Study on spatial heterogeneity effect of environmental factors on distribution of Chilean jack mackerel in Southeast Pacific Ocean
-
摘要: 基于2012—2018年4—8月我国东南太平洋智利竹䇲鱼 (Trachurus murphyi) 渔捞日志数据,应用地理权重回归模型 (GWR) 探究智利竹䇲鱼渔场资源分布与环境因子的空间异质性关系。结果表明,环境因子海面温度基于GWR模型回归的拟合优度为0.54,校正的拟合优度为0.34,赤池信息准则 (Akaike Information Criterion, AIC) 值为1 022.08;叶绿素a浓度基于GWR模型回归的拟合优度为0.48,校正的拟合优度为0.36,AIC值为2 321.95;海面温度异常值的拟合优度为0.74,校正的拟合优度为0.58,AIC值为2 268.07;海面高度异常值的拟合优度为0.72,校正的拟合优度为0.59,AIC值为2 201.93;作业水深的拟合优度为0.46,校正的拟合优度为0.42,AIC值为2 675.07;海面温度异常对东南太平洋智利竹䇲鱼渔场时空分布影响最大。GWR模型便于发现资源分布的“热点”海域,可为我国智利竹筴鱼渔船生产提供科学依据。Abstract: Based on the fishery data of Chilean jack mackerel (Trachurus murphyi) in the Southeast Pacific Ocean from 2012 to 2018, the geographically weighted regression (GWR) model was applied to analyze the spatial heterogeneity relationship between fishing ground distribution and environmental factors. The results show that the goodness of fit (R2) between CPUE and sea surface temperature (SST), chlorophyll a concentration (Chl-a), sea surface temperature anomaly (SSTA), sea surface height anomaly (SSHA), gear depth were 0.54, 0.48, 0.74, 0.72 and 0.46, respectively. The adjusted R2 between CPUE and SST, Chl-a, SSTA, SSHA, gear depth were 0.34, 0.36, 0.58, 0.59 and 0.42, respectively. The Akaike information criterion (AIC) between CPUE and SST, Chl-a, SSTA, SSHA, gear depth were 1 022.08, 2 321.95, 2 268.07, 2 201.93 and 2 675.07, respectively. SSTA is more influential than the other environmental factors on the spatio-temporal distribution of Chilean jack mackerel fishing grounds in the Southeast Pacific Ocean. The GWR model is used to explore the "hot spot" zones and can provide a scientific basis for the production of Chilean jack mackerel.
-
表 1 不同环境因子地理权重回归模型回归效果的比较
Table 1. Comparison of regression effects of GWR models with different environmental factors
环境因子
Environmental factorMoran's I 带宽
Band width拟合优度
R2校正的拟合优度R2
RAdjusted 2赤池信息准则
AIC海面温度 SST 0.96 23 0.54 0.34 1 022.08 叶绿素a Chl-a 0.98 33 0.48 0.36 2 321.95 海面温度异常值 SSTA 0.96 14 0.74 0.58 2 268.07 海面高度异常值 SSHA 0.93 18 0.72 0.59 2 201.93 作业水深 Depth 0.52 12 0.46 0.42 2 675.00 -
[1] 方宇, 邹晓荣, 张敏. 东南太平洋智利竹䇲鱼栖息地指数的比较研究[J]. 海洋渔业, 2010, 32(2): 178-185. doi: 10.3969/j.issn.1004-2490.2010.02.011 [2] 化成君, 张衡, 樊伟. 东南太平洋智利竹䇲鱼资源和渔场的时空变化[J]. 生态学报, 2011, 31(19): 5676-5681. [3] 邵帼瑛, 张敏. 东南太平洋智利竹䇲鱼渔场分布及其与海表温关系的研究[J]. 上海水产大学学报, 2006(4): 468-472. [4] 范江涛, 冯雪, 陈作志. 基于水温垂直结构的南海北部近海竹䇲鱼渔场分析[J]. 南方水产科学, 2018, 14(2): 124-128. doi: 10.3969/j.issn.2095-0780.2018.02.017 [5] 张衡, 樊伟. 2009年秋冬季东南太平洋智利竹䇲鱼的渔业生物学特征[J]. 海洋渔业, 2010, 32(3): 340-344. doi: 10.3969/j.issn.1004-2490.2010.03.016 [6] 李显森, 陈聚法, 周立凯. 东南太平洋智利竹䇲鱼渔业生物学的初步调查研究[J]. 渔业科学进展, 2002, 23(2): 19-24. doi: 10.3969/j.issn.1000-7075.2002.02.004 [7] 张衡, 张胜茂. 东南太平洋智利竹䇲鱼渔场及单位捕捞努力量的时空分布[J]. 生态学杂志, 2011, 30(6): 1142-1146. [8] 陈春光, 张敏, 邹晓荣. 东南太平洋智利竹䇲鱼中心渔场的月间变动研究[J]. 南方水产科学, 2014, 10(5): 60-67. doi: 10.3969/j.issn.2095-0780.2014.05.009 [9] 牛明香, 李显森, 徐玉成. 基于广义可加模型的时空和环境因子对东南太平洋智利竹䇲鱼渔场的影响[J]. 应用生态学报, 2010, 21(4): 1049-1055. [10] ARCOS D F, CUBILLOS L A, NÚÑEZ S P. The jack mackerel fishery and EI Niño 1997−98 effects off Chile[J]. Prog Oceanogr, 2001, 49(1/2/3/4): 597-617. [11] FAO Fisheries Department. Review of the state of world fishery resources: marine fisheries[M]. Rome: FAO Fisheries Circular, 1997: 58-65. [12] JORGE B C. The fishery for jack mackerel (Trachurus murphyi) off northern Chile[D]. Corvallis: Oregon State University, 1981: 44-53. [13] CUBILLOS L A, PARAMO J, RUIZ P, et al. The spatial structure of the oceanic spawning of jack mackerel (Trachurus murphyi) off central Chile (1998–2001)[J]. Fish Res, 2007, 90(1): 261-270. [14] 杨香帅, 邹晓荣, 徐香香, 等. ENSO现象对东南太平洋智利竹䇲鱼资源丰度及其渔场变动的影响[J]. 上海海洋大学学报, 2019, 28(2): 290-297. [15] 牛明香, 李显森, 戴芳群. 智利外海西部渔场智利竹䇲鱼资源与海表温度分布特征[J]. 海洋环境科学, 2010, 29(3): 373-377. doi: 10.3969/j.issn.1007-6336.2010.03.019 [16] LAURA N, FRANCISCO P, ELEUTERIO Y, et al. Forecasting of jack mackerel landings (Trachurus murphyi) in central-southern Chile through neural networks[J]. Fish Oceanogr, 2015, 24(3): 219-228. doi: 10.1111/fog.12105 [17] 范江涛, 陈作志, 张俊. 基于海洋环境因子和不同权重系数的南海中沙西沙海域鸢乌贼渔场分析[J]. 南方水产科学, 2016, 12(4): 57-63. doi: 10.3969/j.issn.2095-0780.2016.04.007 [18] 唐峰华, 崔雪森, 杨胜龙. 海洋环境对中西太平洋金枪鱼围网渔场影响的时空分析[J]. 南方水产科学, 2014, 10(2): 18-26. doi: 10.3969/j.issn.2095-0780.2014.02.003 [19] 李鹏, 许柳雄, 周成. 中西太平洋金枪鱼围网自由鱼群渔场重心变动及其与南方涛动指数的关系[J]. 南方水产科学, 2020, 16(2): 70-76. [20] 李佳佳, 汪金涛, 陈新军. 不同气候模态下西北太平洋柔鱼冬春生群资源时空分布变化研究[J]. 南方水产科学, 2020, 16(2): 62-69. doi: 10.12131/20190175 [21] 李非, 陈新军, 朱清澄. 不同气候模态下西北太平洋秋刀鱼海况特征分析[J]. 南方水产科学, 2018, 14(3): 20-28. doi: 10.3969/j.issn.2095-0780.2018.03.003 [22] 汪金涛, 高峰, 雷林, 等. 基于主成分和BP神经网络的智利竹䇲鱼渔场预报模型研究[J]. 海洋学报(中文版), 2014, 36(8): 65-71. [23] 晋伟红. 基于偏最小二乘法的东南太平洋智利竹䇲鱼渔场与海洋温度、盐度关系研究[D]. 上海: 上海海洋大学, 2012: 7-10. [24] 陈春光. 东南太平洋智利竹䇲鱼渔场空间分布及其栖息地适宜性指数的研究[D]. 上海: 上海海洋大学, 2015: 14-19. [25] LI G, CAO J, ZOU X, et al. Modeling habitat suitability index for Chilean jack mackerel (Trachurus murphyi) in the southeast Pacific[J]. Fish Res, 2016, 178: 47-60. doi: 10.1016/j.fishres.2015.11.012 [26] SIEGEL V. Distribution and population dynamics of Euphausia superba: summary of recent findings[J]. Polar Biol, 2005, 29: 1-22. doi: 10.1007/s00300-005-0058-5 [27] MCMILLEN D P. Geographically weighted regression: the analysis of spatially varying relationships[J]. Am J Agric Econ, 2004, 86(2): 554-556. doi: 10.1111/j.0002-9092.2004.600_2.x [28] WINDLE M J S, ROSE G A, DEVILLERS R, et al. Exploring spatial non-stationarity of fisheries survey data using geographically weighted regression (GWR): an example from the northwest Atlantic[J]. J Signal Process Sys, 2010, 42(3): 285-296. [29] 卢宾宾, 葛咏, 秦昆, 等. 地理加权回归分析技术综述[J]. 武汉大学学报(信息科学版), 2020, 45(9): 1356-1366. [30] 李媛洁, 陈新军, 汪金涛. 东南太平洋智利竹䇲鱼资源渔场时空分布[J]. 上海海洋大学学报, 2019, 28(4): 616-625. [31] FU W, TUNNEY H, ZHANG C. Spatial variation of soil test phosphorus in a long-term grazed experimental grassland field[J]. J Plant Nutr Soil Sc, 2010, 173(3): 323-331. doi: 10.1002/jpln.200800275 [32] FU W, ZHAO K, ZHANG C, et al. Using moran's I and geostatistics to identify spatial patterns of soil nutrients in two different long-term phosphorus-application plots[J]. J Plant Nutr Soil Sci, 2011, 174(5): 785-798. doi: 10.1002/jpln.201000422 [33] 陶吉兴, 傅伟军, 姜培坤. 基于Moran's I和地统计学的浙江森林土壤有机碳空间分布研究[J]. 南京林业大学学报(自然科学版), 2014, 38(5): 97-101. [34] 贾明秀, 黄六一, 褚建伟, 等. 基于GAM和GWR模型分析环境因子对南极磷虾资源分布的非线性和非静态性影响[J]. 中国海洋大学学报(自然科学版), 2019, 48(8): 19-26. [35] FOTHERINGHAM A S, BRUNSDON C, CHARLTON M. Geographically weighted regression: the analysis of spatially varying relationships[M]. Chichester: Wiley, 2002: 1-284. [36] EDMUNDS N B, BARTLEY T J, CASKENETTE A, et al. Relationship between water transparency and walleye (Sander vitreus) muscle glycolytic potential in northwestern Ontario lakes[J]. Can J Fish Aquat Sci, 2019, 76(9): 1616-1623. doi: 10.1139/cjfas-2017-0556 [37] 冯慧敏, 鲁玉渭, 胡辉, 等. 江苏近海日本蟳眼柄与生长关系初探[J]. 南方水产科学, 2019, 15(4): 82-87. doi: 10.12131/20180271 [38] FOTHERINGHAM A S, CHARLTON M E, BRUNSDON C. Geographically weighted regression: a natural evolution of the expansion method for spatial data analysis[J]. Environ Plan A, 1998, 30(11): 1905-1927. doi: 10.1068/a301905 [39] LEUNG Y, MEI C L, ZHANG W X. Statistical test for local patterns of spatial association[J]. Environ Plan A, 2003, 35(4): 725-744. doi: 10.1068/a3550 [40] 韩雅, 朱文博, 李双成. 基于GWR模型的中国与气候因子的相关分析[J]. 北京大学学报 (自然科学版), 2016, 52(6): 1125-1133. [41] 魏广恩, 陈新军, 李纲. 西北太平洋柔鱼洄游重心年际变化及预测[J]. 上海海洋大学学报, 2018, 27(4): 573-583. doi: 10.12024/jsou.20171102171 [42] 邹晓荣. 东南太平洋智利竹䇲鱼资源、渔场和捕捞技术的研究[D]. 上海: 上海海洋大学, 2003: 42-57. -