考及理论依据。
1. 材料与方法
1.1 材料
太平洋鳕冷冻鱼皮由青岛浩源有限公司提供;戊二醛和十二烷基硫酸钠 (SDS) 购自Sigma有限公司;其他试剂均为分析纯,购自国药化学试剂有限公司。
市售鳕鱼皮明胶购自青岛东易科技有限公司;市售明胶海绵购自江西祥恩医疗科技发展有限公司;活化部分凝血酶时间 (Activated partial thromboplastin time, APTT)、凝血酶原时间 (Prothrombin time, PT) 和凝血酶时间 (Thrombin time, TT) 检测试剂盒,血栓烷素B2 (TXB2)、血小板第四因子 (PF4) 和P-选择素检测试剂盒购自南京建成生物工程研究所;Wistar大鼠 (210±10) g购自山东鲁抗医学质量检验中心实验动物中心。
1.2 鳕鱼皮明胶的制备
太平洋鳕鱼皮明胶的制备参考Hou等[14]的方法。解冻清洗后的小块鳕鱼皮经0.1 mol·L−1的氢氧化钠 (NaOH) 溶液 (质量体积比1∶25) 和0.1 mol·L−1的盐酸 (HCl) 溶液 (质量体积比1∶25) 浸泡处理后,冲洗至中性。将充分溶胀的鱼皮放入锥形瓶中,在55 ℃的条件下水浴摇床振荡提取4 h。提取液经过滤、旋转蒸发后冻干得到鳕鱼皮明胶。
1.3 聚丙烯酰胺凝胶电泳 (SDS-PAGE)
采用Laemmli[15]的方法配置7.5%分离胶和5%浓缩胶,电泳采用直流恒压电源,电压100 V,跑至距离胶边缘约1 cm处。将胶置于考马斯亮蓝R-250中染色10~15 min,随后用脱色液脱色过夜。
1.4 医用复合止血海绵的制备
将1、5、10、15、20 mg·mL−1的明胶溶液按体积比15∶8与海藻酸钠溶液混合,在混合溶液中加入戊二醛溶液作为交联剂,于4 ℃静置24 h进行交联。真空脱气15~30 min后,溶液倒入不锈钢平板中,于−40 ℃下预冻12 h,冷冻干燥后得到鳕鱼皮明胶复合止血敷料。
1.5 理化特征
1.5.1 吸水性
将敷料剪成1.0 cm3的立方块,准确称量记为w0。室温条件下,浸没于蒸馏水中充分吸水,随后用镊子将其轻轻提出水面,放置在滤网中除去表面多余的水,再次精确称量记为w1。3次测量,取平均值。吸水倍数的计算公式为[16]:
$$ \mathrm{吸}\mathrm{水}\mathrm{倍}\mathrm{数}=\frac{{{w}}_{1}-{{w}}_{0}}{{{w}}_{0}} $$ (1) 式中:w0为海绵干质量 (g);w1为海绵湿质量 (g)。
1.5.2 持水力
在测定吸水率的基础上,将膨胀状态下的海绵进行离心。离心后海绵的质量为w2。持水力计算公式为[17]:
$$ \mathrm{持}\mathrm{水}\mathrm{力}=\frac{{{w}}_{2}-{{w}}_{0}}{{{w}}_{1}-{{w}}_{0}}\times 100{\text{%}} $$ (2) 式中:w0为海绵的干质量(g);w1为海绵的湿质量(g);w2为排水后海绵的质量 (g)。
1.5.3 交联度
取敷料3~5 mg加入1 mL 碳酸氢钠 (NaHCO3) 溶液和1 mL 三硝基苯磺酸 (TNBS) 溶液 (5 mg·mL−1),40 ℃反应2 h。随后加入3 mL 6 mol·L−1 的HCl溶液,60 ℃反应90 min。溶液经去离子水稀释至5 mL,测定其在345 nm处的吸光值。吸光值与游离氨基数存在以下关系[18]:
$$ \left[{{\rm{NH}}}_{2}\right]=\frac{A\times V}{\epsilon \times l\times m} $$ (3) 式中:[NH2]为赖氨酸侧链ε-氨基含量;A为吸光度;V为溶液体积(mL);ε=14.600;l为路径长度 (cm);m为样品的质量 (mg)。
根据以下公式计算交联度 (%):
$$ \mathrm{交}\mathrm{联}\mathrm{度}=\frac{{\left[{{\rm{NH}}}_{2}\right]}_{{\rm{n}}}-{\left[{{\rm{NH}}}_{2}\right]}_{{\rm{m}}}}{{\left[{{\rm{NH}}}_{2}\right]}_{{\rm{n}}}}\times 100{\text{%}} $$ (4) 式中:[NH2]为游离氨基质量摩尔浓度 (mol·g−1),下标m和n分别表示交联和无交联样品。
1.5.4 机械试验
将制备好的敷料剪成适当大小,两端固定在拉力机上,初始距离为15 mm,测试速度为60 mm·s−1,力度为300 N[19]。每组样品平行测试9次。
抗张强度 (MPa)的计算公式为:
$$ \mathrm{抗}\mathrm{张}\mathrm{强}\mathrm{度}=\frac{{F}_{\max}}{S} $$ (5) 式中:Fmax为样品断裂瞬间的最大张力 (N);S为样品的横截面积 (mm2)。
断裂伸长率的计算公式为:
$$ \mathrm{断}\mathrm{裂}\mathrm{伸}\mathrm{长}\mathrm{率}\hspace{0.25em}=\frac{\Delta L}{L}\times 100{\text{%}} $$ (6) 式中:ΔL为样品断裂时延伸的位移 (mm);L为标距 (mm)。
1.6 体内止血评价
1.6.1 股动脉模型
大鼠麻醉后,暴露其右侧股动脉并于相同位置处切开,然后迅速将复合止血敷料覆盖在出血部位,施加连续压力,每15 s观察1次。以无菌纱布和市售明胶海绵作为对照,分别记录止血时间。
1.6.2 肝损伤模型
麻醉大鼠后,打开腹腔,暴露出肝脏中叶,从肝脏尖端1 cm处进行切割,制备肝脏出血模型。其余操作同上,分别记录止血时间。
1.6.3 尾部模型
大鼠的尾部用75%乙醇消毒,在尾部的1/3处拉直并切割。其余操作同上,分别记录止血时间。
1.7 APTT、PT、TT分析和TXB2、PF4、P-选择素检测
APTT、PT、TT分析分别按照相应检测试剂盒的说明书测定。血小板活化因子检测按照TXB2、PF4和P-选择素检测试剂盒的说明书测定。
1.8 生物相容性评价
参考GB/T 16886.11—2011《医疗器械生物学评价 第11部分:全身毒性试验》进行全身急性毒性试验;参考GB/T 16886.10—2017《医疗器械生物学评价 第10部分:刺激与皮肤致敏试验》进行刺激性试验;参考GB/T 16886.4—2016《医疗器械生物学评价 第4部分:与血液相互作用试验选择》进行溶血试验。
1.9 统计分析
数据采用单因素方差分析 (One-way ANOVA) 进行处理,并采用独立样本t检验进行分析。数值数据用“平均值±标准差(
$\overline { X}\pm { \rm {SD}} $ )”表示,P<0.05表示差异有统计学意义。2. 结果与分析
2.1 SDS-PAGE图谱分析
采用SDS-PAGE对自提鳕鱼皮明胶样品和市售明胶的亚基成分进行了分析。自提鳕鱼皮明胶由3条α链 (α1,α2和α3) 和1条β链构成,与斑点叉尾鮰 (Ictalurus punctatus) 和胡鲶 (Clarias gariepinus) 皮中提取的明胶结构类似[20-21],具有典型的Ⅰ型胶原蛋白电泳条带特征 (图1) 。α链分子量在100~135 kD,由于α1和α3分子量十分接近,所以在SDS-PAGE凝胶上形成一个难以区分的条带。自提鳕鱼皮明胶β链的分子量约为245 kD,但在市售明胶的电泳图谱中没有观察到清晰的条带。根据SDS-PAGE结果推断出鳕鱼皮明胶是由Ⅰ型胶原蛋白变性得到的,与市售明胶对比,自提鳕鱼皮明胶样品条带清晰,几乎没有降解,可以作为医用止血敷料的主要材料。
2.2 不同明胶浓度对止血敷料理化表征的影响
不同明胶浓度对复合止血敷料理化性能的影响见表1。随着明胶浓度的增加,复合敷料的抗张强度从 (0.010 0±0.003 7) MPa提高至 (0.085 9±0.003 6) MPa,断裂伸长率从 (7.54±0.37)%下降到 (1.36±0.30)%。明胶质量浓度超过10 mg·mL−1时,其抗张强度间无明显差异 (P>0.05),而断裂伸长率则随着明胶浓度的增大而逐渐减小,说明随着明胶浓度的增大,复合止血敷料的脆性和硬度增加,导致延伸性受到较大影响。如果敷料的机械强度较差则不能抗击血液冲击,容易造成二次出血,因此机械强度是衡量敷料质量的一个重要指标。
表 1 不同明胶浓度对复合止血敷料理化性能的影响Table 1. Physical and chemical properties of composite hemostatic sponge with different gelatin concentration明胶质量浓度
Gelatin mass concentration/
(mg·mL−1)抗张强度
Tensile
strength/MPa断裂伸长率
Elongation at
break/%吸水倍数
Water absorption
ratio持水率
Water retention
ratio/%交联度
Degree of
crosslinking/%1 0.010 0±0.003 7a 7.54±0.37a 25.47±0.14a 21.00±0.20a 88.90±0.50a 5 0.037 2±0.004 2b 7.43±1.31a 31.82±0.80b 28.03±1.03b 63.13±0.63b 10 0.082 3±0.002 2c 6.81±0.21a 49.20±2.24c 30.49±2.18b 56.68±0.33c 15 0.085 9±0.003 6c 3.49±0.72b 38.15±2.24d 37.35±2.37c 43.36±2.86d 20 0.079 5±0.005 6c 1.36±0.30c 23.89±0.34a 37.99±0.30c 44.45±0.57d 注:同列字母不同者表示显著差异 (P<0.05)。 Note: Values with different letters within the same column have significant difference (P<0.05). 因为敷料需要吸收大量的伤口渗出物,防止细菌入侵伤口,因此吸水性和持水性是其理化性质的重要指标。吸水性的变化趋势与抗张强度相同,明胶质量浓度为10 mg·mL−1时,取得最大倍数 (49.20±2.24),高于王运智[22]通过冷冻干燥法和自组装法得到的鱼皮胶原止血海绵的吸水倍数 (33.6和11.9)。明胶海绵的高吸水性使其在应用时可吸附大量血液,从而对渗血表面造成局部压迫,达到止血目的。持水性则随着明胶浓度的增加从 (21.00±0.20)% 升至 (37.99±0.30)%。当明胶质量浓度低于10 mg·mL−1时,敷料微观结构比较松散,吸水后无法保持较为完整的形状。当明胶质量浓度为20 mg·mL−1时,敷料结构过于紧密,孔隙较小,导致吸水性能下降但持水率较高。
戊二醛可以与明胶中赖氨酸和羟基赖氨酸残基的自由氨基反应形成席夫碱型化合物,还可以与海藻酸钠阴离子结构表面的羟基发生交联反应。交联度随着明胶浓度的增大而减小,明胶质量浓度超过10 mg·mL−1时变化不大 (P>0.05)。这说明在明胶浓度较低时,暴露出的交联位点能够完全被戊二醛利用,随着明胶浓度的增加,所能交联的位点是有限的,所以交联度逐渐趋于稳定。
综上所述,明胶质量浓度为10 mg·mL−1时,医用复合止血敷料具有良好的物理性能,有利于快速吸收渗出物和血浆,加速凝血过程。
2.3 大鼠股动脉模型、肝损伤模型及尾部模型的止血效果
断尾止血实验过程见图2-a。与自然止血组的 (485±11) s相比,实验组和市售明胶海绵组均能明显缩短断尾止血所用时间(P<0.01),且实验组止血时间要短于市售明胶海绵组(P<0.05)。肝创面模型的实验过程见图2-b,止血指标的结果表明(图2-d),实验组止血时间为 (108±4) s,短于罗非鱼 (Oreochromis mossambicus) 鱼皮胶原海绵 (131 s)[22]。股动脉模型的实验过程见图2-c,切开动脉,立刻有大量血液涌出且压力较大,对止血敷料的要求较高,自然止血组无法在一定时间完成止血。实验组的止血时间为 (64±9) s,明显优于市售明胶海绵组的 (87±9) s (P<0.01),说明实验组对出血量大、压力强的动脉出血有一定的控制作用。
结果表明,明胶复合止血敷料的吸水性和多孔结构有利于血液的吸收,同时明胶与海藻酸钠起到了复配协同止血效果[23]。Wang等[24]制备了含海藻酸钙多孔微球的壳聚糖复合海绵,与纯壳聚糖和凝胶海绵相比,可以缩短止血时间、减少失血量。因此,将海藻酸钠共混到明胶中,可促进血小板黏附和各种凝血因子的活化[25]。复合止血敷料在吸收组织渗出液后转变为凝胶形态,可以持续为伤口提供潮湿环境,促进伤口愈合。
2.4 APTT、PT、TT分析和血小板活性因子检测
APTT是内源凝血系统较为敏感和最为常用的筛选指标,PT测定是外源性凝血系统的筛选实验,TT是指在血浆中加入标准化的凝血酶后血液凝固的时间。因此,试验采用APTT、PT和TT分析方法探讨明胶复合止血敷料诱导的凝血途径。与阴性对照组相比,实验组在第5、第15、第30和第60 分钟4个不同浸提时间点的APTT均有极显著降低(P<0.01,图3-a),说明内源性凝血系统是明胶复合止血敷料的主要凝血途径。据报道,海藻酸钠的凝胶网络结构可以为血细胞提供支持,吸收大量的血液,激活伤口附近的凝血因子,诱导凝血的内部通路[25]。复合止血敷料和市售明胶海绵对PT无显著影响 (图3-b),表明它不刺激外源性的凝血途径。明胶复合止血敷料和市售明胶海绵在第5、第15和第60分钟时TT显著降低(P<0.01,图3-c),通过缩短凝血接触活化时间实现快速止血。Li等[26]证实,明胶微球能有效诱导红细胞聚集,改善凝血时间。Zhang等[27]发现壳聚糖/硅藻-生物硅复合海绵通过激活内源性凝血途径加速了凝血。因此,明胶复合止血敷料可激活内源性凝血途径和共同凝血途径,缩短血液凝固接触活化时间,活化Ⅷ、Ⅻ、Ⅺ等凝血因子,达到快速止血的目的。
对血小板活性因子TXB2、PF4和P-选择素的含量进行测定,可以判定明胶复合止血敷料对血小板黏附、聚集和活化等生理功能的作用,结果见图3-d—3-f。与对照组相比,其他各组均能显著增加血小板活性因子的释放量 (P<0.05),从而快速有效激活血小板。此外,浸提时间的长短并不影响血小板活性因子的释放。
综上所述,复合止血敷料在两方面表现出有效的止血能力:1) 复合止血敷料具有适当尺寸和分布均匀的三维网络多孔结构,使其具有快速的液体吸收性和良好的机械性能;2) 明胶海藻酸钠复合敷料能够激发内源性凝血途径和共同凝血途径,加速各种凝血因子的释放从而加速凝血[28]。
2.5 生物相容性评价
急性全身毒性试验是生物安全评价的一个重要指标,通常用于评价生物医学材料或其浸出液对人体的影响[29]。对大鼠注射后的日常活动、存活状况和中毒情况进行观察,发现实验组及阴性对照组的大鼠在观察期72 h内,无任何中毒症状发生,而阳性对照组则在注射后随即出现明显的震颤和惊厥反应,活动量和爬行速度明显下降。注射后72 h内各组大鼠的平均体质量见表2,实验组和阴性对照组的大鼠体质量变化均呈稳步增长趋势,说明制备的鳕鱼皮明胶复合止血敷料无急性毒性,符合医用材料全身急性毒性的评价标准。
表 2 急性全身毒性试验、皮肤刺激试验和溶血试验结果Table 2. Results of acute systemic toxicity assay, dermal irritation test and hemolysis ratio实验组
Experimental group阴性对照组
Negative control group阳性对照组
Positive control group急性毒性试验 Acute systemic toxicity assay 第0小时体质量 Body mass at 0th hour/kg 0.167 7±0.008 2 0.174 0±0.004 6 0.185 3±0.005 0 第24小时体质量 Body mass at 24th hour/kg 0.172 8±0.007 4 0.177 9±0.009 7 0.186 2±0.004 2 第48小时体质量 Body mass at 48th hour/kg 0.184 3±0.008 3 0.182 9±0.004 9 0.178 5±0.007 4 第72小时体质量 Body mass at 72nd hour/kg 0.183 9±0.009 8 0.182 7±0.013 7 0.179 8±0.007 5 皮肤刺激试验 Dermal irritation test 第24小时红斑总数 Sum of erythema at 24th hour/个 4 0 第48小时红斑总数 Sum of erythema at 48th hour/个 0 0 第72小时红斑总数 Sum of erythema at 72nd hour/个 0 0 原发性刺激指数 Primary irritation index PII 0.22 0 溶血试验 Hemolysis test 溶血率 Hemolysis ratio/% 1.51±0.30 0.00 100.00 采用皮肤刺激试验和皮内刺激试验评价明胶医用敷料的刺激效果。相较于b处阳性对照组出现严重的皮肤变红以及组织肿胀等刺激现象,a、d处的实验组浸提液并未引起任何的皮肤刺激问题,注射后72 h内皮肤状态均表现良好,与c处的阴性对照组结果一致,说明鳕鱼皮明胶复合止血敷料对皮肤无潜在刺激作用 (图4)。受损皮肤刺激实验的结果见表2,实验组部分大鼠出现轻微红斑,但24 h后消失。复合止血敷料的原发性刺激指数 (PII) 为0.22,小于0.5,属于极轻微刺激性,制备的明胶复合止血敷料符合生物材料单次接触皮肤试验标准。
溶血率是血液与材料相互作用的体外评价标准[30]。GB/T 16886指出材料与血液接触时红细胞的破裂率不宜过高,即溶血率低于5%的材料才具备良好的血液相容性。本实验测定的鳕鱼皮明胶复合止血敷料的溶血率为1.51%,低于5% (表2),符合国家生物材料评价规定的安全范围。
生物材料进入临床的必要评价是生物安全性评价,综上所述,鳕鱼皮明胶复合止血敷料符合国家医疗器械相关标准,为其临床应用提供了安全性理论依据。
3. 结论
本文以鳕鱼皮为原料提取明胶,并通过SDS-PAGE对其亚基结构进行研究。在交联剂作用下将鳕鱼皮明胶与海藻酸钠进行复配,冷冻干燥得到复合止血敷料。该复合敷料具有良好的机械性能、吸水性、持水性和均一的多孔网络结构,符合伤口海绵的要求。明胶复合止血敷料可以明显缩短APTT和TT,激活内源性凝血途径和共同凝血途径,还可以明显增加TXB2、PF4和P-选择素的释放量,通过激活血小板来加速凝血过程。此外,一系列的生物相容性实验表明,复合止血敷料无全身急性毒性,不会引起红斑、水肿等皮肤刺激现象,溶血率为1.51%,符合国家医疗器械标准 (<5%)。因此,鳕鱼皮源明胶复合止血敷料可作为一种新型可吸收医用敷料应用于组织工程之中。
-
图 2 空白样品与加标样品的色谱图对比
a. 空白基质样品GC-MS/MS色谱图;b. 基质加标样品GC-MS/MS色谱图;c. 空白基质样品LC-MS/MS色谱图;d. 基质加标样品LC-MS/MS色谱图;数字代表的农药组分见表1~表2
Figure 2. Representative chromatograms of control and spiked samples
a. GC-MS/MS chromatogram of blank sample; b. GC-MS/MS chromatogram of spiked sample; c. LC-MS/MS chromatogram of blank sample; d. LC-MS/MS chromatogram of spiked sample; pesticides represented by numbers are shown in Tab.1–Tab.2.
表 1 GC-MS/MS条件下农药的保留时间、监测离子对、碰撞电压、线性范围、线性方程、相关系数、检出限和定量限
Table 1 Retention time, monitoring ion pair, collision energy, linear range, linear equation, correlation coefficient, limits of detection (LOD) and limit of quantitation (LOQ) of pesticides for GC-MS/MS
组分编号
No.农药组分
pesticide保留时间/min
retention time监测离子对 (m/z)
monitoring ion-pair碰撞能量/eV
collision energy线性范围/μg·L–1
linear range线性方程
linear equation相关系数
correlation coefficient检出限/μg·kg–1
LOD定量限/μg·kg–1
LOQ1 α-六六六 α-HCH 10.287 216.9>181.0*,218.9>183.0 5,5 0.1~200 y=729.872 545x+558.440 737 0.999 12 0.05 0.2 2 β-六六六 β-HCH 10.799 216.9>181.0*,181.0>145.0 5,15 0.1~200 y=290.473 202x+92.752 499 0.999 86 0.05 0.2 3 γ-六六六 γ-HCH 11.026 216.9>181.0*,181.0>145.0 5,15 0.1~200 y=536.311 817x+95.210 411 0.999 85 0.05 0.2 4 δ-六六六 δ-HCH 11.544 216.9>181.0*,181.0>145.0 5,15 0.1~200 y=228.313 291x+72.483 185 0.999 45 0.05 0.2 5 嗪草酮 metribuzin 12.421 184.9>154.9*,174.9>111.0 15,10 0.5~1 000 y=345.219 226x−168.658 133 0.999 91 0.25 1.0 6 2, 4-滴丁酯 2, 4-D butyl ester 12.467 198.0>82.0*,198.0>55.0 15,30 0.5~1 000 y=167.522 180x−37.266 189 0.999 89 0.25 1.0 7 p, p′-滴滴伊 p, p′-DDE 17.060 246.0>176.2*,248.0>176.2 30,30 0.1~200 y=1 251.203 913x+250.470 954 0.999 79 0.05 0.2 8 噁草酮 oxadiazon 17.276 174.9>112.0*,174.9>76.0* 15,35 0.1~200 y=561.289 759x−129.333 269 0.999 97 0.05 0.2 9 乙氧氟草醚 oxyfluorfen 17.365 252.0>196.0*,252.0>146.0 20,30 2.0~1 000 y=24.575 104x−9.844 996 0.999 70 1.0 4.0 10 p, p′-滴滴滴 p, p′-DDD 18.680 235.0>165.2*,237.0>165.2 20,20 0.1~200 y=3 571.806 202x−879.978 680 0.999 82 0.05 0.2 11 o, p′-滴滴涕 o, p′-DDT 18.799 235.0>165.2*,237.0>165.2 20,20 0.1~200 y=2 408.525 425x−798.203 004 0.999 88 0.05 0.2 12 p, p′-滴滴涕 p, p′-DDT 19.633 235.0>165.2*,237.0>165.2 20,20 0.1~200 y=1 269.453 742x−349.635 918 0.999 86 0.05 0.2 13 氯氰菊酯-1 cypermethrin 1 23.549 163.0>127.0*,163.0>91.0 5,10 10~2 000 y=337.204 714x+159.832 396 0.997 41 5.0 20 14 氯氰菊酯-2 cypermethrin 2 23.712 163.0>127.0*,163.0>91.0 5,10 10~2 000 y=280.053 277x−57.967 540 0.998 10 5.0 20 15 氯氰菊酯-3 cypermethrin 3 23.766 163.0>127.0*,163.0>91.0 5,10 10~2 000 y=220.206 528x−75.093 013 0.997 65 5.0 20 16 氯氰菊酯-4 cypermethrin 4 23.854 163.0>127.0*,163.0>91.0 5,10 10~2 000 y=211.308 526x+69.956 598 0.997 66 5.0 20 注:*. 定量离子 Note: *. ions for quantitation 表 2 LC-MS/MS条件下农药的保留时间、监测离子对、碰撞电压、线性范围、线性方程、相关系数、检出限和定量限
Table 2 Retention time, monitoring ion pair, collision energy, linear range, linear equation, correlation coefficient, limits of detection (LOD) and limit of quantitation (LOQ) of pesticides for LC-MS/MS
组分编号
No.农药组分
pesticide保留时间/min
retention time监测离子对 (m/z)
monitoring ion-pair碰撞能量/eV
collision energy线性范围/μg·L–1
linear range线性方程
linear equation相关系数
correlation coefficient检出限/μg·kg–1
LOD定量限/μg·kg–1
LOQ1 氧化乐果 folimat 1.03 216.1,132.1*,174.1 22,15/17,20 0.1~200 y=83 195.6x+110 381.6 0.995 69 0.05 0.2 2 涕灭威亚砜 aldicarb-sulfoxide 1.31 229.1,109.1*,166.1 16,12/11,20 0.1~200 y=75 673.6x+108 194.7 0.997 96 0.05 0.2 3 敌百虫 trichlorfon 3.09 257.0,109.1*,127.1 18,18/20,19 0.1~200 y=89 156.4x+118 065.4 0.998 76 0.05 0.2 4 乐果 rogor 3.27 230.1,125.0*,171.0 20,18/15,23 0.1~200 y=74 494x+92 859.2 0.996 40 0.05 0.2 5 涕灭威 aldicarb 3.57 213.1,89.1*,116.1 13,20/10,18 0.1~200 y=72 104.9x+105 986 0.999 18 0.05 0.2 6 敌敌畏 dichlorvos 3.81 221.0,109.1*,127.1 19,20/20,16 0.1~200 y=80 974.1x+95 277.4 0.996 91 0.05 0.2 7 甲硫威 methiocarb 3.92 226.1,121.1*,169.1 19,20/9,13 0.1~200 y=89 101.7x+112 329.5 0.998 61 0.05 0.2 8 呋喃丹 carbofuran 4.05 222.1,123.1*,165.1 20,20/13,16 0.1~200 y=81 049x+96 786.9 0.995 22 0.05 0.2 9 莠去津 atrazine 4.30 216.1,174.1*,132.1 17,22/20,18 0.1~200 y=75 293.8x+112 950.4 0.995 25 0.05 0.2 10 苄嘧磺隆 bensulfuron methyl 4.76 411.1,91.0*,149.1 54,18/18,26 0.1~200 y=74 647.5x+103 267.2 0.997 95 0.05 0.2 11 吡嘧磺隆 pyrazosulfuron 4.77 437.2,178.1*,282.0 20,15/14,25 10~2 000 y=4 535.61x+56 619.7 0.995 12 5.0 20 12 敌稗 propanil 4.90 218.1,127.0*,162.0 23,20/14,20 0.1~200 y=76 140.6x+114 025.8 0.995 20 0.05 0.2 13 水胺硫磷 isocarbophos 4.98 312.0,236.1*,270.1 15,20/14,16 0.1~200 y=82 520.2x+91 781.4 0.996 29 0.05 0.2 14 禾草敌 molinate 5.19 188.2,83.1*,126.1 17,21/12,16 0.1~200 y=89 924.5x+109 990 0.995 88 0.05 0.2 15 苯噻酰草胺 mefenacet 5.21 299.1,120.1*,148.1 26,20/15,18 0.1~200 y=83 823.2x+119 017.1 0.995 35 0.05 0.2 16 马拉硫磷 malathion 5.41 331.0,99.0,127.0 21,20/12,18 0.1~200 y=71 230.2x+101 322.6 0.995 91 0.05 0.2 17 三唑磷 triazophos 5.42 314.1,119.2*,162.2 30,17/19,26 0.1~200 y=72 984.7x+96 797.4 0.996 09 0.05 0.2 18 乙草胺 acetochlor 5.45 270.1,224.1*,148.1 10,18/19,20 0.1~200 y=80 300.4x+97 904.7 0.995 11 0.05 0.2 19 对硫磷 parathion 5.66 292.1,234.1*,264.1 14,23/10,16 0.1~200 y=77 804.6x+105 553 0.998 24 0.05 0.2 20 甲基对硫磷 parathion-methyl 5.84 259.1,89.1*,182.0 20,20/15,15 0.1~200 y=86 841.3x+97 381.3 0.998 09 0.05 0.2 21 伏杀硫磷 phosalone 5.84 368.1,182.0*,322.0 18,19/9,15 0.1~200 y=77 128.6x+119 572.7 0.999 78 0.05 0.2 22 丙溴磷 profenophos 5.95 374.0,304.7*,346.9 20,16/13,20 0.1~200 y=70 773.4x+111 438.7 0.998 25 0.05 0.2 23 丙草胺 pretilachlor 5.95 312.1,252.2*,176.2 17,33/23,15 0.1~200 y=89 659.5x+96 842.2 0.995 38 0.05 0.2 24 丁草胺 butachlor 6.19 312.3,238.1*,162.1 11,23/15,18 0.1~200 y=78 042.7x+100 284.6 0.997 53 0.05 0.2 25 毒死蜱 chlorpyrifos 6.20 350.0,97.0*,197.9 30,16/18,15 0.1~200 y=85 329.2x+119 633.6 0.995 60 0.05 0.2 26 阿维菌素 avermectin 6.42 895.5,449.4*,327.3 44,25/50,29 0.5~1 000 y=40 409.4x+91 893.2 0.996 65 0.25 1.0 注:*. 定量离子 Note: *. ions for quantitation 表 3 中华绒螯蟹中农药残留结果
Table 3 Residue concentration of pesticides in river crab
农药组分
pesticide范围*/μg·kg–1
range of concentration平均值±标准差/μg·kg–1
$ \overline X $±SD检出率/%
detection rate农药组分
pesticide范围*/μg·kg–1
range of concentration平均值±标准差/μg·kg–1
$ \overline X $±SD检出率/%
detection rateα-六六六 α-HCH ND~1.25 0.27±0.32 78.6 氧化乐果 folimat ND ND 0 β-六六六 β-HCH ND~18.7 3.19±4.60 89.3 涕灭威亚砜 aldicarb-sulfoxide ND ND 0 γ-六六六 γ-HCH ND~0.16 0.04±0.05 35.7 敌百虫 trichlorfon ND ND 0 δ-六六六 δ-HCH ND~0.93 0.16±0.26 42.9 乐果 rogor ND ND 0 嗪草酮 metribuzin ND~2.96 0.55±0.76 35.7 涕灭威 aldicarb ND ND 0 2, 4-滴丁酯 2,4-D butyl ester ND ND 0 敌敌畏 dichlorvos ND ND 0 p, p′-滴滴伊 p, p′-DDE ND~6.45 1.35±1.81 82.1 甲硫威 methiocarb ND ND 0 噁草酮 oxadiazon ND~0.72 0.16±0.24 25.0 呋喃丹 carbofuran ND ND 0 乙氧氟草醚 oxyfluorfen ND~256 14.4±48.9 28.6 苄嘧磺隆 bensulfuron methyl ND ND 0 p, p′-滴滴滴 p, p′-DDD ND~1.57 0.35±0.41 71.4 吡嘧磺隆 pyrazosulfuron ND ND 0 o, p′-滴滴涕 o, p′-DDT ND ND 0 敌稗 propanil ND ND 0 p, p′-滴滴涕 p, p′-DDT ND~1.16 0.26±0.35 42.9 水胺硫磷 isocarbophos ND ND 0 氯氰菊酯-1 cypermethrin 1 ND ND 0 禾草敌 molinate ND ND 0 氯氰菊酯-2 cypermethrin 2 ND ND 0 马拉硫磷 malathion ND ND 0 氯氰菊酯-3 cypermethrin 3 ND ND 0 三唑磷 triazophos ND ND 0 氯氰菊酯-4 cypermethrin 4 ND ND 0 对硫磷 parathion ND ND 0 莠去津 atrazine ND~1.32 0.32±0.40 46.4 甲基对硫磷 parathion-methyl ND ND 0 乙草胺 acetochlor ND~3.46 0.78±1.19 39.3 伏杀硫磷 phosalone ND ND 0 丙草胺 pretilachlor ND ND 0 丙溴磷 profenophos ND ND 0 丁草胺 butachlor ND~185 9.81±34.1 53.6 毒死蜱 chlorpyrifos ND ND 0 苯噻酰草胺 mefenacet ND~0.07 0.03±0.01 10.7 阿维菌素 avermectin ND ND 0 注:*. 湿质量;ND. 未检出 Note: *. wet mass; ND. not detected 表 4 中华绒螯蟹中农药残留风险评价
Table 4 Risk assessment of pesticides in river crab
农药
pesticide检出最大值/μg·kg–1
maximum concentration每日允许摄入量/mg·kg–1
ADI食品安全指数
IFS水产品中限量值/μg·kg–1
maximum residue limits超标率/%
over-standard rate六六六 HCHs 20.0 0.005 0.001 6 100① 0 滴滴涕 DDTs 7.32 0.01 0.000 3 500① 0 嗪草酮 metribuzin 2.96 0.013 0.000 1 10② 0 噁草酮 oxadiazon 0.72 0.003 6 0.000 1 10② 0 乙氧氟草醚 oxyfluorfen 256 0.03 0.003 4 10② 17.9 莠去津 atrazine 1.32 0.02 0.000 0 10② 0 乙草胺 acetochlor 3.46 0.02 0.000 1 10② 0 丁草胺 butachlor 185 0.10 0.000 7 10② 14.3 苯噻酰草胺 mefenacet 0.07 0.007 0.000 0 10② 0 注:①. 限量依据GB 2763—2016《食品安全国家标准 食品中农药最大残留限量》;②. 限量参照日本肯定列表制度[26] Note: ①. The maximum residue limits were according to the GB 2763—2016 National Food Safety Standard: maximum residue limits for pesticides in food; ②. The maximum residue limits from Japanese Positive List System were used. -
[1] 肖放. 新形势下稻渔综合种养模式的探索与实践[J]. 中国渔业经济, 2017, 35(3): 4-8. [2] 张显良. 大力发展稻渔综合种养助推渔业转方式调结构[J]. 中国水产, 2017(5): 3-5. [3] 刘巧荣, 黄磊, 黎玉林, 等. 稻田养殖水产品农残安全性调查与分析[J]. 中国渔业质量与标准, 2013, 3(3): 8-13. [4] BERG H. Pesticide use in rice and rice-fish farms in the Mekong Delta, Vietnam[J]. Crop Prot, 2001, 20(10): 897-905.
[5] 王常安, 徐奇友, 闫有利, 等. 我国东北地区稻田养殖的模式概况[J]. 水产学杂志, 2017, 30(3): 57-60. [6] 乔丹, 刘小静, 张华威, 等. 山东沿海贝类中除草剂污染特征及风险评价[J]. 中国渔业质量与标准, 2017, 7(3): 22-29. [7] 李聪, 张艺兵, 李朝伟, 等. 暴露评估在食品安全状态评价中的应用[J]. 检验检疫科学, 2002, 12(1): 11-12, 7. [8] 国家卫生和计划生育委员会疾病预防控制局. 中国居民营养与慢性病状况报告[M]. 北京: 人民卫生出版社, 2015: 13. [9] 覃东立, 高磊, 黄晓丽, 等. 水体与底泥中有机氯和除草剂农药残留的气相色谱串联质谱同步测定方法[J]. 环境化学, 2017, 36(11): 2366-2374. [10] 高磊, 覃东立, 吴松, 等. 用液相色谱串联质谱法测定渔业水样中6种农药的含量[J]. 水产学杂志, 2017, 30(4): 44-48. [11] 于志勇, 金芬, 孙景芳, 等. 北京市场常见淡水食用鱼体内农药残留水平调查及健康风险评价[J]. 环境科学, 2013, 34(1): 251-256. [12] 张祖麟, 洪华生, 陈伟琪, 等. 闽江口水、间隙水和沉积物中有机氯农药的含量[J]. 环境科学, 2003, 24(1): 117-120. [13] DANNENBERGER D. Chlorinated microcontaminants in surface sediments of the Baltic Sea: investigations in the Belt Sea, the Arkona Sea and the Pomeranian Bight[J]. Mar Pollut Bull, 1996, 32(11): 772-781.
[14] 余柳青, 韩逢春, 玄松南, 等. 东北水稻生产与杂草防除[J]. 杂草科学, 2009(4): 7-10. [15] 马殿民, 徐静. 240克/升乙氧氟草醚乳油防除水稻田杂草药效试验[J]. 北方水稻, 2017, 47(3): 33-34, 37. [16] 陈志石, 李贵, 吴竞仑. 玉米田化学除草剂的发展及其在我国的应用[J]. 杂草科学, 2008(2): 1-4. [17] 张喜成, 刘辉. 不同除草剂对大豆田杂草的防治效果研究[J]. 北京农业, 2008(9): 27-28. [18] GRAYMORE M, STAGNITTI F, ALLINSON G. Impacts of atrazine in aquatic ecosystems[J]. Environ Int, 2001, 26(7/8): 483-495.
[19] 杨阳, 刘霞, 毛禄刚, 等. 食品中莠去津残留检测方法的研究进展[J]. 食品安全质量检测学报, 2014(2): 316-322. [20] KOLPIN D W, KALKHOFF S J. Atrazine degradation in a small stream in Iowa[J]. Environ Sci Technol, 1999, 27(1): 134-139.
[21] ACCINELLI C, DINELLI G, VICARI A, et al. Atrazine and metolachlor degradation in subsoils[J]. Biol Fert Soils, 2001, 33(6): 495-500.
[22] 乔丹, 刘小静, 韩典峰, 等. 气相色谱-质谱法测定动物源性水产品中16种除草剂[J]. 渔业科学进展, 2017, 38(4): 172-179. [23] 陈家长, 孟顺龙, 胡庚东, 等. 鲫鱼对除草剂阿特拉津的生物富集效应研究[J]. 农业环境科学学报, 2009, 28(6): 1313-1318. [24] 徐佳艳, 彭自然, 和庆, 等. 长三角地区池塘养殖水产品体内农药类污染与食用风险评价[J]. 生态毒理学报, 2017, 12(3): 485-495. [25] JIN F, WANG J, SHAO H, et al. Pesticide use and residue control in China[J]. J Pestic Sci, 2010, 35(2): 138-142.
[26] 吴晓丰, 沈毅诚, 孙蓓玲. 日本“肯定列表制度”——我国出口水产品面临的严峻挑战[J]. 中国动物检疫, 2006, 23(6): 49-50. -
期刊类型引用(2)
1. 孔令霞,桑琳. 化学交联法制备的妇科专用敷料抗菌止血性能研究. 粘接. 2024(04): 105-108 . 百度学术
2. 沈家成,秦政,周祖浩,许瑞波,刘强,李正夫,李姣姣. 鱼皮中胶原蛋白的药用价值研究进展. 食品与发酵工业. 2023(23): 347-354 . 百度学术
其他类型引用(2)