WANG Yunxiang, LI Zheng, QIN Chuanxin, CHEN Pimao, YUAN Huarong, ZHOU Wenli. Effect of Gracilaria confervoides after falling off on overlying water of seaweed field in different seasons[J]. South China Fisheries Science, 2016, 12(2): 13-20. DOI: 10.3969/j.issn.2095-0780.2016.02.003
Citation: WANG Yunxiang, LI Zheng, QIN Chuanxin, CHEN Pimao, YUAN Huarong, ZHOU Wenli. Effect of Gracilaria confervoides after falling off on overlying water of seaweed field in different seasons[J]. South China Fisheries Science, 2016, 12(2): 13-20. DOI: 10.3969/j.issn.2095-0780.2016.02.003

Effect of Gracilaria confervoides after falling off on overlying water of seaweed field in different seasons

More Information
  • Received Date: August 11, 2015
  • Revised Date: October 07, 2015
  • In laboratory simulated environment, we studied the seasonal impacts of the decomposition of Gracilaria confervoides in Daya Bay on the nutrient concentrations and dissolved oxygen in overlying water. According the climate of Guangdong coast, three control groups were designed: spring and autumn in 20 ℃, summer in 28 ℃, winter in 15 ℃, and the average sea water flow rate was 0.24 m·s-1. The results show that dissolved oxygen (DO) decreased gradually with increasing temperature, and DO was negatively correlated to the biomass of G.confervoides in the water. In the decomposition process of Gracilaria, TN and TP values in overlying water ascended and then declined; the concentrations of NH4+-N, NO2--N and NO3--N reached the maximum in synchronization. Furthermore, the phosphorus released prior to nitrogen. When in winter (15 ℃) and summer (28 ℃), the concentrations of nitrogen and phosphorus increased with increasing weight of Gracilaria, which was opposite in summer (28 ℃). The peak concentration of PO43--P was also affected by seaweed weight, showing positive correlation, and the accumulation of both nitrogen and phosphorus in overlying water in winter (15 ℃) was obviously higher than that in summer (28 ℃). The results provide references for determining the density of seaweed in proliferation.

  • [1]
    SMITH S V. Marine macrophytes as a global carbon sink[J]. Science, 1981, 211(4484): 838-840. doi: 10.1126/science.211.4484.838
    [2]
    SUNDBACK K, MILES A, HULTH S, et al. Importance of benthic nutrient regeneration during initation of macroalgal blooms in shallow bays[J]. Mar Ecol Prog, 2003, 246(1): 115-126. doi: 10.3354/meps246115
    [3]
    HUONG M, FOTEDAR R, FEWTRELL J. Evaluation of Sargassum sp. as a nutrient-sink in an integrated seaweed-prawn (ISP) culture system[J]. Aquaculture, 2010, 310(1/2): 91-98. doi: 10.1016/j.aquaculture.2010.09.010
    [4]
    吴祖立, 章守宇, 陈彦, 等. 枸杞岛海藻场大型底栖无脊椎动物摄食类群研究[J]. 水产学报, 2015, 39(3): 381-391. doi: 10.11964/jfc.20140609369
    [5]
    秦传新, 刘长发, 张立勇. 孔石莼和角叉菜对硝酸氮, 磷的吸收及其生化组成变化[J]. 水生态学杂志, 2010, 3(6): 41-46.
    [6]
    杨宇峰, 费修绠. 大型海藻对富营养化海区养殖区生物修复的研究与展望[J]. 青岛海洋大学学报(自然科学版), 2003, 33(1): 53-57. doi: 10.3969/j.issn.1672-5174.2003.01.026
    [7]
    YU J, YANG Y F. Physiological and biochemical response of seaweed Gracilaria lemaneiformis to concentration changes of N and P[J]. J Exp Mar Biol Ecol, 2008, 367(2): 142-148. doi: 10.1016/j.jembe.2008.09.009
    [8]
    KOMATSU T, LGARASHI C, TATSUKAWA K, et al. Use of multi-beam sonar to map seagrass beds in Otsuchi Bay on the Sanriku Coast of Japan[J]. Aquat Living Resour, 2003, 16(3): 223-230. doi: 10.1016/S0990-7440(03)00045-7
    [9]
    KOMATSU T, MIKAMI A, SULTANA S, et al. Hydro-acoustic methods as a practical tool for cartography of seagrass beds[J]. Otsuchi Mar Sci, 2003, 28: 72-79. https://xueshu.baidu.com/usercenter/paper/show?paperid=5602d32980c6f9d570da2e6d29af504a&site=xueshu_se
    [10]
    BLOMSTER J, BÄCK S, FEWER D P, et al. Novel morphology in Enteromorpha (Ulvophyceae) forming green tides[J]. Am J Botany, 2002, 89(11): 1756-1763. doi: 10.3732/ajb.89.11.1756
    [11]
    梁宗英, 林祥志, 马牧, 等. 浒苔漂流聚集绿潮现象的初步分析[J]. 中国海洋大学学报(自然科学版), 2008, 38(4): 601-604. doi: 10.3969/j.issn.1672-5174.2008.04.031
    [12]
    杨斌, 谢恩义, 曲元凯. 不同环境因子对莫氏马尾藻幼苗生长和光合色素的影响[J]. 南方水产科学, 2013, 9(4): 39-44. doi: 10.3969/j.issn.2095-0780.2013.04.007
    [13]
    黄中坚, 钟志海, 宋志民, 等. 不同营养盐水平对芋根江蓠的生长及生化组分的影响[J]. 南方水产科学, 2014, 10(5): 30-38. doi: 10.3969/j.issn.2095-0780.2014.05.005
    [14]
    张莹, 王龙乐, 钟名其, 等. 硼胁迫对龙须菜生长及其生理特征的影响[J]. 南方水产科学, 2014, 10(4): 9-15. doi: 10.3969/j.issn.2095-0780.2014.04.002
    [15]
    曹培培, 刘茂松, 唐金艳, 等. 几种水生植物腐解过程的比较研究[J]. 生态学报, 2014, 34(14): 3848-3858. doi: 10.5846/stxb201212011724
    [16]
    孙连鹏, 谭锦欣, 郭五珍. 厌氧条件下剩余污泥中磷及相关指标的释放和变化规律[J]. 生态环境学报, 2014, 23(2): 295-299. doi: 10.3969/j.issn.1674-5906.2014.02.018
    [17]
    周劲风, 温琰茂, 李耀初. 养殖池塘底泥-水界面营养盐扩散的室内模拟研究: 氮的扩散[J]. 农业环境科学学报, 2006, 25(3): 786-791. doi: 10.3321/j.issn:1672-2043.2006.03.048
    [18]
    Van LUIJN F, BOERS P C M, LIGKLEMA L, et al. Nitrogen fluxes and processes in sandy and muddy sediments from a shallow eutrophic lake[J]. Water Res, 1999, 33(1): 33-42. doi: 10.1016/S0043-1354(98)00201-2
    [19]
    宋静, 骆永明, 赵其国, 等. 沉积物-水界面营养盐释放研究Ⅰ. 根际土壤溶液采样器在底泥氮释放研究中的应用[J]. 土壤学报, 2000, 37(4): 515-101. doi: 10.3321/j.issn:0564-3929.2000.04.011
    [20]
    杜旭丹, 谢骏, 王广军, 等. 池塘底泥营养盐释放的室内模拟研究[J]. 安徽农业科学, 2009, 10(3): 127-130. https://www.cnki.com.cn/Article/CJFDTotal-AHNY200927133.htm
    [21]
    张亚克, 梁霞, 何池全, 等. 淀山湖不同季节营养盐含量与藻类群落的相互关系[J]. 湖泊科学, 2011, 23(5): 747-752. doi: 10.18307/2011.0512
    [22]
    HAGGARD B E, SOERENS T S. Sediment phosphorus release at a small impoundment on the Illinois River, Arkansas and Oklahoma, USA[J]. Ecol Engin, 2006, 28(3): 280-287. doi: 10.1016/j.ecoleng.2006.07.013
    [23]
    赵志梅. 渤海湾沉积物磷形态及营养盐在沉积物-水界面交换的研究[D]. 杨凌: 西北农林科技大学, 2005: 42-45.
    [24]
    张菊, 邓焕广, 王东启. 不同温度条件下徒骇河沉水植物腐烂对上覆水体中营养盐浓度的影响[J]. 水资源保护, 2011, 27(4): 22-26. doi: 10.3969/j.issn.1004-6933.2011.04.006
    [25]
    李文朝, 陈开宁, 吴庆龙, 等. 东太湖水生植物生物质腐烂分解实验[J]. 湖泊科学, 2001, 13(4): 33l-336. doi: 10.18307/20010406
    [26]
    周俊丽, 吴莹, 张经. 长江口潮滩先锋植物藤草腐烂分解过程研究[J]. 海洋科学进展, 2006, 24(1): 44-50. doi: 10.3969/j.issn.1671-6647.2006.01.006
    [27]
    徐继荣, 王友绍, 殷建平, 等. 大亚湾海域沉积物中的硝化与反硝化作用[J]. 海洋与湖沼, 2007, 38(3): 206-211. doi: 10.3321/j.issn:0029-814X.2007.03.003
    [28]
    杨宇峰, 宋金明, 林小涛, 等. 大型海藻栽培及其在近海环境的生态作用[J]. 海洋环境科学, 2005, 24(3): 77-80. doi: 10.3969/j.issn.1007-6336.2005.03.020
    [29]
    王彦波, 岳斌, 许梓荣, 等. 池塘养殖系统氮、磷收支研究进展[J]. 饲料工业, 2005, 26(18): 49-51. doi: 10.3969/j.issn.1001-991X.2005.18.015
    [30]
    SHILLA D, ASAEDA T, FUJINO T, et al. Decomposition of dominant submerged macrophytes: implications for nutrient release in Myall Lake, NSW, Australia[J]. Wetlands Ecol Manag, 2006, 14(5): 427-433. doi: 10.1007/s11273-006-6294-9
    [31]
    过锋, 赵俊, 陈聚法, 等. 胶州湾贝类养殖区氮、磷污染现状及动态变化[J]. 渔业科学进展, 2012, 5(33): 116-122. doi: 10.3969/j.issn.1000-7075.2012.05.018
  • Cited by

    Periodical cited type(8)

    1. 徐瑞,陈素文,王芸,王珺,周传朋,林黑着. 中国三省沿海地区养殖菊花江蓠营养成分的比较分析. 生态科学. 2025(01): 148-155 .
    2. 胡晓娟,赵秀,杨宇峰,曹煜成. 大型海藻龙须菜(Gracilaria lemaneiformis)藻段凋落分解对环境的影响及细菌群落演替特征. 海洋学报. 2023(08): 130-142 .
    3. 张秀梅,纪棋严,胡成业,徐焕志,王一航,杨晓龙,郭浩宇. 海洋牧场生态系统稳定性及其对干扰的响应——研究现状、问题及建议. 水产学报. 2023(11): 107-121 .
    4. 戴晓娟,胡韧,罗洪添,王庆,胡晓娟,白敏冬,杨宇峰. 大型海藻龙须菜凋落物分解对水质的影响. 热带海洋学报. 2021(01): 91-98 .
    5. 章守宇,刘书荣,周曦杰,汪振华,王凯. 大型海藻生境的生态功能及其在海洋牧场应用中的探讨. 水产学报. 2019(09): 2004-2014 .
    6. 徐姗楠,王爽,张喆,李纯厚. TG-MS联用分析海藻和稻壳的协同耦合热解机制. 太阳能学报. 2018(06): 1696-1703 .
    7. 于杰,戴晓玲,章增林,张紫英,陈日钊,黄国强,苏琼,李文红. 细基江蓠和真江蓠野生种群生长海域水质营养盐特征及富营养化评价. 南方农业学报. 2017(08): 1511-1517 .
    8. 王云祥,秦传新,陈丕茂,袁华荣,佟飞,冯雪,黎小国. 深圳海域造礁石珊瑚分布特点与多样性. 海洋渔业. 2017(02): 131-139 .

    Other cited types(1)

Catalog

    Article views (3399) PDF downloads (1587) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return