Effects of mooring pattern on dynamic characteristics of a deep-water aquaculture cage
-
摘要: 针对一种三角形高密度聚乙烯深水养殖网箱,该研究基于有限元法建立了波浪流作用下网箱动力响应计算模型,并通过开展模型比尺1∶15的水池试验,分析比较了网箱在纯波、波流组合条件下动力响应的计算结果与试验数据,两者相对误差均在10%以内。在此基础上,考虑原型网箱海况数据,设计波流要素值取为:波高 (H) 4~6 m、周期 (T) 9 s、流速 (v) 0.5~1.5 m·s−1,分析了单点系泊和多点系泊方式浮架变形以及网箱系泊力的情况,并进一步分析了系泊方式对网箱运动特性的影响。结果表明,波流作用下,多点系泊布置时的系泊力峰值大于单点系泊情况,且随着流速和波高的增加,两者相差幅度增大;在大浪强流条件(H=6 m,T=9 s,v=1.5 m·s−1)时,多点系泊能够一定程度上降低浮架的变形;两种系泊方式对浮架的升沉影响极小,但多点系泊时浮架在x轴上的位移大于单点系泊时浮架的位移,两者峰值相差25.64%;单个周期内网衣平面轮廓图显示网衣的变形程度几乎一致。Abstract: We established a numerical model for calculating the dynamic characteristics of a triangular high-density polyethylene (HDPE) deep-water aquaculture cage in waves and current based on the finite element method. To verify the accuracy of the numerical model, we carried out a series of physical model tests on the single-point mooring (SPM) cage under the conditions of pure wave and combined wave-current, in which the model scale was set at 1: 15. The relative error between the numerical and experimental results was within 10%. Afterwards, considering the sea state of the prototype cage, the calculated parameters for waves and currents were as follows: wave heights 4–6 m, period 9 s, current velocity 0.5–1.5 m·s−1. We analyzed the deformation of the floating collar and the mooring force of the cage with single-point mooring (SPM) and multiple-point mooring (MPM). Besides, we discussed the effect of the mooring pattern on the motion characteristics of the cage. The results show that under the conditions of wave and current, the peak value of MPM force was higher than SPM force, and the difference became greater with the increase of velocity and wave height. Under the condition of severe waves and strong currents, the MPM system can reduce the deformation of the floating collar. However, the mooring pattern had little influence on the heave of the cage collar. For the MPM system, the x-axis displacement of the collar was greater than that of the SPM system, in which the difference was 25.64%. During a wave period, the xz plane profiles of the net deformation under sea conditions were almost the same for the two different mooring systems.
-
表 1 网箱主要参数
Table 1. Parameters of net cage
组件
Component参数
Parameter模型值
Model value原型值
Prototype value浮管
Floating pipe浮管直径
Pipe diameter/mm26.67 400 壁厚
Wall thickness/mm1.57 23.5 形状
Shape三角形 三角形 长度
Length/m1.33 20 网衣
Net网目
Mesh size/mm45 45 目脚直径
Twine diameter/mm2 2 网衣高度
Height/m0.4 6 材料
MaterialPE PE 锚绳
Mooring line长度
Length/m4 60 直径
Diameter/mm2.67 40 材料
MaterialPE PE 浮筒
Buoy高度
Height/m0.13 2 直径
Diameter/m0.1 1.5 沉子
Sinker质量
Mass/g20×5.93 20×20000 材料
Material混凝土 混凝土 表 2 浮架各点处变形
Table 2. Deformation at different points of floating collar
浮架点编号
Point No.应力 Stress/MPa 单点系泊
SPM多点系泊
MPMA 11.07 11.77 B 3.44 2.93 C 14.99 13.88 D 19.50 18.01 E 2.34 2.68 F 2.11 3.03 G 3.16 2.25 H 7.37 3.71 -
农业农村部渔业渔政管理局. 2019中国渔业年鉴[M]. 北京: 中国农业出版社, 2019: 21-22. LEE C, KIM Y, LEE G, et al. Dynamic simulation of a fish cage system subjected to currents and waves[J]. Ocean Engin, 2008, 35(14): 1521-1532. HUANG C C, PAN J. Mooring line fatigue: a risk analysis for an SPM cage system[J]. Aquacult Engin, 2010, 42(1): 8-16. doi: 10.1016/j.aquaeng.2009.09.002 SHAINEE M, DECEW J, LEIRA B J, et al. Numerical simulation of a self-submersible SPM cage system in regular waves with following currents[J]. Aquacult Engin, 2013, 54: 29-37. doi: 10.1016/j.aquaeng.2012.10.007 FREDRIKSSON D W, DECEW J, TSUKROV I, et al. Development of large fish farm numerical modeling techniques with in situ mooring tension comparisons[J]. Aquacult Engin, 2007, 36(2): 137-148. doi: 10.1016/j.aquaeng.2006.10.001 ZHAO Y P, LI Y C, DONG G H, et al. Numerical simulation of hydrodynamic behaviors of gravity cage in current and waves[J]. Int J Offshore Polar Engin, 2009, 19(2): 97-107. ZHAO Y P, GUI F K, XU T J, et al. Numerical analysis of dynamic behavior of a box-shaped net cage in pure waves and current[J]. Appl Ocean Res, 2013, 39: 158-167. doi: 10.1016/j.apor.2012.12.002 DECEW J, FREDRIKSSON D W, LADER P F, et al. Field measuremments of cage deformation using acoustic sensors[J]. Aquacult Engin, 2013, 57: 114-125. doi: 10.1016/j.aquaeng.2013.09.006 DING D L, LIU W H, OU C H. Use of non-linear regression to evaluate drag force and volume coefficient of structure of square cage[J]. Fish Sci, 2007, 73(6): 1249-1256. XU T J, ZHAO Y P, DONG G H. Analysis of hydrodynamic behavior of a submersible net cage and mooring system in waves and current[J]. Appl Ocean Res, 2013, 42: 155-167. doi: 10.1016/j.apor.2013.05.007 MOE H, FREDHEIM A, HOPPERSTAD O S. Structural analysis of aquaculture net cages in current[J]. J Fluid Struct, 2010, 26(3): 503-516. doi: 10.1016/j.jfluidstructs.2010.01.007 LADER P F, ENERHAUG B. Experimental investigation of forces and geometry of a net cage in uniform flow[J]. IEEE J Oceanic Engin, 2005, 30(1): 79-84. doi: 10.1109/JOE.2004.841390 STRAND I M, SØRENSEN A J, VOLENT Z, et al. Experimental study of current forces and deformations on a half ellipsoidal closed flexible fish cage[J]. J Fluid Struct, 2016, 65: 108-120. doi: 10.1016/j.jfluidstructs.2016.05.011 崔勇, 关长涛, 黄滨, 等. 波浪作用下双层网底鲆鲽网箱水动力特性的数值模拟[J]. 渔业科学进展, 2019, 40(6): 18-24. SU B, KELASIDI E, FRANK K, et al. An integrated approach for monitoring structural deformation of aquaculture net cages[J]. Ocean Engin, 2021, 219: 108424. doi: 10.1016/j.oceaneng.2020.108424 刘海阳, 胡昱, 黄小华, 等. 深水网箱浮架结构的失效及疲劳性能分析[J]. 农业工程学报, 2020, 36(3): 46-54. doi: 10.11975/j.issn.1002-6819.2020.03.006 CHEN Y Y, YANG B D, CHEN Y T. Applying a 3-D image measurement technique exploring the deformation of net cage under wave-current interaction[J]. Ocean Engin, 2019, 173: 823-834. doi: 10.1016/j.oceaneng.2019.01.017 TANG M F, XU T J, DONG G H, et al. Numerical simulation of the effects of fish behavior on flow dynamics around net cage[J]. Appl Ocean Res, 2017, 64: 258-280. doi: 10.1016/j.apor.2017.03.006 DONG G H, HAO S H, ZHAO Y P, et al. Elastic responses of a flotation ring in water waves[J]. J Fluid Struct, 2009, 26(1): 176-192. FREDRIKSSON D W, DECEW J, TSUKROV I. Development of structural modeling techniques for evaluating HDPE plastic net pens used in marine aquaculture[J]. Ocean Engin, 2007, 34(16): 2124-2137. doi: 10.1016/j.oceaneng.2007.04.007 LI L, FU S X, XU Y W, et al. Dynamic responses of floating fish cage in waves and current[J]. Ocean Engin, 2013, 72: 297-303. doi: 10.1016/j.oceaneng.2013.07.004 HUANG C C, TANG H J, LIU J Y. Effects of waves and currents on gravity-type cages in the open sea[J]. Aquacult Engin, 2008, 38(2): 105-116. doi: 10.1016/j.aquaeng.2008.01.003 KRISTIANSEN T, FALTINSEN O M. Modelling of current loads on aquaculture net cages[J]. J Fluid Struct, 2012, 34: 218-235. doi: 10.1016/j.jfluidstructs.2012.04.001 KRISTIANSEN T, FALTINSEN O M. Experimental and numerical study of an aquaculture net cage with floater in waves and current[J]. J Fluid Struct, 2015, 54: 1-26. doi: 10.1016/j.jfluidstructs.2014.08.015 GOUDEY C A, LOVERICH G, KITE-POWELL H, et al. Mitigating the environmental effects of mariculture through single-point moorings (SPMs) and drifting cages[J]. ICES J Mar Sci, 2001, 58(2): 497-503. doi: 10.1006/jmsc.2000.1033 DECEW J, TSUKROV I, RISSO A, et al. Modeling of dynamic behavior of a single-point moored submersible fish cage under currents[J]. Aquacult Engin, 2010, 43(2): 38-45. doi: 10.1016/j.aquaeng.2010.05.002 王绍敏, 袁太平, 陶启友, 等. 往复流作用下深水网箱的单锚腿系泊系统设计及效用评估[J]. 海洋渔业, 2019, 41(6): 725-735. doi: 10.3969/j.issn.1004-2490.2019.06.009 梁家铭, 庞亮, 董胜. 新型网箱浮架系统水动力分析及系泊方式研究[J]. 中国海洋大学学报(自然科学版), 2021, 51(2): 119-126. Orcina Ltd. OrcaFlex Manual Version 10.0a[M]. Cumbria, UK: Ulverston, 2015: 187-189. 杨然哲, 朱克强, 荆彪, 等. 沉降式网箱群动力学分析[J]. 水动力学研究与进A辑, 2015, 30(1): 83-91. HUANG X H, GUO G X, TAO Q Y, et al. Dynamic deformation of the floating collar of a net cage under the combined effect of waves and current[J]. Aquacult Engin, 2018, 83: 47-56. doi: 10.1016/j.aquaeng.2018.08.002 薛守义. 弹塑性力学[M]. 北京: 中国建材工业出版社, 2005: 201-206. -
计量
- 文章访问数: 18
- 被引次数: 0