留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

花鲈垂体和下丘脑中生物钟基因在3种光周期下的表达节律分析

袁满 王鹏飞 闫路路 赵超 范嗣刚 陈祥 邱丽华

引用本文:
Citation:

花鲈垂体和下丘脑中生物钟基因在3种光周期下的表达节律分析

    作者简介: 袁 满 (1996—),女,硕士研究生,研究方向为鱼类繁殖生物学。E-mail: madisony@163.com;
    通讯作者: 邱丽华, qiugroup_bio@outlook.com
  • 中图分类号: S 917.4

Circadian rhythmicity of clock genes in pituitary and hypothalamus of spotted sea perch (Lateolabrax maculates) under three photoperiod conditions

    Corresponding author: Lihua QIU, qiugroup_bio@outlook.com
  • CLC number: S 917.4

  • 摘要: 花鲈 (Lateolabrax maculatus) 是中国重要的水产养殖鱼类,其繁殖活动受光周期调控。文章研究了3种光周期 [光 (L) 暗 (D) 分别比为16L∶8D、12L∶12D和8L∶16D] 条件下,7个重要生物钟基因 (Bmal2、Npas4、Per2、Cry1、Cry1aCry2 及Timeless) 在花鲈垂体和下丘脑中的昼夜表达规律。结果表明,在12L∶12D条件下垂体中Per2、Cry1、Cry2、Cry1aTimeless表现出昼夜节律性,下丘脑中Per2、Cry2、Cry1、Timeless表现出昼夜节律性,相同基因在垂体和下丘脑两种组织中的昼夜节律不同,长光照或短光照会改变昼夜节律的震荡强弱、也会改变峰值相位,部分基因在长光照或短光照下会出现失去昼夜节律性的现象。
  • 图 1  3种光周期下花鲈垂体中生物钟基因mRNA昼夜节律表达的时间模式

    Figure 1.  Relative expression of clock genes in pituitary under three photoperiod conditions

    图 2  3种光周期下花鲈下丘脑中生物钟基因mRNA昼夜节律表达的时间模式

    Figure 2.  Relative expression of clock genes in hypothalamus under three photoperiod conditions

    表 1  荧光定量引物

    Table 1.  Primers for qRT-PCR

    引物名称
    Primer name
    序列 (5'–3')
    Sequence
    qBmal2-F TCTGAAAGTACAGGCGAGCCGTCCCA
    qBmal2-R CAGTGTAAGTCATCAAAGTCCCCAGT
    qPer2-F CCCCACCGTCCTTCAG
    qPer2-R TCCCATTCAGCCGCATTA
    qNpas4-F GTCATCTCCTGTGTCCTCTTGCT
    qNpas4-R ACTTCCACTCCCATCTTTGTG
    qCry1-F GACTGGGCTCTGAATGCTGGAA
    qCry1-R TGCCTGCTGAATACTGCGTGGAG
    qCry1a-F CAAAGCAGTATGGGCAGGT
    qCry1a-R AGTAGAAGAGCCGACAGGAGA
    qCry2-F GTCAATGCTGGCAGTTGGATGTGG
    qCry2-R GGGATGTAACGCCTGATGTATTCT
    qTimeless-F GAAACCAGACAGCCTCACTCCTAC
    qTimeless-R AAAGACTCCGACAACTGAAACCCT
    qβ-actin-F CAACTGGGATGACATGGAGAAG
    qβ-actin-R TTGGCTTTGGGGTTCAGG
    下载: 导出CSV

    表 2  花鲈垂体中生物钟基因mRNA表达的昼夜节律性参数

    Table 2.  Circadian rhythmic parameters of clock genes mRNA expressions in pituitary of L. maculatus

    基因
    Gene
    光周期
    Photoperiod
    振幅
    Amplitude
    峰值相位
    Acrophase
    中值
    Mesor
    P
    Bmal2 16L∶8D 0.471
    12L∶12D 0.416
    8L∶16D 0.200
    Naps4 16L∶8D 0.070
    12L∶12D 0.274
    8L∶16D 0.286
    Per2 16L∶8D 41.084 1 −18.890 5 43.894 7 <0.001
    12L∶12D 0.253 6 0.226 6 0.187 7 <0.001
    8L∶16D 0.371 2 −0.366 8 0.452 4 0.001
    Cry1 16L∶8D 0.951 9 9.299 7 1.390 5 <0.001
    12L∶12D 1.314 0 0.420 3 1.455 6 <0.001
    8L∶16D 1.165 7 10.981 0 1.647 0 <0.001
    Cryla 16L∶8D 0.364 2 6.375 6 1.577 3 0.002
    12L∶12D 0.498 9 0.568 9 0.648 5 <0.001
    8L∶16D 0.238 8 −7.008 3 1.027 7 <0.001
    Cry2 16L∶8D 47.911 9 0.018 2 31.143 5 <0.001
    12L∶12D 3.106 3 15.143 0 2.599 7 <0.001
    8L∶16D 29.750 8 −16.533 1 34.491 7 <0.001
    Timeless 16L∶8D 0.354 5 −4.266 8 0.860 5 <0.001
    12L∶12D 3.368 8 −1.157 9 2.785 8 <0.001
    8L∶16D 1.264 4 10.797 5 2.447 2 <0.001
    注:振幅为拟合波形峰值之间距离的一半;中值为周期平均值;峰值为相位周期最高幅度的时间点 (弧度);P为时间点间的差异;后表同此 Note: The amplitude is half of the distance between the peak values of the fitting waveform; the median value is the periodic average value; the peak value is the time point (radian) with the highest amplitude of phase period; P is the difference between time points; the same case in the following table.
    下载: 导出CSV

    表 3  花鲈下丘脑中生物钟基因mRNA表达的昼夜节律性参数

    Table 3.  Circadian rhythmic parameters of clock genes mRNA expressions in hypothalamus of L. maculatus

    基因
    Gene
    处理组
    Photoperiod
    振幅
    Amplitude
    峰值相位
    Acrophase
    中值
    Mesor
    P
    Bmal2 16L∶8D 0.469
    12L∶12D 0.060
    8L∶16D 0.260
    Naps4 16L∶8D 0.762
    12L∶12D 0.166
    8L∶16D 0.095
    Per2 16L∶8D 0.472 1 −8.423 1 0.808 7 0.018
    12L∶12D 2.773 3 −8.478 7 3.971 5 0.001
    8L∶16D 0.896 2 −11.462 8 1.088 0 0.004
    Cry1 16L∶8D 0.436 6 −5.273 3 1.408 4 0.006
    12L∶12D 0.378 3 0.461 1 1.654 0 0.007
    8L∶16D 1.741 5 −0.099 9 1.554 6 <0.001
    Cryla 16L∶8D 0.096 4 −1.274 2 0.876 5 0.047
    12L∶12D 1.000 0 1.436 0 0.000 3 0.017
    8L∶16D 1.038 8 −9.228 1 1.978 6 <0.001
    Cry2 16L∶8D 44.338 7 7.936 4 24.514 2 <0.001
    12L∶12D 2.681 0 8.881 4 4.563 0 <0.001
    8L∶16D 6.819 8 8.026 9 4.909 8 <0.001
    Timeless 16L∶8D 9.888 2 −4.951 6.863 4 <0.001
    12L∶12D 2.955 7 9.236 6 3.071 5 <0.001
    8L∶16D 78.572 9 −6.378 3 45.208 1 <0.001
    下载: 导出CSV
  • [1] VELARDE E, HAQUE R, IUVONE P M, et al. Circadian clock genes of goldfish, Carassius auratus: cDNA cloning and rhythmic expression of period and cryptochrome transcripts in retina, liver, and gut[J]. J Biol Rhythm, 2009, 24(2): 104-113. doi:  10.1177/0748730408329901
    [2] SCHMUTZ I, RIPPERGER J A, BAERISWYL-AEBISCHER S, et al. The mammalian clock component PERIOD2 coordinates circadian output by interaction with nuclear receptors[J]. Genes Dev, 2010, 24(4): 345-357. doi:  10.1101/gad.564110
    [3] CHANG D C. Neural circuits underlying circadian behavior in Drosophila melanogaster[J]. Behav Process, 2006, 71(2/3): 211-225.
    [4] KLEIN D C, MOORE R Y, REPPERT S M. Suprachiasmatic nucleus: the mind's clock[J]. Electroen Clin Neuro, 1993, 86(6): 446-447.
    [5] UNDERWOOD H, STEELE C T, ZIVOKOVIC B. Circadian organization and the role of the pineal in birds[J]. Microsc Res Tech, 2001, 53(1): 48-62. doi:  10.1002/jemt.1068
    [6] FALCON J. Cellular circadian clocks in the pineal[J]. Prog Neurobiol, 1999, 58(2): 121-162. doi:  10.1016/S0301-0082(98)00078-1
    [7] NAKANE Y, IKEGAMI K, IIGO M, et al. The saccus vasculosus of fish is a sensor of seasonal changes in day length[J]. Nat Commun, 2013, 4: 1-7.
    [8] CEINOS R M, CHIVITE M, LÓPEZ-PATIÑO M A, et al. Differential circadian and light-driven rhythmicity of clock gene expression and behaviour in the turbot, Scophthalmus maximus[J]. PLoS One, 2019, 14(7): e0219153. doi:  10.1371/journal.pone.0219153
    [9] SHIEH K R, YANG S C, LU X Y, et al. Diurnal rhythmic expression of the rhythm-related genes, rPeriod1, rPeriod2, and rClock, in the rat brain[J]. J Biomed Sci, 2005, 12(1): 209-217. doi:  10.1007/s11373-004-8176-6
    [10] DELAUNAY F, THISSE C, MARCHAND O, et al. An inherited functional circadian clock in zebrafish embryos[J]. Science, 2000, 289(5477): 297-300. doi:  10.1126/science.289.5477.297
    [11] KOBAYASHI Y, ISHIKAWA T, HIRAYAMA J, et al. Molecular analysis of zebrafish photolyase/cryptochrome family: two types of cryptochromes present in zebrafish[J]. Genes Cells, 2000, 5(9): 725-738. doi:  10.1046/j.1365-2443.2000.00364.x
    [12] SNCHEZ J A, MADRID J A, SNCHEZ-VZQUEZ F J. Molecular cloning, tissue distribution, and daily rhythms of expression of per1 gene in European sea bass (Dicentrarchus labrax)[J]. Chronobiol Int, 2010, 27(1): 19-33. doi:  10.3109/07420520903398633
    [13] POZO A, VERA L M, SNCHEZ J A, et al. Molecular cloning, tissue distribution and daily expression of cry1 and cry2 clock genes in European sea bass (Dicentrarchus labrax)[J]. Comp Biochem Physiol A, 2012, 163(34): 364-371.
    [14] DELGADO M J, ALONSO-GÓMEZ A L, GANCEDO B, et al. Serotonin N-acetyltransferase (NAT) activity and melatonin levels in the frog retina are not correlated during the seasonal cycle[J]. Gen Comp Endocrinol, 1993, 92(2): 143-150. doi:  10.1006/gcen.1993.1151
    [15] CERMAKIAN N, WHITMORE D, FOULKES NS, et al. Asynchronous oscillations of two zebrafish CLOCK partners reveal differential clock control and function[J]. Proc Natl Acad Sci USA, 2000, 97(8): 4339-4344. doi:  10.1073/pnas.97.8.4339
    [16] KANEKO M, HERNANDEZ-BORSETTI N, CAHILL G M. Diversity of zebrafish peripheral oscillators revealed by luciferase reporting[J]. Proc Natl Acad Sci USA, 2006, 103(39): 14614-14619. doi:  10.1073/pnas.0606563103
    [17] CAHILL G M. Clock mechanisms in zebrafish[J]. Cell Tissue Res, 2002, 309(1): 27-34. doi:  10.1007/s00441-002-0570-7
    [18] PEIRSON S N, BUTLER J N, DUFFIELD G E, et al. Comparison of clock gene expression in SCN, retina, heart, and liver of mice[J]. Biochem Biophys Res Commun, 2006, 351(4): 800-807. doi:  10.1016/j.bbrc.2006.10.118
    [19] BROWN S A, RIPPERGER J, KADENER S, et al. PERIOD1-associated proteins modulate the negative limb of the mammalian circadian oscillator[J]. Science, 2005, 308(5722): 693-696. doi:  10.1126/science.1107373
    [20] TOLOZA-VILLALOBOS J, ARROYO, OPAZO J C, et al. The circadian clock of teleost fish: a comparative analysis reveals distinct fates for duplicated genes[J]. J Mol Evol, 2015, 80(1): 57-64. doi:  10.1007/s00239-014-9660-x
    [21] BUHR E D, TAKAHASHI J. Molecular components of the Mammalian circadian clock[J]. Handb Exp Pharmacol, 2013, 217: 3-27.
    [22] MORI K, MIYAZATO M, KANGAWA K. Neuromedin S: discovery and functions[J]. Results Probl Cell Differ, 2008, 46: 201-212.
    [23] FULLER P M, LU J, SAPER C B. Differential rescue of light- and foodentrainable circadian rhythms[J]. Science, 2008, 320(5879): 1074-1077. doi:  10.1126/science.1153277
    [24] DARDENTE H, CERMAKIAN N. Molecular circadian rhythms in central and peripheral clocks in mammals[J]. Chronobiol Int, 2007, 24(2): 195-213. doi:  10.1080/07420520701283693
    [25] HUANG T S, RUOFF P, FJELLDAL P G. Effect of continuous light on daily levels of plasma melatonin and cortisol and expression of clock genes in pineal gland, brain, and liver in atlantic salmon postsmolts[J]. Chronobiol Int, 2010, 27(9/10): 1715-1734.
    [26] DELAUNAY F, THISSE C, MARCHAND O, et al. An inherited functional circadian clock in zebrafish embryos[J]. Science, 2000, 289: 297-300. doi:  10.1126/science.289.5477.297
  • [1] 葛婉仪雷丽娜蒋昕彧李霞孙兆盛王伟高谦 . 花鲈b2m基因cDNA的克隆及表达分析. 南方水产科学, doi: 10.12131/20200031
    [2] 孙彩云董宏标王文豪李勇古群红段亚飞张家松许晓东 . 月桂酸单甘油酯对花鲈脂质代谢的影响. 南方水产科学, doi: 10.12131/20200130
    [3] 张亚秋邓益琴冯娟毛灿胡建美苏友禄 . 哈维弧菌vhh基因缺失株的构建及其相关生物学特性研究. 南方水产科学, doi: 10.12131/20190211
    [4] 袁梦陈作志张俊江艳娥汤勇徐姗楠 . 南海北部陆坡海域中层渔业生物群落结构特征. 南方水产科学, doi: 10.3969/j.issn.2095-0780.2018.01.011
    [5] 徐姗楠郭建忠范江涛许友伟粟丽李纯厚 . 大亚湾夏季鱼类生物量粒径谱年际变化特征. 南方水产科学, doi: 10.12131/20200016
    [6] 韩天骄徐武杰徐煜文国樑胡晓娟苏浩昌曹煜成 . 停加红糖对凡纳滨对虾生物絮团养殖系统水质和氮收支的影响. 南方水产科学, doi: 10.12131/20200052
    [7] 秦传新左涛于刚周文礼李纯厚 . 环境DNA在水生生态系统生物量评估中的研究进展. 南方水产科学, doi: 10.12131/20190256
    [8] 陈建林苏泽杰鲁义善徐亮张红莲夏立群 . 鰑鱼诺卡氏菌HYD基因的克隆及亚细胞定位研究. 南方水产科学, doi: 10.3969/j.issn.2095-0780.2018.01.005
    [9] 范嗣刚周代志刘宝锁邓正华郭奕惠喻达辉 . 合浦珠母贝BMP7b基因的克隆与表达分析. 南方水产科学, doi: 10.3969/j.issn.2095-0780.2018.01.016
    [10] 庄明鸽江世贵周发林黄建华杨其彬姜松杨丽诗 . 斑节对虾CFSH基因的克隆及其多功能性探究. 南方水产科学, doi: 10.12131/20200011
    [11] 孟德龙申奔龙白万强薛宝宝沈和定 . 缢蛏热休克转录因子1 (HSF1) 基因克隆、组织表达及功能. 南方水产科学, doi: 10.12131/20190164
    [12] 彭敏韩耀全王大鹏施军吴伟军李育森雷建军何安尤 . 基于线粒体Cytb基因序列的西江流域广西境内卷口鱼遗传多样性分析. 南方水产科学, doi: 10.12131/20200041
    [13] 邓益琴刘松林冯娟江志坚 . 我国热带典型海草床潜在致病菌群落结构及其毒力基因丰度的空间特征. 南方水产科学, doi: 10.12131/20200068
  • 加载中
计量
  • 文章访问数:  115
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-22
  • 录用日期:  2020-07-21
  • 网络出版日期:  2020-10-13

花鲈垂体和下丘脑中生物钟基因在3种光周期下的表达节律分析

    作者简介:袁 满 (1996—),女,硕士研究生,研究方向为鱼类繁殖生物学。E-mail: madisony@163.com
    通讯作者: 邱丽华, qiugroup_bio@outlook.com
  • 1. 上海海洋大学/水产科学国家级实验教学示范中心,上海 201306
  • 2. 中国水产科学研究院南海水产研究所/广东省渔业生态环境重点实验室,广东广州 510300
  • 3. 农业农村部部水生动物基因组学重点实验室,北京 100141

摘要: 花鲈 (Lateolabrax maculatus) 是中国重要的水产养殖鱼类,其繁殖活动受光周期调控。文章研究了3种光周期 [光 (L) 暗 (D) 分别比为16L∶8D、12L∶12D和8L∶16D] 条件下,7个重要生物钟基因 (Bmal2、Npas4、Per2、Cry1、Cry1aCry2 及Timeless) 在花鲈垂体和下丘脑中的昼夜表达规律。结果表明,在12L∶12D条件下垂体中Per2、Cry1、Cry2、Cry1aTimeless表现出昼夜节律性,下丘脑中Per2、Cry2、Cry1、Timeless表现出昼夜节律性,相同基因在垂体和下丘脑两种组织中的昼夜节律不同,长光照或短光照会改变昼夜节律的震荡强弱、也会改变峰值相位,部分基因在长光照或短光照下会出现失去昼夜节律性的现象。

English Abstract

参考文献 (26)

返回顶部

目录

    /

    返回文章
    返回