Effects of seamount characteristics in Central and Western Pacific Ocean on CPUEs of yellowfin tuna (Thunnus albacares) in longline and purse seine fisheries
-
摘要:
海山是海底重要的生物栖息地类型之一,是研究海洋生物多样性的热点区域。黄鳍金枪鱼 (Thunnus albacares) 广泛分布于中西太平洋,具有极高的生态和经济价值,然而,鲜有关于海山及其相关特征对黄鳍金枪鱼资源丰度和分布影响的研究。基于2010—2021年中西太平洋渔业委员会 (Western and Central Pacific Fisheries Commission, WCPFC) 汇总的延绳钓和围网渔业数据结合海山特征数据,采用广义加性模型 (Generalized additive model, GAM) 分析两种不同捕捞方式的黄鳍金枪鱼单位捕捞努力量渔获量 (Catch per unit effort, CPUE) 与海山相关特征之间的关系。结果表明,中西太平洋两种渔业方式的黄鳍金枪鱼渔获量主要来源于海山区域,海山特征对两种渔业黄鳍金枪鱼的CPUE均产生了极显著性影响 (P<0.001)。在延绳钓渔业中,较高的CPUE出现在山顶深度、粗糙度、底面积和海山密度较小、坡度较缓的区域;而在围网渔业中,较高的CPUE则出现在粗糙度较小、山顶深度较大、底面积较大、较陡峭且密集的海山区域。研究探讨了中西太平洋海山特征对黄鳍金枪鱼不同群体的影响机制,为今后进一步探索黄鳍金枪鱼种群分布和资源丰度变化与海洋环境的关系提供了参考与新思路。
Abstract:Seamounts are one of the important habitat types on the seafloor and a hotspot for marine biodiversity. Yellowfin tuna (Thunnus albacares) is widely distributed in the Western and Central Pacific Ocean (WCPO) with high ecological and economic value. However, there are few studies on the mechanisms by which seamounts and their associated features affect the abundance and distribution of yellowfin tuna resources. In this study, we used longline and purse seine fishery data summarized by the Western and Central Pacific Fisheries Commission (WCPFC) from 2010–2021, in addition with seamount characteristics data, to analyze the impacts of two different types of seamounts on the abundance and distribution of yellowfin tuna resources using a generalized additive model (GAM). GAM was utilized to examine the connection between catch per unit effort (CPUE) and seamounts characteristics of yellowfin tuna in two different fishing methods. The results show that in the WCPO, the yellowfin tuna catches in the two fisheries mainly originated from seamount areas, and seamount characteristics had a highly significant effect on CPUEs of yellowfin tuna in both fisheries (P<0.001). In the longline fishery, higher CPUE occurred in seamount areas with less peak depth, roughness, base area, and seamount density as well as gentler slopes, whereas higher CPUE occurred in the purse seine fishery in seamount areas with less roughness, greater peak depth, greater base area, as well as steeper and denser slopes. In summary, we explore the mechanism of the influence of WCPO seamount characteristics on different populations of yellowfin tuna, which provides new ideas and references for further exploring the relationship between the distribution of yellowfin tuna populations and changes in resource abundance with the marine environment in the future.
-
Keywords:
- Thunnus albacares /
- Seamount /
- Longline /
- Purse seine /
- CPUE /
- Generalized Additive Model (GAM)
-
凡纳滨对虾 (Litopenaeus vannamei) 又名南美白对虾,因其具有广盐性、生长快、抗逆能力强、适宜高密度养殖等优点,是世界三大对虾养殖品种之一[1-3]。据统计,2020年我国凡纳滨对虾海水养殖产量达119.774万t,占海水虾养殖总产量的80.50%,是我国最主要的海水对虾养殖品种[4]。对虾生长性状与经济回报高度相关,是选育最主要的目标性状,在选育过程中需要准确估计其遗传参数,以确保选育的可靠性。有关凡纳滨对虾生长性状遗传参数评估的研究已有较多报道[5-7],由于遗传参数估计受不同世代、不同群体、生长条件、年龄、性别等因素影响[8-10],因此选育中有必要对生长性状的遗传参数进行实时“更新”。
近年来,对虾的放养密度不断增加,但高密度养殖会降低水环境中的pH,增加总氮和氨氮含量[11-12] (对虾高密度养殖氨氮质量浓度可高达46 mg·L−1 [13],pH低至4.1[14]);而夏季高温则会增加养殖水体中的盐度[15-16]。生活在较高氨氮、盐度和较低pH的水体中,对虾会出现生长缓慢、免疫力下降、对病原菌的易感性升高等不良现象,导致其养殖成活率降低[17-21]。开展耐高氨氮、耐高盐和耐低pH等抗逆性的遗传改良是解决以上问题的有效途径。关于高氨氮、高盐和低pH等单因子或双因子对凡纳滨对虾胁迫的研究已有相关报道。例如,胡志国等[22-23]对凡纳滨对虾耐高氨氮、耐盐度的成活率与杂种优势及配合力进行分析;赵先银等[24]研究了低pH胁迫对凡纳滨对虾成活率和特异性酶活力的影响;熊大林等[11,25]报道了高温和氨氮两因子复合胁迫对凡纳对虾渗透调节与鳃组织生理响应的影响。在凡纳滨对虾实际养殖生产中,其所受的胁迫常常为多个环境胁迫因子的综合胁迫,相比于单因子胁迫其对对虾的危害更大,然而对凡纳滨对虾三因子综合胁迫方面的研究尚未见报道。因此,有必要深入了解多因子综合胁迫 (高盐、低pH与高氨氮共同胁迫) 对凡纳滨对虾的影响。
本研究以凡纳滨对虾“兴海1号”选育核心群体与国外引进的不同遗传背景的凡纳滨对虾群体交配,成功构建80个家系,以生长和抗逆性状为主要选育目标,评估凡纳滨对虾生长和耐综合胁迫 (高盐、低pH与高氨氮共同胁迫) 性状的遗传参数,以期为凡纳滨对虾生长和抗逆性选育提供依据与参考。
1. 材料与方法
1.1 实验材料
实验于2020年3月在湛江市国兴水产科技有限公司 (国兴公司) 进行,所用亲虾来源于本实验室培育的凡纳滨对虾“兴海1号”核心群体,以及泰国和美国的4个引进群体。按袁瑞鹏等[26]的方法强化亲虾并建立家系。6 d内成功构建全同胞家系80个,育苗过程中淘汰42个,剩余38个 (均为全同胞)。孵化后,每个家系取无节幼体约3 500尾,根据标准化育苗方式于500 L的桶中独自育至仔虾,而后移至独立水泥池进行标粗培育。培育至3 cm时,每个家系随机取300尾进行荧光标记,将所有标记好的对虾置于长13 m×宽10 m×高0.6 m的池内,同环境养殖60 d。
1.2 高氨氮、高盐和低pH综合胁迫实验
2019年3—7月由国兴公司对凡纳滨对虾养殖土塘塘底水质指标进行监测,结果显示,盐度上限为35,pH下限为6。综合胁迫预实验:对虾同环境养殖60 d后,参照袁瑞鹏[27]的方法开展高氨氮胁迫预实验,确定同环境养殖60 d高氨氮胁迫48 h半致死浓度 (LC50) 为铵根离子120 mg·L−1,设置高盐和低pH分别恒定为35和6±0.1[28],将高氨氮胁迫48 h的LC50 (120 mg·L−1) 折中 (60 mg·L−1) 往1 mg·L−1或120 mg·L−1方向,以间隔1 mg·L−1依次递减或递增,可递分为120个梯度,一次实验难以完成,以40个梯度为1组 (共3组),第1组为:盐度和pH均为35和6±0.1,氨氮质量浓度由60 mg·L−1 递减20个 (依次为60、59、58、57、56、55、54、53、52、51、50、49、48、47、46、45、44、43、42、41 mg·L−1);盐度和pH均为35和6±0.1,氨氮质量浓度由60 mg·L−1递增20个 (依次为61、62、63、64、65、66、67、68、69、70、71、72、73、74、75、76、77、78、79、80 mg·L−1)。其他两个组以此类推分别继续往前和往后递减和递增。3组预实验分开进行,先分别对第1组的40个梯度开展胁迫实验,调高盐度、低pH及高氨氮的药品及测量仪器分别为粗盐 (盐度计折射仪HT211ATC)、1 mol·L−1盐酸 (HCl)、1 mol·L−1氢氧化钠 (NaOH)[29] (高精度pH测试笔ATC)和氯化铵 (NH4Cl) 分析纯晶体 (水质分析仪W-I)。预实验设3个重复组 (每组30尾) 于调好的实验海水中进行,因水体中的低pH会缓慢恢复正常,故每2 h调整一次实验海水pH并统计死亡数,全程保持溶解氧质量浓度不低于6.0 mg·L−1,时间持续至对虾死亡过半为止。当高盐为35、低pH为6±0.1和高氨氮质量浓度为70 mg·L−1时,由SPSS 19.0软件算出半致死时间 (LT50) 为47.31 h,最接近48 h,故将该三因子浓度作为综合胁迫的浓度 (因在第1组中便确定了综合胁迫的浓度,故并未继续开展第2和第3组预实验)。
综合胁迫正式实验:对虾暂养3 d后开始实验[实验对虾体质量 (5.21±2.16) g、体长 (77.09±11.41) mm],由综合胁迫预实验确定的浓度开展正式实验,其他胁迫条件与综合胁迫预实验相同,从每个家系中随机取实验用虾30尾[30-31]置于小框中,于水深30 cm的池 (5 m×5 m) 中进行综合胁迫。按家系排序,生长性状与耐综合胁迫性状一一对应,每2 h调一次实验海水pH、统计死亡数、记录存活时间[32],并测量生长相关性状 (用精度为0.01位的分析天平连接电脑自动录入体质量数据,数码相机拍照后用Image J软件测体长、头胸甲长及腹节全长),实验持续至全部对虾死亡时结束。
1.3 数据分析及遗传参数估算
用多性状动物模型估计生长及耐综合胁迫性状的遗传参数,模型为:
$$ {y_{ijkl}} = \mu + {a_i} + {{\rm{Bl}}_j} + {c_k} + {{\rm{Tank}}_l} + {e_{ijkl}} $$ (1) 式中:
$ y_{i j k l} $ 为第i尾虾生长及耐综合胁迫性状的观测值;μ为总体均值;$ a_{i} $ 为第i尾虾的加性遗传效应;$ {\rm{Bl}}_{j} $ 为同环境养殖前的体长作为协变量;$ c_{k} $ 为共同环境效益;$ { {\rm{Tank}} }_l $ 为第l个养殖池的固定效应;$ e_{ijkl} $ 为第i尾虾的随机残差。遗传相关、表型相关及Z-score检验的计算公式参照[33-34]:
$$ r_{g}=\dfrac{\sigma_{xy}}{\sqrt{\sigma_{x}^{2} \times \sigma_{y}^{2}}} $$ (2) $$ Z=\frac{x_{i}-x_{f}}{\sqrt{\sigma_{i}^{2}+\sigma_{j}^{2}}} $$ (3) 式中:rg为遗传 (表型) 相关;
$ \sigma_{xy}$ 是两个性状的加性遗传或表型协方差,$ \sigma_{x}^2$ 和$ \sigma_{y}^2$ 是它们的加性遗传或表型方差;xi和xj是指各性状的遗传力或两性状间的相关系数,$ \sigma_{i}^2$ 和$ \sigma_{j}^2$ 是指相应遗传力或相关系数的标准误。利用ASReml 4软件进行方差组分剖分及遗传力估计,凡纳滨对虾生长相关性状及耐综合胁迫性状的遗传力用动物模型估计[35]。因剩余家系均为全同胞家系,无法准确剖分共同环境效益,此外在模型中加入养殖池固定效应后,模型不收敛,故分析时将共同环境效益及养殖池固定效应剔除掉。模型中并未包含性别固定效应,因为测量体质量时仍有大部分对虾难以辨别性别。
2. 结果
2.1 生长相关性状及耐综合胁迫性状的描述性统计
本实验首次尝试以高盐35、低pH 6±0.1和高氨氮质量浓度70 mg·L−1,开展凡纳滨对虾三因子综合胁迫。结果显示,5个性状的变异系数为14.75%~57.51%,其中体质量和耐综合胁迫的变异系数较高 (41.44%和57.51%);体长、头胸甲长、腹节全长的变异系数分别为14.79%、15.47%和14.75% (表1)。一般线性模型分析表明,家系间生长相关性状均存在极显著差异 (P<0.01);耐综合胁迫存活时间的变化为6~88 h,家系间的差异较大,分析表明凡纳滨对虾家系间生长相关性状及耐综合胁迫性状存在丰富的遗传变异 (图1)。此外,实验过程中还观察到,随着胁迫时间的增加,对虾表现出活动迟缓、侧躺,用玻璃棒触碰只有游泳足缓慢摆动;死亡对虾腹部肌肉和鳃丝发白,肝胰腺呈淡红褐色 (图2);进一步的组织切片观察发现,与实验前相比,胁迫后的虾肌肉组织纤维束的间隙变大、鳃组织肿胀、肝胰腺的管腔变为不规则形状并发生溶解现象 (图3)。
表 1 凡纳滨对虾生长相关性状及耐综合性状的描述性统计Table 1 Phenotypic parameters of growth traits and comprehensive tolerance traits of L. vannamei性状
Trait均值
Mean标准差
SD最小值
Min最大值
Max变异系数
CV/%体质量 BW/g 5.21 2.16 0.51 14.53 41.44 体长 BL/mm 77.09 11.41 33.77 105.88 14.79 头胸甲长 HBL/mm 24.07 3.72 10.37 38.71 15.47 腹节全长 FLAS/mm 53.74 7.93 25.79 74.69 14.75 耐综合胁迫 TCS/h 41.57 23.91 6 88 57.51 图 2 凡纳滨对虾综合胁迫前后对比图注:a. 综合胁迫前的鳃;b. 综合胁迫后的鳃;c. 综合胁迫前的肝胰腺;d. 综合胁迫后的肝胰腺。Fig. 2 Comparison of L. vannamei before and after comprehensive stressNone:a. Gills before comprehensive stress; b. Gills afer comprehensive stress; c. Hepatopancreas before comprehensive stress; d. Hepatopancreas afer comprehensive stress.图 3 凡纳滨对虾综合胁迫前后组织切片图注:a. 综合胁迫前的肌肉切片;b. 综合胁迫后的肌肉切片;c. 综合胁迫前的鳃切片;d. 综合胁迫后的鳃切片;e. 综合胁迫前的肝胰腺切片;f. 综合胁迫后的肝胰腺切片。Fig. 3 Tissue sections of L. vannamei before and after comprehensive stressNote: a. Muscle section before comprehensive stress; b. Muscle section afer comprehensive stress; c. Gill section before comprehensive stress; d. Gill section afer comprehensive stress; e. Hepatopancreas section before comprehensive stress; f. Comprehensive stress posterior hepatopancreas section.2.2 生长相关性状及耐综合胁迫性状的遗传参数
凡纳滨对虾生长相关性状及耐综合胁迫性状的遗传力见表2。生长相关性状的遗传力介于 (0.37±0.09)~(0.51±0.10),为高遗传力,其中体长的遗传力最高(0.51±0.10),说明生长性状以体长进行选育能获得较大遗传进展;耐综合胁迫性状的遗传力为0.21±0.06,遗传力中等,Z-score检验表明,所有遗传力均到达极显著水平 (P<0.01)。
表 2 凡纳滨对虾生长相关性状与耐综合胁迫性状的方差组分及遗传力Table 2 Variance components and heritability of growth traits and comprehensive stress tolerance traits of L. vannamei性状
Trait加性方差σa 2
Additive genetic
variance残差方差σe 2
Residual
variance表型方差σp 2
Phenotypic
variance遗传力h2
Heritability体质量
BW/g2.503 0 2.718 2 5.221 2 0.48±0.10** 体长
BL/mm74.525 4 71.794 1 146.319 5 0.51±0.10** 头胸甲长
HBL/mm5.538 5 9.559 4 15.097 9 0.37±0.09** 腹节全长
FLAS/mm26.794 9 42.105 2 68.900 1 0.39±0.09** 耐综合胁迫
TCS/h122.404 7 470.567 5 592.972 2 0.21±0.06** 注:**. 极显著相关 (P<0.01),后表同此。 Note: **. Extremely significant correlation (P<0.01); the same case in the following table. 凡纳滨对虾生长相关性状及耐综合胁迫性状的遗传相关及表型相关见表3。生长相关性状间的遗传相关和表型相关分别介于(0.54±0.13)~(0.99±0.01) 和 (0.72±0.02)~(0.94±0.01),Z-score检验均呈极显著高度正相关 (P<0.01)。生长相关性状及耐综合胁迫性状间的遗传相关和表型相关分别介于 (0.11±0.23)~(0.39±0.19) 和 (0.09±0.04)~(0.23±0.04),两者的遗传相关均为中、低度正相关,其中体长与耐综合胁迫性状间的遗传相关性达显著水平 (P<0.05)。
表 3 凡纳滨对虾生长相关性状与耐综合胁迫性状的遗传相关及表型相关Table 3 Genetic correlation and phenotypic correlation between growth traits and comprehensive stress tolerance traits of L. vannamei性状
Trait体质量
BW体长
BL头胸甲长
HBL腹节全长
FLAS耐综合胁迫
TCS体质量
BW/g— 0.99±0.01** 0.62±0.12** 0.76±0.08** 0.33±0.20 体长
BL/mm0.94±0.01** — 0.54±0.13** 0.73±0.09** 0.39±0.19* 头胸甲长
HBL/mm0.72±0.02** 0.72±0.03** — 0.86±0.06** 0.11±0.23 腹节全长
FLAS/mm0.79±0.02** 0.83±0.02** 0.74±0.02** — 0.17±0.22 耐综合胁迫
TCS/h0.23±0.04** 0.15±0.04** 0.14±0.04** 0.09±0.04* — 注:上三角遗传相关,下三角表型相关;*. 显著相关 (P<0.05)。 Note: The upper triangle is genetically related, and the lower triangle is related to the phenotype; *. Significant correlation (P<0.05). 3. 讨论
3.1 综合胁迫对凡纳滨对虾的毒害作用
在凡纳滨对虾实际养殖生产中,其所受的胁迫常常为多个环境胁迫因子的综合胁迫,当pH下降时亚硝态氮浓度上升使毒性增强[36];盐度变化对氨氮也有较大影响[37],相比于单因子胁迫其对对虾的危害更大。因此,有必要了解多因子综合胁迫对凡纳滨对虾的影响。高盐、低pH和高氨氮是凡纳滨对虾养殖水体中重要的胁迫因子,高盐急胁迫会影响内环境渗透压与呼吸代谢水平及免疫功能[18,38],长期胁迫还会抑制对虾生长[21];低pH胁迫会造成对虾组织缺氧、影响机体代谢[20]和免疫功能[19];高氨氮胁迫会降低对虾免疫力及影响对虾代谢水平[17]。本实验以高盐度为35、低pH为6±0.1和高氨氮为70 mg·L−1开展凡纳滨对虾三因子综合胁迫,结果发现,综合胁迫下对虾的鳃丝和肌肉变白,肝胰腺呈淡红褐色;进一步的组织切片观察发现,综合胁迫会使凡纳滨对虾肌肉纤维束间隙变大、鳃组织肿胀、肝胰腺管腔变形并发生溶解现象。推测综合胁迫会使凡纳滨对虾鳃、肌肉和肝胰腺受到损伤,从而造成机体缺氧、破坏内环境渗透压并使机体的正常代谢紊乱,使对虾逐渐死亡,具体胁迫死亡原因还有待进一步研究。此外,在后期研究高盐、低pH和高氨氮综合胁迫对对虾的分子作用机制时,可将鳃、肝胰腺和肌肉作为首选的目标器官和组织。
3.2 生长和耐综合胁迫性状的遗传参数
对虾生长性状与经济回报高度相关,是育种计划中一个非常重要的性状。本研究中凡纳滨对虾生长相关性状的遗传力估计值为高遗传力水平 [(0.37±0.09)~(0.51±0.10)],与张嘉晨等[39]估计的凡纳滨对虾生长相关性状的遗传力 [(0.35±0.01)~(0.48±0.15)]基本一致,高于前几世代的遗传力[(0.11±0.02)~(0.23±0.05)][5],可能是由于遗传或环境等多种因素造成的,例如不同世代、不同群体、生长条件、年龄、性别及分析模型等[8-10]。高遗传力 (h2) 估计值与低全同胞效应 (c2) 和低遗传力与高全同胞效应,表明数据中加性遗传效应和常见环境效应之间存在一定程度的混杂[40-41],Castillo-Juárez等[42]报道对凡纳滨对虾收获体质量的全同胞效应估计值都很小 (c2<0.1),但不考虑全同胞效应会导致估计的遗传力偏高,为了更好地估计收获体质量的遗传力和常见的环境影响,每尾公虾需要更多雌虾来产生更多的半同胞家系。本研究因所剩家系均为全同胞家系,无法准确剖分共同环境效益,故分析时并未包含共同环境效益。如上所述,本研究凡纳滨对虾生长相关性状的遗传力估计值与公布的凡纳滨对虾生长相关性状遗传力估计值大体一致,表明本研究中受全同胞效应的影响小,这可能与本研究前期所建家系间年龄差异小 (1~6 d) 及后期同环境养殖有关,即研究中估计的遗传参数可能接近该群体的“真实”参数。对虾的耐受性状是另一个重要的性状,耐受性状为阈值性状,一般遗传力较低,关于凡纳滨对虾耐受性状在单因子胁迫方面的报道较多,Zhang等[5]报道该品种耐低溶氧性状的遗传力为 (0.07±0.04)~(0.15±0.07)及Yuan等[6]报道耐高氨氮性状的遗传力为 (0.13±0.11)~(0.17±0.08);有关凡纳滨对虾耐综合胁迫的遗传参数未见报道,本实验首次尝试估计其遗传参数,结果显示,耐综合胁迫性状为中等遗传力 (0.21±0.06) (P<0.01),这表明通过选择提高对虾的综合胁迫耐受性能是可行的。
3.3 生长和耐综合胁迫性状的遗传相关
为了优化选育工作,在任何选育计划中都应准确估计重要性状之间的遗传相关性。本研究中,生长相关性状间的遗传相关介于 (0.54±0.13)~(0.99±0.01) (P<0.01),表现出非常高的相关性,与其他学者的研究结果一致[5-7],这些结果表明,所有的生长性状都可能由共同基因 (基因多效性) 控制。因此,仅选择一种生长性状进行改良可以同时改善育种计划中的其他生长性状。在本研究中生长相关性状与耐综合胁迫性状的遗传相关介于 (0.11±0.23)~(0.39±0.19),为低到中度正相关,其中体长与耐综合胁迫性状的遗传相关最高 (0.39±0.19) (P<0.05),同体长与氨氮耐受性呈遗传正相关[33]、生长性状与耐低溶氧性状呈遗传正相关[5]、生长性状与高氨氮耐受性呈遗传正相关[6]的结果一致,说明对生长性状选择不会使耐综合胁迫性状衰退,还能使耐综合胁迫性状得到一定的改良。此外,本研究估计的生长相关性状与耐综合胁迫性状遗传相关的标准误 (SE) 均较高,与Zhang等[5]的结果相似,说明这些评估还不能非常准确地估计遗传相关性,因此,需要对凡纳滨对虾生长性状与耐受性状 (耐综合胁迫性状) 之间的遗传相关性进行更多的准确研究,以实现育种目标的进一步提高。
4. 结论
本研究利用多性状动物模型和ASReml 4软件估计凡纳滨对虾105日龄的生长和耐综合胁迫性状的方差组分及遗传参数。研究结果显示生长和耐综合胁迫性状分别为高等和中等遗传力水平;此外“生长性状间”与“生长和耐综合胁迫性状间”的遗传相关分别为高度和低到中的正相关。表明生长和耐综合胁迫性状均可通过选育进行遗传改良;任何生长性状均能被其他生长性状替代以进行间接选择;对生长性状进行选育,耐综合胁迫性状也可获得间接改良。
-
表 1 不同解释变量的多重共线性检验
Table 1 Multicollinearity test for different explanatory variables
变量 Variable VIF (Y) VIF (M) VIF (Lon) VIF (Lat) VIF (ONI) VIF (PD) 延绳钓 Longline 1.024 1.014 1.499 1.717 1.027 1.421 围网 Purse seine 1.011 1.008 3.37 2.111 1.014 1.812 变量 Variable VIF (E) VIF (BA) VIF (SP) VIF (R) VIF (DS) 延绳钓 Longline 1.852 1.58 3.517 2.983 1.097 围网 Purse seine 2.207 1.763 4.812 4.002 1.143 表 2 最优GAM模型的筛选及拟合
Table 2 Selection and fitting of optimal GAM
解释变量
Explanatory variable延绳钓 Longline 围网 Purse seine 赤池信息准则
AIC偏差解释率
Deviance explained/%决定系数
R2赤池信息准则
AIC偏差解释率
Deviance explained/%决定系数
R2年 Y 48 437 3.46 0.034 14 789 1.45 0.013 月 M 48 314 4.04 0.039 14 628 4.22 0.039 经度 Lon 45 574 15.10 0.15 12 616 31.10 0.308 纬度 Lat 33 835 49.70 0.496 10 963 47.50 0.472 海洋厄尔尼诺指数 ONI 33 766 49.90 0.498 10 940 47.80 0.475 山顶深度 PD/m 33 422 50.60 0.505 10872 48.50 0.481 高度 E/m 33 115 51.30 0.512 10 806 49.00 0.486 粗糙度 R 33 081 51.40 0.513 10 757 49.50 0.491 底面积 BA/km2 32 900 51.80 0.517 10 727 49.80 0.494 坡度 SP 32 805 52.00 0.519 10 674 50.30 0.498 海山密度 DS/(座·10−4 n mile2) 32 758 52.20 0.52 10 593 51.00 0.505 表 3 延绳钓和围网渔业黄鳍金枪鱼CPUE的影响因子
Table 3 Factors affecting CPUE of yellowfin tuna in longline and purse seine fisheries
影响因子
Factor延绳钓 Longline 围网 Purse seine 自由度 DF F P 自由度 DF F P 月 M 6.95 38.57 <0.001*** 7.52 25.98 <0.001*** 经度 Lon 8.839 240 <0.001*** 8.689 34.14 <0.001*** 纬度 Lat 8.974 1079.86 <0.001*** 8.854 127.56 <0.001*** 海洋厄尔尼诺指数 ONI 7.46 10.04 <0.001*** 7.079 4.42 <0.001*** 山顶深度 PD/m 3.966 130.31 <0.001*** 3.823 17.55 <0.001*** 高度 E/m 3.765 20.94 <0.001*** 1.962 20.09 <0.001*** 粗糙度 R 3.5 20.81 <0.001*** 3.856 20.16 <0.001*** 底面积 BA/km2 3.481 35.39 <0.001*** 4.805 4.5 0.000 812*** 坡度 SP 3.985 26.73 <0.001*** 3.87 13.94 <0.001*** 海山密度 DS/(座·10−4n mile2) 3.104 15.34 <0.001*** 3.493 24.14 <0.001*** 注:***. 极显著性影响 (P<0.001)。 Note: ***. Very significant effect (P<0.001). Table 1 Multicollinearity test for different explanatory variables
Table 2 Selection and fitting of optimal GAM
Table 3 Factors affecting the CPUE of yellowfin tuna in longline and purse seine fisheries
-
[1] YESSON C, LETESSIER T, NIMMO-SMITH A, et al. Improved bathymetry leads to >
4000 new seamount predictions in the global ocean–but beware of phantom seamounts[J]. UCL Press, 2021, 4: 1-9.[2] YESSON C, CLARK M R, TAYLOR M L, et al. The global distribution of seamounts based on 30 arc seconds bathymetry data[J]. Deep-Sea Res I, 2011, 58(4): 442-453. doi: 10.1016/j.dsr.2011.02.004
[3] ROGERS A D. The biology of seamounts: 25 years on[J]. Adv Mar Biol, 2018, 79: 137-224.
[4] BO M, COPPARI M, BETTI F, et al. Unveiling the deep biodiversity of the Janua Seamount (Ligurian Sea): first Mediterranean sighting of the rare Atlantic bamboo coral Chelidonisis aurantiaca Studer, 1890[J]. Deep-Sea Res I, 2020, 156: 103186. doi: 10.1016/j.dsr.2019.103186
[5] PITCHER T J, MORATO T, HART P J B, et al. Seamounts: ecology, fisheries & conservation[M]. Oxford: Blackwell Pub, 2007: 85-100, 442-475.
[6] GONZLEZ-IRUSTA J M, DE LA TORRIENTE A, PUNZN A, et al. Living at the top. Connectivity limitations and summit depth drive fish diversity patterns in an isolated seamount[J]. Mar Ecol Prog Ser, 2021, 670: 121-137. doi: 10.3354/meps13766
[7] BRIDGES A E H, BARNES D K A, BELL J B, et al. Depth and latitudinal gradients of diversity in seamount benthic communities[J]. J Biogeogr, 2022, 49(5): 904-915. doi: 10.1111/jbi.14355
[8] MCCLAIN C R, LUNDSTEN L. Assemblage structure is related to slope and depth on a deep offshore Pacific seamount chain[J]. Mar Ecol, 2015, 36(2): 210-220. doi: 10.1111/maec.12136
[9] HANN C H, SMITH T D, AND TORRES L G. A sperm whale's perspective: the importance of seasonality and seamount depth[J]. Mar Mammal Sci, 2016, 32(4): 1470-1481. doi: 10.1111/mms.12320
[10] ROWDEN A A, SCHLACHER T A, WILLIAMS A, et al. A test of the seamount oasis hypothesis: seamounts support higher epibenthic megafaunal biomass than adjacent slopes[J]. Mar Ecol, 2010, 31(1): 95-106.
[11] CAMPANELLA F, COLLINS M A, YOUNG E F, et al. First insight of meso-and bentho-pelagic fish dynamics around remote seamounts in the South Atlantic Ocean[J]. Front Mar Sci, 2021, 8: 693.
[12] VASSALLO P, PAOLI C, ALESSI J, et al. Seamounts as hot-spots of large pelagic aggregations[J]. Mediterr Mar Sci, 2018, 19(3): 444-458. doi: 10.12681/mms.15546
[13] KVILE K , TARANTO G H, PITCHER T J, et al. A global assessment of seamount ecosystems knowledge using an ecosystem evaluation framework[J]. Biol Conserv, 2014, 173: 108-120. doi: 10.1016/j.biocon.2013.10.002
[14] DEARY A L, MORET-FERGUSON S, ENGELS M, et al. Influence of central pacific oceanographic conditions on the potential vertical habitat of four tropical tuna species1[J]. Pac Sci, 2015, 69(4): 461-475. doi: 10.2984/69.4.3
[15] DUFFY L M, KUHNERT P M, PETHYBRIDGE H R, et al. Global trophic ecology of yellowfin, bigeye, and albacore tunas: understanding predation on micronekton communities at ocean-basin scales[J]. Deep-Sea Res II, 2017, 140: 55-73. doi: 10.1016/j.dsr2.2017.03.003
[16] DORTEL E, PECQUERIE L, CHASSOT E. A Dynamic Energy Budget simulation approach to investigate the eco-physiological factors behind the two-stanza growth of yellowfin tuna (Thunnus albacares)[J]. Ecol Model, 2020, 437: 109297. doi: 10.1016/j.ecolmodel.2020.109297
[17] PECORARO C, ZUDAIRE I, BODIN N, et al. Putting all the pieces together: integrating current knowledge of the biology, ecology, fisheries status, stock structure and management of yellowfin tuna (Thunnus albacares)[J]. Rev Fish Biol Fish, 2016, 27(4): 811-841.
[18] 石肖飞, 王啸, 王佚兮, 等. 热带中西太平洋海域黄鳍金枪鱼的摄食生物学特性[J]. 南方水产科学, 2022, 18(1): 43-51. doi: 10.12131/20210140 [19] SCHAEFER K M, FULLER D W, AND BLOCK B A. Movements, behavior, and habitat utilization of yellowfin tuna (Thunnus albacares) in the Pacific Ocean off Baja California, Mexico, determined from archival tag data analyses, including unscented Kalman filtering[J]. Fish Res, 2011, 112(1/2): 22-37.
[20] WRIGHT S R, RIGHTON D, NAULAERTS J, et al. Yellowfin tuna behavioural ecology and catchability in the South Atlantic: the right place at the right time (and depth)[J]. Front Mar Sci, 2021, 8: 664593. doi: 10.3389/fmars.2021.664593
[21] DAGORN L, HOLLAND K N, HALLIER J P, et al. Deep diving behavior observed in yellowfin tuna (Thunnus albacares)[J]. Aquat Living Resour, 2006, 19(1): 85-88. doi: 10.1051/alr:2006008
[22] CLARK M R, ROWDEN A A, SCHLACHER T, et al. The ecology of seamounts: structure, function, and human impacts[J]. Annu Rev Mar Sci, 2010, 2: 253-278. doi: 10.1146/annurev-marine-120308-081109
[23] PILLING G, SCOTT F, AND HAMPTON S. Minimum target reference points for WCPO yellowfin and bigeye tuna consistent with alternative LRP risk levels, and multispecies implications[R/OL]. [2030-09-10] Pohnpei: Technical Report WCPFC-SC15-2019/MI-WP-01, 2019. https://www.wcpfc.int/doc/wcpfc16-2019-15-update-sc15-mi-wp-01/minimum-target-reference-points-wcpo-yellowfin-and-bigeye.pdf
[24] ZHAO R J, ZHAO F, FENG L, et al. A deep seamount effect enhanced the vertical connectivity of the planktonic community across 1,000 m above summit[J]. J Geophys Res-Oceans, 2023, 128(3): e2022JC018898. doi: 10.1029/2022JC018898
[25] MORATO T, HOYLE S D, ALLAIN V, et al. Seamounts are hotspots of pelagic biodiversity in the open ocean[J]. P Natl Acad Sci USA, 2010, 107(21): 9707-9711. doi: 10.1073/pnas.0910290107
[26] MORATO T, VARKEY D A, DAMASO C, et al. Evidence of a seamount effect on aggregating visitors[J]. Mar Ecol Prog Ser, 2008, 357(4): 23-32.
[27] MAUNDER M N, STARR P J. Fitting fisheries models to standardised CPUE abundance indices[J]. Fish Res, 2003, 63(1): 43-50. doi: 10.1016/S0165-7836(03)00002-X
[28] PEDERSEN E J, MILLER D L, SIMPSON G L, et al. Hierarchical generalized additive models in ecology: an introduction with mgcv[J]. PeerJ, 2019, 7: e6876. doi: 10.7717/peerj.6876
[29] MARN-ENRQUEZ E, RAMREZ-PREZ J S, RUIZ-DOMNGUEZ M, et al. Effect of marine climate and baitfish availability on the tuna baitboat fishery CPUE off northwestern Mexico[J]. Ocean Coast Manag, 2023, 232: 106418. doi: 10.1016/j.ocecoaman.2022.106418
[30] VAIHOLA S, KININMONTH S. Climate change potential impacts on the tuna fisheries in the exclusive economic zones of Tonga[J]. Diversity, 2023, 15(7): 844. doi: 10.3390/d15070844
[31] LEHODEY P, BERTRAND A, HOBDAY A J, et al. ENSO impact on marine fisheries and ecosystems[M]. Washington: Wiley-American Geophysical Union, 2020: 429-451.
[32] BO M, COPPARI M, BETTI F, et al. The high biodiversity and vulnerability of two Mediterranean bathyal seamounts support the need for creating offshore protected areas[J]. Aquat Conserv, 2021, 31(3): 543-566. doi: 10.1002/aqc.3456
[33] HANAFI-PORTIER M, SAMADI S, CORBARI L, et al. Multiscale spatial patterns and environmental drivers of seamount and island slope megafaunal assemblages along the Mozambique channel[J]. Deep-Sea Res I, 2024, 203: 104198. doi: 10.1016/j.dsr.2023.104198
[34] PITCHER T J, MORATO T, HART P J B, et al. Seamounts: ecology, fisheries & conservation[M]. Oxford: Blackwell Pub, 2007: 238-239.
[35] CLARK M R. Deep sea seamount fisheries: a review of global status and future prospects[J]. Lat Am J Aquat Res, 2009, 37(3): 501-512. doi: 10.3856/vol37-issue3-fulltex-16
[36] ITANO D. A summary of operational, technical and fishery information on WCPO purse seine fisheries operating on floating objects[R/OL]. [2023-09-10]Honolulu: Scientific Committee 3rd Regular Session of Western and Central Pacific Fisheries Commission, 2007. https://www.wcpfc.int/system/files/SC3_FT-IP-4_Itano%20FO_complete.pdf
[37] PITCHER T J, MORATO T, HART P J B, et al. seamounts: ecology, fisheries & conservation[M]. Oxford: Blackwell Pub, 2007: 85-100.
[38] PRECIADO I, CARTES J E, PUNZN A, et al. Food web functioning of the benthopelagic community in a deep-sea seamount based on diet and stable isotope analyses[J]. Deep-Sea Res I, 2017, 137: 56-68.
[39] BRILL R W, LUTCAVAGE M E. Understanding environmental influences on movements and depth distributions of tunas and billfishes can significantly improve population assessments[C]//American Fisheries Society Symposium. Phoenix: American Fisheries Society, 2001: 179-198.
[40] AUSCAVITCH S R, DEERE M C, KELLER A G, et al. Oceanographic drivers of deep-sea coral species distribution and community assembly on seamounts, islands, atolls, and reefs within the phoenix islands protected area[J]. Front Mar Sci, 2020, 7: 42. doi: 10.3389/fmars.2020.00042
[41] CLARK M R, BOWDEN D A. Seamount biodiversity: high variability both within and between seamounts in the Ross Sea region of Antarctica[J]. Hydrobiologia, 2015, 761(1): 161-180. doi: 10.1007/s10750-015-2327-9
[42] VASSALLO P, PAOLI C, ALIANI S, et al. Benthic diversity patterns and predictors: a study case with inferences for conservation[J]. Mar Pollut Bull, 2020, 150: 110748. doi: 10.1016/j.marpolbul.2019.110748
[43] LAN K W, SHIMADA T, LEE M A, et al. Using remote-sensing environmental and fishery data to map potential yellowfin tuna habitats in the tropical Pacific Ocean[J]. Remote Sens-Basel, 2017, 9(5): 444. doi: 10.3390/rs9050444
[44] 杨胜龙, 张忭忭, 靳少非, 等. 中西太平洋延绳钓黄鳍金枪鱼渔场时空分布与温跃层关系[J]. 海洋学报, 2015, 37(6): 78-87. doi: http://en.cnki.com.cn/Article_en/CJFDTOTAL-SEAC201506008.htm [45] HOOLIHAN J, WELLS R, LUO J, et al. Vertical and horizontal movements of yellowfin tuna in the Gulf of Mexico[J]. Mar Coast Fish, 2014, 6(1): 211-222. doi: 10.1080/19425120.2014.935900
[46] LASCELLES B, NOTARBARTOLO DI SCIARA G, AGARDY T, et al. Migratory marine species: their status, threats and conservation management needs[J]. Aquat Conserv, 2014, 24(S2): 111-127. doi: 10.1002/aqc.2512
[47] DUERI S, MAURY O. Modelling the effect of marine protected areas on the population of skipjack tuna in the Indian Ocean[J]. Aquat Living Resour, 2013, 26(2): 171-178.
[48] GRSS A. Modelling the impacts of marine protected areas for mobile exploited fish populations and their fisheries: what we recently learnt and where we should be going[J]. Aquat Living Resour, 2015, 27(3/4): 107-133.
[49] CLARK M R, WATLING L, ROWDEN A A, et al. A global seamount classification to aid the scientific design of marine protected area networks[J]. Ocean Coast Manag, 2011, 54(1): 19-36. doi: 10.1016/j.ocecoaman.2010.10.006
[50] HOWELL K L. A benthic classification system to aid in the implementation of marine protected area networks in the deep/high seas of the NE Atlantic[J]. Biol Conserv, 2010, 143(5): 1041-1056.
[51] FREIWALD A. Cold-water corals and ecosystems[M]. Heidelberg: Springer Science & Business Media, 2005: 259-276.
[52] RAMOS A, SANTIAGO J, SANGRA P, et al. An application of satellite-derived sea surface temperature data to the skipjack (Katsuwonus pelamis Linnaeus, 1758) and albacore tuna (Thunnus alalunga Bonaterre, 1788) fisheries in the north-east Atlantic[J]. Int J Remote Sens, 1996, 17(4): 749-759. doi: 10.1080/01431169608949042
[53] FIEDLER P C, BERNARD H J. Tuna aggregation and feeding near fronts observed in satellite imagery[J]. Cont Shelf Res, 1987, 7(8): 871-881. doi: 10.1016/0278-4343(87)90003-3
[54] CLARK M R, SCHLACHER T A, ROWDEN A A, et al. Science priorities for seamounts: research links to conservation and management[J]. PLoS One, 2012, 7(1): e29232. doi: 10.1371/journal.pone.0029232
[55] BARCKHAUSEN U, ROESER H A, von HUENE R. Magnetic signature of upper plate structures and subducting seamounts at the convergent margin off Costa Rica[J]. J Geophys Res-Sol Ea, 1998, 103(B4): 7079-7093. doi: 10.1029/98JB00163
[56] WRIGHT S R, RIGHTON D, NAULAERTS J, et al. Fidelity of yellowfin tuna to seamount and island foraging grounds in the central South Atlantic Ocean[J]. Deep-Sea Res I, 2021, 172: 103513. doi: 10.1016/j.dsr.2021.103513
[57] LAM C H, TAM C, KOBAYASHI D R, et al. Complex dispersal of adult yellowfin tuna from the main Hawaiian islands[J]. Front Mar Sci, 2020, 7: 138. doi: 10.3389/fmars.2020.00138
[58] MONDAL S, RAY A, LEE M A, et al. Projected changes in spawning ground distribution of mature albacore tuna in the Indian Ocean under various global climate change scenarios[J]. J Mar Sci Eng, 2023, 11(8): 1565. doi: 10.3390/jmse11081565
[1] YESSON C, LETESSIER T, NIMMO-SMITH A, et al. Improved bathymetry leads to > 4 000 new seamount predictions in the global ocean-but beware of phantom seamounts [J]. UCL Press, 2021, 4: 1–9. [2] YESSON C, CLARK M R, TAYLOR M L, et al. The global distribution of seamounts based on 30 arc seconds bathymetry data [J]. Deep-Sea Res Ⅰ, 2011, 58 (4): 442–453. [3] ROGERS A D. The biology of seamounts: 25 years on [J]. Adv Mar Biol, 2018, 79: 137–224. [4] BO M, COPPARI M, BETTI F, et al. Unveiling the deep biodiversity of the Janua Seamount (Ligurian Sea): first Mediterranean sighting of the rare Atlantic bamboo coral Chelidonisis aurantiaca Studer, 1890 [J]. Deep-Sea Res Ⅰ, 2020, 156: 103186. [5] PITCHER T J, MORATO T, HART P J B, et al. Seamounts: ecology, fisheries & conservation [M]. Oxford: Blackwell Pub, 2007: 85–100, 442–475. [6] GONZLEZ-IRUSTA J M, DE LA TORRIENTE A, PUNZN A, et al. Living at the top. Connectivity limitations and summit depth drive fish diversity patterns in an isolated seamount [J]. Mar Ecol Prog Ser, 2021, 670: 121–137. [7] BRIDGES A E H, BARNES D K A, BELL J B, et al. Depth and latitudinal gradients of diversity in seamount benthic communities [J]. J Biogeogr, 2022, 49(5): 904–915. [8] MCCLAIN C R, LUNDSTEN L. Assemblage structure is related to slope and depth on a deep offshore Pacific seamount chain [J]. Mar Ecol, 2015, 36(2): 210–220. [9] HANN C H, SMITH T D, TORRES L G. A sperm whale's perspective: the importance of seasonality and seamount depth [J]. Mar Mammal Sci, 2016, 32(4): 1470–1481. [10] ROWDEN A A, SCHLACHER T A, WILLIAMS A, et al. A test of the seamount oasis hypothesis: seamounts support higher epibenthic megafaunal biomass than adjacent slopes [J]. Mar Ecol, 2010, 31(1): 95–106. [11] CAMPANELLA F, COLLINS M A, YOUNG E F, et al. First insight of meso-and bentho-pelagic fish dynamics around remote seamounts in the South Atlantic Ocean [J]. Front Mar Sci, 2021, 8: 693. [12] VASSALLO P, PAOLI C, ALESSI J, et al. Seamounts as hot-spots of large pelagic aggregations [J]. Mediterr Mar Sci, 2018, 19(3): 444–458. [13] KVILE K, TARANTO G H, PITCHER T J, et al. A global assessment of seamount ecosystems knowledge using an ecosystem evaluation framework [J]. Biol Conserv, 2014, 173: 108–120. [14] DEARY A L, MORET-FERGUSON S, ENGELS M, et al. Influence of central Pacific oceanographic conditions on the potential vertical habitat of four tropical tuna species 1 [J]. Pac Sci, 2015, 69(4): 461–475. [15] DUFFY L M, KUHNERT P M, PETHYBRIDGE H R, et al. Global trophic ecology of yellowfin, bigeye, and albacore tunas: understanding predation on micronekton communities at ocean-basin scales [J]. Deep-Sea Res Ⅱ, 2017, 140: 55–73. [16] DORTEL E, PECQUERIE L, CHASSOT E. A Dynamic Energy Budget simulation approach to investigate the eco-physiological factors behind the two-stanza growth of yellowfin tuna (Thunnus albacares) [J]. Ecol Model, 2020, 437: 109297. [17] PECORARO C, ZUDAIRE I, BODIN N, et al. Putting all the pieces together: integrating current knowledge of the biology, ecology, fisheries status, stock structure and management of yellowfin tuna (Thunnus albacares) [J]. Rev Fish Biol Fish, 2016, 27(4): 811–841. [18] SHI X F, WANG X, WANG Y X, et al. Feeding biology of yellowfin tuna (Thunnus albacares) in tropical central and western Pacific Ocean [J]. South China Fish Sci, 2022, 18(1): 43–51 (in Chinese) [19] SCHAEFER K M, FULLER D W, BLOCK B A. Movements, behavior, and habitat utilization of yellowfin tuna (Thunnus albacares) in the Pacific Ocean off Baja California, Mexico, determined from archival tag data analyses, including unscented Kalman filtering [J]. Fish Res, 2011, 112(1/2): 22–37. [20] WRIGHT S R, RIGHTON D, NAULAERTS J, et al. Yellowfin tuna behavioural ecology and catchability in the South Atlantic: the right place at the right time (and depth) [J]. Front Mar Sci, 2021, 8: 664593. [21] DAGORN L, HOLLAND K N, HALLIER J P, et al. Deep diving behavior observed in yellowfin tuna (Thunnus albacares) [J]. Aquat Living Resour, 2006, 19(1): 85–88. [22] CLARK M R, ROWDEN A A, SCHLACHER T, et al. The ecology of seamounts: structure, function, and human impacts [J]. Annu Rev Mar Sci, 2010, 2: 253–278. [23] PILLING G, SCOTT F, HAMPTON S. Minimum target reference points for WCPO yellowfin and bigeye tuna consistent with alternative LRP risk levels, and multispecies implications [R/OL]. [2030-09-10] Pohnpei: Technical Report WCPFC-SC15-2019/MI-WP-01, 2019. https://www.wcpfc.int/doc/wcpfc16-2019-15-update-sc15-mi-wp-01/minimum-target-reference-pointswcpo-yellowfin-and-bigeye.pdf [24] ZHAO R J, ZHAO F, FENG L, et al. A deep seamount effect enhanced the vertical connectivity of the planktonic community across 1, 000 m above summit [J]. J Geophys Res-Oceans, 2023, 128(3): e2022JC018898. [25] MORATO T, HOYLE S D, ALLAIN V, et al. Seamounts are hotspots of pelagic biodiversity in the open ocean [J]. P Natl Acad Sci USA, 2010, 107(21): 9707–9711. [26] MORATO T, VARKEY D A, DAMASO C, et al. Evidence of a seamount effect on aggregating visitors [J]. Mar Ecol Prog Ser, 2008, 357(4): 23–32. [27] MAUNDER M N, STARR P J. Fitting fisheries models to standardised CPUE abundance indices [J]. Fish Res, 2003, 63(1): 43–50. [28] PEDERSEN E J, MILLER D L, SIMPSON G L, et al. Hierarchical generalized additive models in ecology: an introduction with mgcv [J]. PeerJ, 2019, 7: e6876. [29] MARN-ENRQUEZ E, RAMREZ-PREZ J S, RUIZ-DOMNGUEZM, et al. Effect of marine climate and baitfish availability on the tuna baitboat fishery CPUE off northwestern Mexico [J]. Ocean Coast Manag, 2023, 232: 106418. [30] VAIHOLA S, KININMONTH S. Climate change potential impacts on the tuna fisheries in the exclusive economic zones of Tonga [J]. Diversity, 2023, 15(7): 844. [31] LEHODEY P, BERTRAND A, HOBDAY A J, et al. ENSO impact on marine fisheries and ecosystems [M]. Washington: Wiley American Geophysical Union, 2020: 429–451. [32] BO M, COPPARI M, BETTI F, et al. The high biodiversity and vulnerability of two Mediterranean bathyal seamounts support the need for creating offshore protected areas [J]. Aquat Conserv, 2021, 31(3): 543–566. [33] HANAFI-PORTIER M, SAMADI S, CORBARI L, et al. Multiscale spatial patterns and environmental drivers of seamount and island slope megafaunal assemblages along the Mozambique channel [J]. Deep-Sea Res I, 2024, 203: 104198. [34] PITCHER T J, MORATO T, HART P J B, et al. Seamounts: ecology, fisheries & conservation [M]. Oxford: Blackwell Pub, 2007: 238–239. [35] CLARK M R. Deep sea seamount fisheries: a review of global status and future prospects [J]. Lat Am J Aquat Res, 2009, 37(3): 501–512. [36] ITANO D. A summary of operational, technical and fishery information on WCPO purse seine fisheries operating on floating objects [R/OL]. [2023-09-10] Honolulu: Scientific Committee 3rd Regular Session of Western and Central Pacific Fisheries Commission, 2007. https://www.wcpfc.int/system/files/SC3_FT-IP-4_Itano%20FO_complete.pdf [37] PITCHER T J, MORATO T, HART P J B, et al. seamounts: ecology, fisheries & conservation [M]. Oxford: Blackwell Pub, 2007: 85–100. [38] PRECIADO I, CARTES J E, PUNZN A, et al. Food web functioning of the benthopelagic community in a deep-sea seamount based on diet and stable isotope analyses [J]. Deep-Sea Res I, 2017, 137: 56–68. [39] BRILL R W, LUTCAVAGE M E. Understanding environmental influences on movements and depth distributions of tunas and billfishes can significantly improve population assessments [C] // American Fisheries Society Symposium. Phoenix: American Fisheries Society, 2001: 179–198. [40] AUSCAVITCH S R, DEERE M C, KELLER A G, et al. Oceanographic drivers of deep-sea coral species distribution and community assembly on seamounts, islands, atolls, and reefs within the phoenix islands protected area [J]. Front Mar Sci, 2020, 7: 42. [41] CLARK M R, BOWDEN D A. Seamount biodiversity: high variability both within and between seamounts in the Ross Sea region of Antarctica [J]. Hydrobiologia, 2015, 761(1): 161–180. [42] VASSALLO P, PAOLI C, ALIANI S, et al. Benthic diversity patterns and predictors: a study case with inferences for conservation [J]. Mar Pollut Bull, 2020, 150: 110748. [43] LAN K W, SHIMADA T, LEE M A, et al. Using remote-sensing environmental and fishery data to map potential yellowfin tuna habitats in the tropical Pacific Ocean [J]. Remote Sens-Basel, 2017, 9(5): 444. [44] YANG S L, ZHANG B B, JIN S F, et al. Relationship between the temporal-spatial distribution of longline fishing grounds of yellowfin tuna (Thunnus albacares) and the thermocline characteristics in the Western and Central Pacific Ocean [J]. Acta Oceanologica Sinica, 2015, 37(6): 78–87 (in Chinese). [45] HOOLIHAN J, WELLS R, LUO J, et al. Vertical and horizontal movements of yellowfin tuna in the Gulf of Mexico [J]. Mar Coast Fish, 2014, 6(1): 211–222. [46] LASCELLES B, NOTARBARTOLO DI SCIARA G, AGARDY T, et al. Migratory marine species: their status, threats and conservation management needs [J]. Aquat Conserv, 2014, 24(S2): 111–127. [47] DUERI S, MAURY O. Modelling the effect of marine protected areas on the population of skipjack tuna in the Indian Ocean [J]. Aquat Living Resour, 2013, 26(2): 171–178. [48] GRSS A. Modelling the impacts of marine protected areas for mobile exploited fish populations and their fisheries: what we recently learnt and where we should be going [J]. Aquat Living Resour, 2015, 27(3/4): 107–133. [49] CLARK M R, WATLING L, ROWDEN A A, et al. A global seamount classification to aid the scientific design of marine protected area networks [J]. Ocean Coast Manag, 2011, 54(1): 19–36. [50] HOWELL K L. A benthic classification system to aid in the implementation of marine protected area networks in the deep/high seas of the NE Atlantic [J]. Biol Conserv, 2010, 143(5): 1041–1056. [51] FREIWALD A. Cold-water corals and ecosystems [M]. Heidelberg: Springer Science & Business Media, 2005: 259–276. [52] RAMOS A, SANTIAGO J, SANGRA P, et al. An application of satellite-derived sea surface temperature data to the skipjack (Katsuwonus pelamis Linnaeus, 1758) and albacore tuna (Thunnus alalunga Bonaterre, 1788) fisheries in the north-east Atlantic [J]. Int J Remote Sens, 1996, 17(4): 749–759. [53] FIEDLER P C, BERNARD H J. Tuna aggregation and feeding near fronts observed in satellite imagery [J]. Cont Shelf Res, 1987, 7(8): 871–881. [54] CLARK M R, SCHLACHER T A, ROWDEN A A, et al. Science priorities for seamounts: research links to conservation and management [J]. PLoS One, 2012, 7(1): e29232. [55] BARCKHAUSEN U, ROESER H A, von HUENE R. Magnetic signature of upper plate structures and subducting seamounts at the convergent margin off Costa Rica [J]. J Geophys Res-Sol Ea, 1998, 103(B4): 7079–7093. [56] WRIGHT S R, RIGHTON D, NAULAERTS J, et al. Fidelity of yellowfin tuna to seamount and island foraging grounds in the central South Atlantic Ocean [J]. Deep-Sea Res I, 2021, 172: 103513. [57] LAM C H, TAM C, KOBAYASHI D R, et al. Complex dispersal of adult yellowfin tuna from the main Hawaiian islands [J]. Front Mar Sci, 2020, 7: 138. [58] MONDAL S, RAY A, LEE M A, et al. Projected changes in spawning ground distribution of mature albacore tuna in the Indian Ocean under various global climate change scenarios [J]. J Mar Sci Eng, 2023, 11(8): 1565. -
期刊类型引用(5)
1. 段毓佳,谭建,栾生,罗坤,王宏杰,隋娟,孟宪红,孔杰. 凡纳滨对虾在低氧环境下存活性状的遗传参数评估. 渔业科学进展. 2024(01): 138-147 . 百度学术
2. 赵海池,刘志峰,王新安,包玉龙,刘圣聪,杨明超,闫鹏飞,马爱军. 红鳍东方鲀(Takifugu rubripes)耐低温性状和生长性状遗传参数评估. 海洋与湖沼. 2024(02): 517-525 . 百度学术
3. 周静心,孟宪红,傅强,曹宝祥,陈宝龙,刘绵宇,曹家旺,李旭鹏,强光峰,代平,栾生,邢群,李色东,孔杰. 常压室温等离子体(ARTP)诱变对凡纳对虾不同家系幼体发育及仔虾抗逆性状的影响. 渔业科学进展. 2024(06): 144-154 . 百度学术
4. 黄桂仙,李旭鹏,田吉腾,栾生,孔杰,曹宝祥,刘宁,罗坤,谭建,曹家旺,代平,陈宝龙,强光峰,刘绵宇,刘杨,王宏杰,刘学会,隋娟,孟宪红. 凡纳对虾不同品系生长和急性肝胰腺坏死病抗性遗传参数估计. 渔业科学进展. 2024(06): 133-143 . 百度学术
5. 何立彬,郭冉,于志文,高佳朋,韩佳乐. 不同密度下凡纳滨对虾工厂化养殖水体微生物多样性动态变化. 黑龙江水产. 2022(06): 14-21 . 百度学术
其他类型引用(6)