基于机器视觉的凡纳滨对虾生物量参数估计

Parameter estimation of biomass of Pacific white shrimp (Litopenaeus vannamei) based on machine vision

  • 摘要: 针对凡纳滨对虾 (Litopenaeus vannamei) 养殖过程中,传统生物量人工监测效率低、应激损伤大等问题,研究提出了一种融合改进YOLOv8算法与最小包围盒 (Oriented Bounding Box, OBB) 的非接触式体长-体质量估算方法,以提升智能化投饲管理的效率和准确性。该方法通过以下技术改进实现生物量参数的有效估计:首先,融合Focal-GIoU构建损失函数,增强对遮挡虾体的检测能力;其次,引入GhostNetV2轻量化网络的空间-通道解耦注意力机制,提升特征表达能力,并集成RepBlock动态可重构模块,增强多尺度形态自适应识别能力;最后,提出基于主成分分析的最小包围盒 (Principal Components Analysis-Oriented Bounding Box, PCA-OBB) 算法,通过协方差矩阵特征分解确定虾体主轴方向,并结合霍夫圆检测标定像素-物理尺寸转换系数,建立体长-体质量回归模型。结果表明,该方法对120日龄凡纳滨对虾体长的测量平均相对误差为1.26%,最大绝对误差0.503 cm,体质量预测平均相对误差为5.3%,均优于传统人工测量。该方法实现了凡纳滨对虾的非接触式生物量参数实时监测和估计,为精准投喂提供了有效技术支持。

     

    Abstract: In order to solve the problems of low efficiency and significant stress damage in traditional manual biomass monitoring during the cultivation of Pacific white shrimp (Litopenaeus vannamei), we propose a non-contact body-length and mass estimation method that integrates an improved YOLOv8 detector with an oriented bounding box (OBB) framework, so as to improve the efficiency and accuracy of intelligent feeding management. First, we constructed a Focal-GIoU loss function to bolster detection performance under heavy occlusion. Then, we adopted a GhostNetV2 backbone enhanced with a spatial-channel decoupling attention mechanism and integrate dynamically reconfigurable RepBlock modules to strengthen multi-scale morphological adaptation. Finally, we introduced a Principal Component Analysis-Oriented Bounding Box (PCA-OBB) algorithm in which the shrimp's principal axis was extracted via eigen decomposition of its covariance matrix and a Hough-circle detection scheme calibrated the pixel-to-physical dimension conversion coefficient. A regression model which correlated body length to mass was established. Experiments on the 120-day-old L. vannamei samples demonstrated an average relative error of 1.26% in length measurement, maximum absolute error of 0.503 cm, and a 5.3% average relative error in mass prediction, both outperforming conventional manual methods. This method achieves real-time monitoring and estimation of non-contact biomass parameters of L. vannamei, providing effective technical support for precise feeding.

     

/

返回文章
返回