Effect of taurine on intestinal microbes and immune function in golden pompano (Trachinotus ovatus)
-
摘要: 为了探讨牛磺酸对卵形鲳鲹 (Trachinotus ovatus) 肠道微生物菌群结构和免疫功能的影响,试验以鱼粉、发酵豆粕和玉米蛋白粉为基础蛋白源配制了牛磺酸质量分数分别为1.3 g·kg−1 (T0)、4.4 g·kg−1 (T1)、7.4 g·kg−1 (T2)、10.5 g·kg−1 (T3)、12.7 g·kg−1 (T4)的等氮等脂饲料。将750尾卵形鲳鲹 (81.0±0.5) g随机分为5组(每组150尾,分为3个平行),试验为期56 d。高通量测序结果显示在卵形鲳鲹肠道内共获得87 707条序列,能够注释到数据库的OTUs数目为5 130 (95.32%),在门水平上,变形菌门、软壁菌门、螺旋体门为优势菌群。Alpha和Beta多样性分析表明,T2组中的肠道微生物丰富度和多样性最低,T1和T4组间物种组成差异较大 (P<0.05)。随外源性牛磺酸的添加,血清溶菌酶活性显著提高,补体C4和免疫球蛋白含量显著增加 (P<0.05);各试验组ToTLR-1、ToTLR-2、ToTNF-α和ToIL-1β基因表达显著降低 (P<0.05);T1、T2和T4组的ToNFkB P65基因表达显著低于对照组 (P<0.05);T3和T4组ToIL-10基因表达显著高于对照组 (P<0.05)。该试验结果显示,外源牛磺酸对卵形鲳鲹肠道微生物菌群和免疫功能具有显著影响。Abstract: In order to investigate the effects of taurine on the intestinal microflora structure and immune function of Trachinotus ovatus, we used fish meal, fermented soybean meal and corn gluten meal as the basic protein sources to prepare the nitrogen and fat feed with taurine contents of 1.3 g·kg−1 (T0)、4.4 g·kg−1 (T1)、7.4 g·kg−1 (T2)、10.5 g·kg−1 (T3)、12.7 g·kg−1 (T4), respectively. Seven hundred and fifty T. olvatus with an average body mass of (80.0±0.5) g were randomly devided into five groups with three replicates of fifty fish, and the experiment lasted 56 d. Sequencing results show that a total of 87 707 sequences had been obtained in the intestine of T. ovatus. The number of OTUs that can be annotated to the database was 5 130 (95.32%). At the phylum level, Proteobacteria, Tenericutes and Spirochaetes were the predominant phyla. Alpha diversity and beta diversity analyses show that the richness and diversity of intestinal microbial in T2 group were the lowest and the species composition was significantly different between T1 and T4 groups (P<0.05). The serum lysozyme activity, C4, and Ig increased significantly with the addition of exogenous taurine (P<0.05). The expression of ToTLR-1, ToTLR-2, ToTNF-α and ToIL-1β in each group decreased significantly (P<0.05). The expression of ToNFkB P65 of T1, T2 and T4 groups was significantly lower than that of the control group (P<0.05), while the expression of ToIL-10 of T3 and T4 groups was significantly higher than that of control group (P<0.05). The results indicate that exogenous taurine has a significant impact on the intestinal microflora and immune function.
-
Key words:
- Trachinotus ovatus /
- Taurine /
- Intestinal microbes /
- Immune function
-
表 1 细菌16S rDNA V3~V4可变区引物
Table 1. Bacterial 16S rDNA V3–V4 corresponding primers
引物名称
Primer name引物序列 (5'−3')
Primer sequence341F CCTAYGGGRBGCASCAG 806R GGACTACNNGGGTATCTAAT 表 2 卵形鲳鲹肠道免疫基因引物序列
Table 2. Real-time quantitative PCR primers for immune related genes in T.ovatus
引物名称
Primer name引物序列 (5'−3')
Primer sequence登录号
Accession No.用途
Amplification targetToTLR-1 F: GAACCTTCTGATGCTGAATCTG
R: TGCTCCAAGTGCTAATCTCTMG762971.1 qRT-PCR ToTLR-2 F: CTCCACCTTGCGATACCT
R: TCCAACACCTCCAGAGATGMG762972.1 qRT-PCR ToNFkB P65 F: GTTCGCATCTCGCTCGTAA
R: TGGCCTCATTCACATCCTTMN233364.1 qRT-PCR ToIL-1β F: GGAGACTGTGGAGGACAAGAGC
R: GCGGGCAGACATGAAGGTGMK224504.1 qRT-PCR ToIL-10 F: AGTCAGTCTCCACCCCCATCTT
R: GCCCACTGGAGTTCAGATGCTKY231908 qRT-PCR ToTNF-α F: GGCGTCGTTCAGAGTCTCCT
R: TCCTCCTGGGCAGTGGTTT[24] qRT-PCR EF-1α F: CCCCTTGGTCGTTTTGCC
R: GCCTTGGTTGTCTTTCCGCTA[22] reference genes 表 3 牛磺酸对卵形鲳鲹血清免疫指标的影响
Table 3. Effect of taurine on serum immune parameters of T. ovatus
指标
Index组别 Group T0 T1 T2 T3 T4 补体C3 C3/(g·L−1) 0.13±0.45 0.14±0.02 0.15±0.21 0.16±0.48 0.16±0.13 补体C4 C4/(g·L−1) 0.17±0.25b 0.23±0.14ab 0.24±0.81ab 0.26±0.60a 0.24±0.64ab 溶菌酶 LZM/(U·ml−1) 175.91±21.08c 194.30±17.42bc 204.30±15.72b 253.18±18.79a 211.29±12.96b 免疫球蛋白A IgA/(g·L−1) 0.39±0.74b 0.51±0.16ab 0.46±0.16ab 0.64±0.21a 0.48±0.18ab 免疫球蛋白G IgG/(g·L−1) 1.16±0.19b 1.27±0.46ab 1.44±0.68ab 2.01±0.78a 1.59±0.71ab 免疫球蛋白M IgM/(g·L−1) 1.94±0.63 2.51±0.66 2.61±0.68 3.07±1.21 2.78±0.91 注:同行数据不同小写字母表示差异显著 (P<0.05) Note: Values in the same column with different letters are significantly different (P<0.05) -
[1] SALZE G P, DAVIS D A. Taurine: a critical nutrient for future fish feeds[J]. Aquaculture, 2015, 437: 215-229. doi: 10.1016/j.aquaculture.2014.12.006 [2] YU H, GUO Z, SHEN S, et al. Effects of taurine on gut microbiota and metabolism in mice[J]. Amino Acids, 2016, 48(7): 1601-1617. [3] BAEZA-ARIÑO R, MARTÍNEZ-LLORENS S, NOGALES-MÉRIDA S, et al. Study of liver and gut alterations in sea bream Sparus aurata L., fed a mixture of vegetable protein concentrates[J]. Aquacult Res, 2016, 47(2): 460-471. [4] SILVA P F, MCGURK C, KNUDSEN D L, et al. Histological evaluation of soya bean-induced enteritis in Atlantic salmon (Salmo salar L.): quantitative image analysis vs. semi-quantitative visual scoring[J]. Aquaculture, 2015, 445: 42-56. [5] 郝甜甜, 王际英, 李宝山, 等. 复合动植物蛋白部分替代鱼粉对大菱鲆幼鱼生长、体成分及生理生化指标的影响[J]. 渔业科学进展, 2019, 40(4): 11-20. [6] 徐志强, 豆腾飞, 赵平, 等. 植物蛋白替代鱼粉饲料中添加精氨酸对丝尾鳠生长、血液生化及肠道组织结构的影响[J]. 云南农业大学学报(自然科学), 2020, 35(2): 251-261. [7] LIM S, LEE K. Partial replacement of fish meal by cottonseed meal and soybean meal with iron and phytase supplementation for parrot fish Oplegnathus fasciatus[J]. Aquaculture, 2009, 290(3/4): 283-289. [8] 曹逸铭, 高勤峰, 董双林, 等. 饲料中肉骨粉和豆粕替代鱼粉对虹鳟生长和氮收支的影响[J]. 中国海洋大学学报(自然科学版), 2019, 49(3): 79-85. [9] 王亚军, 林文辉, 杨智慧, 等. 发酵豆粕部分替代鱼粉对日本鳗鲡生长性能和体内矿物元素的影响[J]. 南方水产科学, 2013, 9(3): 39-43. doi: 10.3969/j.issn.2095-0780.2013.03.007 [10] HIEN T T T, BE T T, LEE C M, et al. Development of formulated diets for snakehead (Channa striata and Channa micropeltes): can phytase and taurine supplementation increase use of soybean meal to replace fish meal?[J]. Aquaculture, 2015, 448: 334-340. [11] RIMOLDI S, FINZI G, CECCOTTI C, et al. Butyrate and taurine exert a mitigating effect on the inflamed distal intestine of European sea bass fed with a high percentage of soybean meal[J]. Fish Aquat Sci, 2016, 19(4): 1-14. [12] YAN L C, FENG L, JIANG W D, et al. Dietary taurine supplementation to a plant protein source-based diet improved the growth and intestinal immune function of young grass carp (Ctenopharyngodon idella)[J]. Aquacult Nutr, 2019, 25(4): 873-896. [13] 解文放, 左玉, 李庆伟, 等. 动物肠道菌群与宿主肠道免疫系统相互作用的研究进展[J]. 中国细胞生物学学报, 2017, 39(11): 1467-1472. doi: 10.11844/cjcb.2017.11.0203 [14] GONG Y N, WANG X, WANG J, et al. Chemical probing reveals insights into the signaling mechanism of inflammasome activation[J]. Cell Res, 2010, 20(12): 1289-1305. doi: 10.1038/cr.2010.135 [15] MIAO J, ZHENG L, ZHANG J, et al. The effect of taurine on the toll-like receptors/nuclear factor kappa B (TLRs/NF-κB) signaling pathway in Streptococcus uberis-induced mastitis in rats[J]. Int Immunopharmacol, 2011, 11(11): 1740-1746. doi: 10.1016/j.intimp.2011.06.008 [16] KIM C, CHA Y N. Taurine chloramine produced from taurine under inflammation provides anti-inflammatory and cytoprotective effects[J]. Amino Acids, 2014, 46(1): 89-100. doi: 10.1007/s00726-013-1545-6 [17] 孙立元, 郭华阳, 朱彩艳, 等. 卵形鲳鲹育种群体遗传多样性分析[J]. 南方水产科学, 2014, 10(2): 67-71. doi: 10.3969/j.issn.2095-0780.2014.02.010 [18] ZHAO W, XIE J, FANG H, et al. Effects of corn starch level on growth performance, antioxidant capacity, gut morphology and intestinal microflora of juvenile golden pompano, Trachinotus ovatus[J]. Aquaculture, 2020, 524: 735197. doi: 10.1016/j.aquaculture.2020.735197 [19] SHEN J, LIU H, TAN B, et al. Effects of replacement of fishmeal with cottonseed protein concentrate on the growth, intestinal microflora, haematological and antioxidant indices of juvenile golden pompano (Trachinotus ovatus)[J]. Aquacult Nutr, 2020, 26(4): 1119-1130. doi: 10.1111/anu.13069 [20] 李秀玲, 刘宝锁, 张楠, 等. 发酵豆粕替代鱼粉对卵形鲳鲹生长和血清生化的影响[J]. 南方水产科学, 2019, 15(4): 68-75. doi: 10.12131/20190041 [21] MA Q W, GUO H Y, ZHU K C, et al. Dietary taurine intake affects growth and taurine synthesis regulation in golden pompano, Trachinotus ovatus (Linnaeus 1758)[J]. Aquaculture, 2021, 530: 735918. [22] ZHAO C, GUO H, ZHU K, et al. Molecular characterization of Na+/K+/2Cl− cotransporter 1 alpha from Trachinotus ovatus (Linnaeus, 1758) and its expression responses to acute salinity stress[J]. Comp Biochem Physiol B, 2018, 223: 29-38. [23] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method[J]. Methods, 2001, 25(4): 402-408. doi: 10.1006/meth.2001.1262 [24] SUN B, LEI Y, CAO Z, et al. TroCCL4, a CC chemokine of Trachinotus ovatus, is involved in the antimicrobial immune response[J]. Fish Shellfish Immunol, 2019, 86: 525-535. doi: 10.1016/j.fsi.2018.11.080 [25] 张家松, 段亚飞, 张真真, 等. 对虾肠道微生物菌群的研究进展[J]. 南方水产科学, 2015, 11(6): 114-119. doi: 10.3969/j.issn.2095-0780.2015.06.016 [26] MIYAZAKI T, SASAKI S I, TOYODA A, et al. Impaired bile acid metabolism with defectives of mitochondrial-tRNA taurine modification and bile acid taurine conjugation in the taurine depleted cats[J]. Sci Rep, 2020, 10(1): 4915. [27] HUANG C, GUO Y, YUAN J. Dietary taurine impairs intestinal growth and mucosal structure of broiler chickens by increasing toxic bile acid concentrations in the intestine[J]. Poult Sci, 2014, 93(6): 1475-1483. doi: 10.3382/ps.2013-03533 [28] 张建斌, 车向荣, 陈娟娟. 谷氨酰胺和牛磺酸对断奶仔猪肠道黏膜酶活性的影响[J]. 家畜生态学报, 2019, 40(11): 29-33. doi: 10.3969/j.issn.1673-1182.2019.11.006 [29] 李秀玲, 刘宝锁, 刘波, 等. 不同脂肪源对卵形鲳鲹肠道微生物菌群的影响[J]. 水产科学, 2020, 39(1): 88-95. [30] REVECO F E, ØVERLAND M, ROMARHEIM O H, et al. Intestinal bacterial community structure differs between healthy and inflamed intestines in Atlantic salmon (Salmo salar L.)[J]. Aquaculture, 2014, 420/421: 262-269. [31] HOOPER L V, WONG M H, THELIN A, et al. Molecular analysis of commensal host-microbial relationships in the intestine[J]. Science, 2001, 291(5505): 881-884. doi: 10.1126/science.291.5505.881 [32] GAYLORD T G, TEAGUE A M, BARROWS F T. Taurine supplementation of all-plant protein diets for rainbow trout (Oncorhynchus mykiss)[J]. J World Aquacult Soc, 2006, 37(4): 509-517. doi: 10.1111/j.1749-7345.2006.00064.x [33] LAZADO C C, CAIPANG C M A. Mucosal immunity and probiotics in fish[J]. Fish Shellfish Immunol, 2014, 39(1): 78-89. [34] DEHGHANI R, OUJIFARD A, MOZANZADEH M T, et al. Effects of dietary taurine on growth performance, antioxidant status, digestive enzymes activities and skin mucosal immune responses in yellowfin seabream, Acanthopagrus latus[J]. Aquaculture, 2020, 517: 734795. doi: 10.1016/j.aquaculture.2019.734795 [35] LI M, LAI H, LI Q, et al. Effects of dietary taurine on growth, immunity and hyperammonemia in juvenile yellow catfish Pelteobagrus fulvidraco fed all-plant protein diets[J]. Aquaculture, 2016, 450: 349-355. [36] 徐奇友, 许红, 郑秋珊, 等. 牛磺酸对虹鳟仔鱼生长、体成分和免疫指标的影响[J]. 动物营养学报, 2007, 19(5): 544-548. doi: 10.3969/j.issn.1006-267X.2007.05.005 [37] WEI Y C, PAN T S, CHANG M X, et al. Cloning and expression of Toll-like receptors 1 and 2 from a teleost fish, the orange-spotted grouper Epinephelus coioides[J]. Vet Immunol Immunopathol, 2011, 141(3/4): 173-182. [38] ARLEEVSKAYA M I, LARIONOVA R V, BROOKS W H, et al. Toll-like receptors, infections, and rheumatoid arthritis[J]. Clin Rev Allergy Immunol, 2020, 58(2): 172-181. doi: 10.1007/s12016-019-08742-z [39] WALCZEWSKA M, BIAŁECKA A, GACOŃ A, et al. Effect of selected biofilm inhibitors, N-acetylcysteine and DNase, on some biological properties of taurine haloamines (TauCl and TauBr)[J]. Eur J Immunol, 2013, 38(4): 434-442. -