留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

珠江口淇澳岛红树林湿地沉积物碳、氮分布研究

江睿 吴云超 陈丕茂

引用本文:
Citation:

珠江口淇澳岛红树林湿地沉积物碳、氮分布研究

    作者简介: 江 睿 (1989—),女,博士,助理研究员,从海洋生态学研究。E-mail: jr1017241007@126.com;
    通讯作者: 陈丕茂, chenpm@scsfri.ac.cn
  • 中图分类号: X 171.1

Study on distribution of sediment carbon and nitrogen in mangrove wetland of Qi'ao Island, Pearl River Estuary

    Corresponding author: Pimao CHEN, chenpm@scsfri.ac.cn
  • CLC number: X 171.1

  • 摘要: 为了对珠江口红树林湿地沉积物有机质有更为全面、深入的认识,该研究以珠江口淇澳岛红树林湿地为研究对象,对其沉积物有机碳 (TOC) 和总氮 (TN) 的含量分布、储量及来源进行了研究。结果表明,淇澳岛7种主要红树 [秋茄 (Kandelia candel)、无瓣海桑 (Sonneratia opetala)、桐花 (Aegiceras corniculatum)、木榄 (Bruguiera gymnorhiza)、卤蕨 (Acrostichum aureum)、老鼠簕 (Acanthus ilicifolius)、海漆 (Excoecaria agallocha)] 群落表层沉积物TOC质量分数介于1.125%~1.969%,TN质量分数介于0.058%~0.136%。其中秋茄林内TOC含量最高,无瓣海桑林缘含量最高,而木榄林内、林缘TOC含量均最低,且各红树群落TOC含量均呈林内大于林缘的特征。表层沉积物碳氮比 (C/N) 为12.032~26.690,显示出高等植物对其有机质组成具有较高的贡献率,其中植被内源有机碳的平均贡献率约为70.21%。受土地利用变化等因素的影响,0~30 cm层沉积物的TOC和TN含量均呈现出波动变化的趋势。0~30 cm层沉积物有机碳储量 (SOC) 介于56.83~69.54 t·hm−2,显示出淇澳岛红树林湿地较强的有机碳埋藏能力。
  • 图 1  采样站点分布

    Figure 1.  Sampling site

    图 2  7种红树群落表层沉积物有机碳、氮平均含量

    Figure 2.  Average contents of TOC and TN in surface sediments of seven mangrove communities

    图 3  7种红树群落表层沉积物有机碳、总氮含量分布

    Figure 3.  TOC and TN distributions in surface sendiments of seven mangrove communities

    图 4  淇澳岛红树林湿地沉积物中有机碳、总氮含量垂直分布图

    Figure 4.  Vertical distribution of TOC and TN contents in sediment of mangrove wetland of Qi'ao Island

    图 5  淇澳岛红树林湿地沉积物中C/N垂直分布图

    Figure 5.  Vertical distribution of C/N in sediment of mangrove wetland of Qi'ao Island

    图 6  7种红树群落表层沉积物有机碳、氮储量

    Figure 6.  TOC and TN stocks of surface sediments of seven mangrove communities

    表 1  淇澳岛红树林湿表层沉积物理化性质

    Table 1.  Physical and chemical properties of surface sediment in mangrove wetland of Qi'ao island

    红树种类
    Mangrove species
    含水率
    Moisture content/%
    容重
    Bulkdensity/g·cm−3
    秋茄 K. candel 64.14±1.8 1.24±0.089
    老鼠簕 A. ilicifolius 70.39±2.2 1.26±0.046
    无瓣海桑 S. opetala 69.94±6.8 1.23±0.130
    桐花 A. corniculatum 75.21±12.9 1.13±0.184
    卤蕨 A. aureum 70.76±1.6 1.26±0.046
    海漆 E. agallocha 65.97±5.4 1.13±0.097
    下载: 导出CSV

    表 2  淇澳岛红树林湿地垂直分层沉积物理化性质

    Table 2.  Physical and chemical properties of sediment core in mangrove wetland of Qi'ao Island

    柱状样
    Sediment core/cm
    含水率
    Moisture content/%
    容重
    Bulkdensity/g·cm−3
    0~3 64.43±4.6 1.34±0.067
    3~6 64.73±6.9 1.30±0.065
    6~9 63.65±8.9 1.25±0.077
    9~12 66.40±4.4 1.26±0.055
    12~15 63.93±12.6 1.27±0.124
    15~18 62.76±14.0 1.27±0.147
    18~21 67.08±2.3 1.25±0.080
    21~24 68.35±6.2 1.23±0.169
    24~27 73.89±1.3 1.17±0.121
    27~30 68.90±9.6 1.27±0.129
    下载: 导出CSV

    表 3  不同区域湿地沉积物中有机质含量对比

    Table 3.  Comparison of organic matter in wetland sediments in different regions

    研究区域        
    Survey area        
    有机碳质量分数
    TOC/%
    总氮质量分数
    TN/mg·g−1
    数据来源
    Data source
    淇澳岛红树林湿地 Mangrove wetland in Qi'ao Island 0.92~2.26 0.60~1.43 本研究
    深圳福田红树林湿地 Futian Mangrove wetland of Shenzhen 约1.42 1.40~1.60 [2]
    广西珍珠湾红树林湿地 Mangrove wetland in Zhenzhu Gulf, Guangxi 1.43~2.21 0.62~1.03 [24]
    九龙江口红树林湿地 Mangrove wetland in Jiulong River Estuary 1.24~3.81 1.19~2.05 [26]
    法国Albert湖泊 Lake Albert, French 4.33~5.31 [32]
    巴西南部红树林湿地 Mangrove wetland, South Brazil 2.7~6.1 [32]
    美国Massachusetts湿地 Massachusetts wetland in America 5.6~36.7 0.80~1.80 [33]
    长江口湿地 Yangtze River Estuary 0.1~0.7 0.14~0.78 [34]
    苏北潮滩湿地 Tidal flat in northern Jiangsu Province 0.16~0.9 0.19~2.68 [34]
    漳江口红树林湿地 Mangrove wetland in Zhangjiang Estuary 0.91~2.86 0.25~2.21 [35]
    法国Guiana红树林湿地 Guiana mangrove wetland, French 0.70~1.90 0.10~1.30 [36]
    荷兰西谢尔德河口 Westerschelde Estuary 1.19~2.33 0.8~0.15 [37]
    广西大冠沙红树林湿地 Daguansha mangrove wetland, Guangxi 2.26±1.84 0.45±0.34 [38]
    下载: 导出CSV
  • [1] 刘逸泠, 覃盈盈, 郑海雷. 红树植物耐水淹和高盐适应性研究进展[J]. 厦门大学学报 (自然科学版), 2017, 56(3): 314-322.
    [2] 乔永民, 谭键滨, 马舒欣, 等. 深圳红树林湿地沉积物氮磷分布与来源分析[J]. 环境科学与技术, 2018, 41(2): 34-40.
    [3] MANSON F J, LONERAGAN N R, SKILLETER G A, et al. An evaluation of the evidence for linkages between mangroves and fisheries: a synthesis of the literature and identification of research directions[J]. Oceanogr Mar Biol, 2005, 43: 483-513.
    [4] 李亚芳, 杜飞雁, 王亮根, 等. 基于生物性状分析方法的不同恢复阶段无瓣海桑人工林湿地大型底栖动物生态功能研究[J]. 南方水产科学, 2018, 14(3): 10-18. doi:  10.3969/j.issn.2095-0780.2018.03.002
    [5] MCLEOD E, CHMURA G L, BOUILLON S, et al. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2[J]. Front Ecol Environ, 2011, 9(10): 552-560. doi:  10.1890/110004
    [6] HOPKINSON C S, CAI W J, HU X. Carbon sequestration in wetland dominated coastal systems: a global sink of rapidly diminishing magnitude[J]. Curr Opin Env Sust, 2012, 4(2): 186-194. doi:  10.1016/j.cosust.2012.03.005
    [7] ALONGI, DANIEL M. Carbon cycling and storage in mangrove forests[J]. Annu Rev Mar Sci, 2014, 6(1): 195-219. doi:  10.1146/annurev-marine-010213-135020
    [8] BOUILLON S, CONNOLLY R M, LEE S Y. Organic matter exchange and cycling in mangrove ecosystems: recent insights from stable isotope studies[J]. J Sea Res, 2008, 59(1/2): 44-58.
    [9] ALONGI D M. Carbon sequestration in mangrove forests[J]. Carbon Manag, 2012, 3(3): 313-322. doi:  10.4155/cmt.12.20
    [10] LIU H, REN H, HUI D, et al. Carbon stocks and potential carbon storage in the mangrove forests of China[J]. J Environ Manage, 2014, 133: 86-93. doi:  10.1016/j.jenvman.2013.11.037
    [11] MURDIYARSO D. Carbon storage in mangrove and peatland ecosystems: a preliminary account from plots in Indonesia[J]. Ecol Appl, 2010, 14(4): 232-246.
    [12] 徐慧鹏, 刘涛, 张建兵. 红树林碳埋藏过程对海平面上升、气候变化和人类活动的响应[J]. 广西科学, 2020, 27(1): 84-90.
    [13] DUKE N C, MEYNECKE O J, DITTMANN S, et al. A world without mangroves?[J]. Science, 2007, 317: 41-41.
    [14] POLIDORO B A, CARPENTER K E, DUCKE N C, et al. The loss of species: Mangrove extinction risk and geographic areas of global concern[J]. PLoS One, 2010, 5(4): e10095. doi:  10.1371/journal.pone.0010095
    [15] ALONGI D M. Present state and future of the world's mangrove forests[J]. Environ Conserv, 2002, 29(3): 331-349. doi:  10.1017/S0376892902000231
    [16] 何克军, 林寿明, 林中大. 广东红树林资源调查及其分析[J]. 广东林业科技, 2006(2): 89-93.
    [17] DONATO D C, KAUFFMAN J B, MURDIYARSO D, et al. Mangroves among the most carbon-rich forests in the tropics[J]. Nat Geosci, 2011, 4(5): 293-297. doi:  10.1038/ngeo1123
    [18] SAENGER P, SIDDIQI N A. Land from the sea: the mangrove afforestation program of Bangladesh[J]. Ocean Coastl Manage, 1993, 20: 23-29. doi:  10.1016/0964-5691(93)90011-M
    [19] BROCKMEYER R, REY J R, VIRNSTEIN R W, et al. Rehabilitation of impounded estuarine wetlands by hydrologic reconnection to the Indian River Lagoon, Florida (USA)[J]. Wetl Ecol Manag, 1996, 4(2): 93-109. doi:  10.1007/BF01876231
    [20] MILANO G R. Restoration of coastal wetlands in southeastern Florida[J]. Wetl J, 1999, 11(2): 15-24.
    [21] LEWIS R R. Ecologically based goal setting in mangrove forest and tidalmarsh restoration in Florida[J]. Ecol Eng, 2000, 15(324): 191-198.
    [22] 叶翔, 李靖, 王爱军. 珠江口淇澳岛滨海湿地沉积环境演化及其对人类活动的响应[J]. 海洋学报, 2018, 40(7): 79-89.
    [23] 王震, 陈卫军, 管伟, 等. 珠海市淇澳岛主要红树林群落特征研究[J]. 中南林业科技大学学报, 2017, 37(4): 86-91.
    [24] 陶玉华, 黄星, 王薛平, 等. 广西珍珠湾三种红树林林分土壤碳氮储量的研究[J]. 广西植物, 2020, 40(3): 285-292. doi:  10.11931/guihaia.gxzw201909003
    [25] QIAN J L, WANG S M, XUE B, et al. A method of quantitatively calculating amount of allochthonous organic carbon in lake sediments[J]. Chinese Sci Bull, 1997, 42(21): 1821-1823. doi:  10.1007/BF02882652
    [26] 于宇, 李学刚, 袁华茂. 九龙江口红树林湿地沉积物中有机碳和氮的分布特征及来源辨析[J]. 广西科学院学报, 2017, 33(2): 75-81, 86.
    [27] TALBOT M R. A review of the palaeohydrological interpretation of carbon and oxygen isotopic ratios in primary lacustrine carbonates[J]. Chem Geol, 1990, 80(4): 261-279.
    [28] 莫莉萍, 周慧杰, 刘云东, 等. 广西红树林湿地土壤有机碳储量估算[J]. 安徽农业科学, 2015(15): 91-94.
    [29] 刘世荣, 王晖, 栾军伟. 中国森林土壤碳储量与土壤碳过程研究进展[J]. 生态学报, 2011, 31(19): 5437-5448.
    [30] YANG Y S, GUO J F, CHEN G H, et al. Effects of forest conversion on soil labile organic carbon fractions and aggregate stability in subtropical China[J]. Plant Soil, 2009, 323(1/2): 153-162.
    [31] 胡懿凯. 淇澳岛不同恢复类型红树林碳密度和固碳速率比较研究[D]. 长沙: 中南林业科技大学, 2019: 46.
    [32] WHITE J S, BAYLEY S E, CURTIS P J. Sediment storage of phosphorus in a northern prairie wetland receiving municipal and agro-industrial wastewater[J]. Ecol Eng, 2000, 14: 127-138.
    [33] ZHOU J, WU Y, KANG Q, et al. Spatial variations of carbon, nitrogen, phosphorous and sulfur in the salt marsh sediments of the Yangtze Estuary in China[J]. Estuar Coasta Shelf S, 2007, 71(1/2): 47-59.
    [34] 高建华, 欧维新, 杨桂山. 潮滩湿地N、P生物地球化学过程研究[J]. 湿地科学, 2004(3): 220-227. doi:  10.3969/j.issn.1672-5948.2004.03.010
    [35] 薛博. 漳江口红树林湿地沉积物有机质来源追溯[D]. 厦门: 厦门大学, 2007: 51.
    [36] MARHANDA C, LALLIER-VERGÈS E, BALTZER F. The composition of sedimentary organic matter in relation to the dynamic features of a mangrove-fringed coast in French Guiana[J]. Estuar Coast Shelf S, 2003, 56(1): 119-130. doi:  10.1016/S0272-7714(02)00134-8
    [37] MIDDELBURG J J, NIEUWENHUIZE J, LUBBERTS R K, et al. Organic carbon isotope systematics of coastal marshes[J]. Estuar Coast Shelf S, 1997, 45(5): 681-687. doi:  10.1006/ecss.1997.0247
    [38] 袁彦婷, 丁振华, 张玲, 等. 土地利用方式改变对红树林沉积物中营养元素含量的影响[J]. 地球与环境, 2012, 40(3): 385-390.
    [39] THORNTON S F, MCMANUS J. Application of organic carbon and nitrogen stable isotope and C/N ratios as source Indicators of organic matter provenance in estuarine systems: evidence from the Tay Estuary, Scotland[J]. Estuar Coast Shelf S, 1994, 38(3): 219-233. doi:  10.1006/ecss.1994.1015
    [40] 张金波, 宋长春. 土地利用方式对土壤碳库影响的敏感性评价指标[J]. 生态环境, 2003(4): 500-504.
    [41] 张金波, 宋长春, 杨文燕. 三江平原沼泽湿地开垦对表土有机碳组分的影响[J]. 土壤学报, 2005(5): 155-157.
    [42] HANKE A, CERLI C, MUHR J, et al. Redox control on carbon mineralization and dissolved organic matter along a chronosequence of paddy soils[J]. Eur J S Sci, 2013, 64(4): 476-487. doi:  10.1111/ejss.12042
    [43] 马姣娇, 牛安逸, 徐颂军, 等. 基于地学信息图谱的珠海淇澳岛土地利用格局分析[J]. 华南师范大学学报(自然科学版), 2018, 50(2): 77-85.
    [44] 陈志杰, 韩士杰, 张军辉. 土地利用变化对漳江口红树林土壤有机碳组分的影响[J]. 生态学杂志, 2016, 35(9): 2379-2385.
  • [1] 杨文超黄道建陈继鑫陈晓燕王宇珊孙丽梅 . 大亚湾2010—2018年表层沉积物中重金属含量时空分布及生态风险评价. 南方水产科学, doi: 10.12131/20200035
    [2] 陈梓林李纯厚肖雅元刘永林琳王九江全秋梅 . 江门近岸海域大型底栖动物群落结构的分布特征. 南方水产科学, doi: 10.12131/20190248
    [3] 蔡研聪黄梓荣李佳俊许友伟孙铭帅陈作志刘维达 . 南海北部近海新记录种——苏门答腊金线鱼资源分布特征. 南方水产科学, doi: 10.12131/20200064
    [4] 夏雨果李跃飞朱书礼李捷李新辉 . 珠江流域草鱼和鲢单位捕捞努力量渔获量时空分布特征及温度影响. 南方水产科学, doi: 10.12131/20200131
    [5] 刘香丽汪倩宋超范立民孟顺龙裘丽萍陈家长 . 安徽养殖中华绒螯蟹体内砷形态的分布特征及膳食风险评估. 南方水产科学, doi: 10.12131/20200105
    [6] 赵光辉杨平唐晨韩智献仝川 . 闽江河口养虾塘水体可溶性有机碳、营养盐和叶绿素a浓度变化特征. 南方水产科学, doi: 10.12131/20190208
    [7] 杨文超黄道建陈继鑫陈晓燕王宇珊 . 大亚湾海域2009—2015年氮、磷营养盐时空分布及富营养化评价. 南方水产科学, doi: 10.12131/20190244
    [8] 党莹超戴小杰吴峰 . 北太平洋金枪鱼延绳钓钓钩垂直分布及浸泡时间对渔获物的影响. 南方水产科学, doi: 10.12131/20190252
    [9] 丁炜东曹丽萍曹哲明邴旭文 . 氨氮胁迫对翘嘴鳜幼鱼鳃、消化道酶活力的影响. 南方水产科学, doi: 10.12131/20190188
    [10] 胡晓娟文国樑田雅洁苏浩昌徐武杰徐煜许云娜曹煜成 . 不同培养条件下菌株NB5对氨氮的去除效果研究. 南方水产科学, doi: 10.12131/20200061
    [11] 王芸李正段亚飞王珺黄忠林黑着 . 红景天提取物对凡纳滨对虾抗氧化系统及抗低盐度胁迫的影响. 南方水产科学, doi: 10.3969/j.issn.2095-0780.2018.01.002
    [12] 丁军伟邓建朝杨贤庆岑剑伟李来好陈胜军 . 4种硝基呋喃类代谢物在青石斑鱼肌肉中的富集与消除规律. 南方水产科学, doi: 10.3969/j.issn.2095-0780.2018.01.008
    [13] 赵红霞胡俊茹黄燕华陈冰曹俊明 . β-1,3-葡聚糖对低盐度凡纳滨对虾血液代谢物和免疫的影响. 南方水产科学, doi: 10.12131/20200046
    [14] 管敏张德志唐大明 . 慢性氨氮胁迫对史氏鲟幼鱼生长及其肝脏抗氧化、免疫指标的影响. 南方水产科学, doi: 10.12131/20190191
    [15] 韩天骄徐武杰徐煜文国樑胡晓娟苏浩昌曹煜成 . 停加红糖对凡纳滨对虾生物絮团养殖系统水质和氮收支的影响. 南方水产科学, doi: 10.12131/20200052
    [16] 袁梦陈作志张俊江艳娥汤勇徐姗楠 . 南海北部陆坡海域中层渔业生物群落结构特征. 南方水产科学, doi: 10.3969/j.issn.2095-0780.2018.01.011
    [17] 徐姗楠郭建忠范江涛许友伟粟丽李纯厚 . 大亚湾夏季鱼类生物量粒径谱年际变化特征. 南方水产科学, doi: 10.12131/20200016
    [18] 陈思李艺彤蔡文贵陈海刚田斐张林宝张喆郭志勋 . 虾蟹混养池塘浮游植物群落结构的变化特征. 南方水产科学, doi: 10.12131/20190233
    [19] 魏磊朱书琴刘伟赵金良钱叶周吴超钱德 . 鳜回交子代与亲本子代间体型和体斑特征比较. 南方水产科学, doi: 10.12131/20190219
    [20] 王文豪董宏标孙彩云段亚飞李华刘青松张家松曾祥兵 . 石菖蒲挥发油和水溶性氮酮对鱼用麻醉剂的促皮渗透效果研究. 南方水产科学, doi: 10.12131/20200007
  • 加载中
计量
  • 文章访问数:  98
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-15
  • 录用日期:  2020-08-31
  • 网络出版日期:  2020-09-28

珠江口淇澳岛红树林湿地沉积物碳、氮分布研究

    作者简介:江 睿 (1989—),女,博士,助理研究员,从海洋生态学研究。E-mail: jr1017241007@126.com
    通讯作者: 陈丕茂, chenpm@scsfri.ac.cn
  • 1. 中国水产科学研究院南海水产研究所/农业农村部南海渔业资源环境科学观测实验站/广东省渔业生态环境重点实验室,广东 广州 510300
  • 2. 中国科学院南海海洋研究所热带海洋生物资源与生态重点实验室,广东 广州 510301

摘要: 为了对珠江口红树林湿地沉积物有机质有更为全面、深入的认识,该研究以珠江口淇澳岛红树林湿地为研究对象,对其沉积物有机碳 (TOC) 和总氮 (TN) 的含量分布、储量及来源进行了研究。结果表明,淇澳岛7种主要红树 [秋茄 (Kandelia candel)、无瓣海桑 (Sonneratia opetala)、桐花 (Aegiceras corniculatum)、木榄 (Bruguiera gymnorhiza)、卤蕨 (Acrostichum aureum)、老鼠簕 (Acanthus ilicifolius)、海漆 (Excoecaria agallocha)] 群落表层沉积物TOC质量分数介于1.125%~1.969%,TN质量分数介于0.058%~0.136%。其中秋茄林内TOC含量最高,无瓣海桑林缘含量最高,而木榄林内、林缘TOC含量均最低,且各红树群落TOC含量均呈林内大于林缘的特征。表层沉积物碳氮比 (C/N) 为12.032~26.690,显示出高等植物对其有机质组成具有较高的贡献率,其中植被内源有机碳的平均贡献率约为70.21%。受土地利用变化等因素的影响,0~30 cm层沉积物的TOC和TN含量均呈现出波动变化的趋势。0~30 cm层沉积物有机碳储量 (SOC) 介于56.83~69.54 t·hm−2,显示出淇澳岛红树林湿地较强的有机碳埋藏能力。

English Abstract

参考文献 (44)

返回顶部

目录

    /

    返回文章
    返回