留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中间轴孔珊瑚白化病病原菌的分离与鉴定

郑婷怡 林茂 曾晨爔 李忠琴 王淑红

引用本文:
Citation:

中间轴孔珊瑚白化病病原菌的分离与鉴定

    作者简介: 郑婷怡 (1996—),女,硕士研究生,研究方向为水生动植物疫病防控。E-mail: occoty@foxmail.com;
    通讯作者: 林茂, linmao@jmu.edu.cn
  • 中图分类号: Q 939.9

Isolation and identification of pathogen Vibrio alginolyticus from Acropora intermedia suffering from bleaching

    Corresponding author: Mao LIN, linmao@jmu.edu.cn ;
  • CLC number: Q 939.9

  • 摘要: 人工繁育的中间轴孔珊瑚 (Acropora intermedia) 出现白化病症状,且白化范围呈蔓延趋势,严重的甚至出现死亡。为探明此次养殖中间轴孔珊瑚白化病的病因,对患病珊瑚进行了病原学研究。从患病珊瑚基部病灶部位分离得到一株优势菌株JU-V039,该菌株经Biolog生理生化分析和16S rRNA基因发育进化树分析,鉴定为溶藻弧菌 (Vibrio alginolyticus)。再经人工回接感染,证实溶藻弧菌是引起此次珊瑚白化病的致病原。药物敏感实验显示,该菌株对13种检测抗菌药物的耐药率为15.4%,其中对利福平、复方新诺明、链霉素、红霉素、左氧氟沙星、头孢噻肟、卡那霉素、四环素、萘啶酸和氯霉素10种实验药物表现敏感 (S);对青霉素G和氨苄西林耐药 (R);对多粘菌素B则表现中介 (I)。溶藻弧菌与此次养殖中间轴孔珊瑚白化病的发生有直接关系,研究结果有助于进一步了解珊瑚白化病的致病机理,并给出科学有效的疾病控制方案。
  • 图 1  出现白化症状的中间轴孔珊瑚

    Figure 1.  A. intermedia suffering from coral bleaching

    图 2  分离菌株JU-V039在TCBS培养基上的菌落 (a) 和革兰氏染色后显微镜观察形态特征 (400×) (b)

    Figure 2.  Bacterial colony of isolated strain JU-V039 on TCBS medium (a) and microscopic observation following Gram-staining (400×) (b) of isolated strain JU-V039

    图 3  分离菌株JU-V039利用Biolog系统鉴定的生化指标结果

    Figure 3.  Biochemical indices produced from Biolog system for isolated strain JU-V039

    图 4  以分离菌株JU-V039 16S rRNA基因序列构建的系统发育树

    Figure 4.  Phylogenetic tree constructed from isolated strain JU-V039 16S rRNA gene sequence

    表 1  菌株JU-V039回归感染中间轴孔珊瑚实验白化情况统计

    Table 1.  Statistics of bleaching in challenge experiment of strain JU-V039 returning to infected healthy A. intermedia

    组别
    Group
    浸浴攻毒剂量
    Bath challenge dose/(CFU·mL−1)
    攻毒枝数
    Challenged number
    出现白化现象枝数
    Number of bleaching coral
    累计白化数
    Total bleaching number
    累计白化率
    Cumulative Bleaching rate/%
    3 d4 d6 d8 d10 d12 d14 d
    感染组 Infected group 1.5×106 12 0 4 2 1 2 1 2 12 100.0
    1.5×105 12 0 1 3 2 0 2 2 10 83.3
    1.5×104 12 0 0 1 0 2 1 0 4 33.3
    对照组 Control group 0 12 0 0 0 0 0 0 0 0 0
    下载: 导出CSV

    表 2  菌株JU-V039对13种抗菌药物的敏感性

    Table 2.  Sensibility of isolated strain JU-V039 to 13 antibiotics

    药物用量
    Antibiotics Content/(μg·片−1)
    抑菌圈直径 (敏感度)
    Inhibition zone (sensitivity)/mm
    药物用量
    Antibiotics Content/(μg·片−1)
    抑菌圈直径 (敏感度)
    Inhibition zone (sensitivity)/mm
    利福平 Rifampicin (5) 19.2 (S) 头孢噻肟 Cefotaxime (30) 46.0 (S)
    青霉素 GPenicillin G (10) 7.5 (R) 卡那霉素 Kanamycin (30) 24.5 (S)
    复方新诺明 Sulfamethoxazole (25) 26.2 (S) 四环素 Tetracycline (30) 22.3 (S)
    链霉素 Streptomycin (10) 23.3 (S) 氨苄西林 Ampicillin (10) 8.3 (R)
    红霉素 Erythromycin (15) 29.0 (S) 萘啶酸 Nalidixic acid (30) 27.2 (S)
    多粘菌素 BpolymyxinB (300) 11.5 (I) 氯霉素 Chloramphenicol (30) 36.1 (S)
    左氧氟沙星 Levofloxacin (5) 26.1 (S)
    注:R. 耐药;S. 敏感;I. 中介
    Note: R. Resistant; S. Sensitive; I. Intermediate
    下载: 导出CSV
  • [1] OBURA D, GEIGER E, DAY J C, et al. Impacts of climate change on world heritage coral reefs: a first global scientific assessment[R]. Paris, France: UNESCO World Heritage Centre, 2017.
    [2] RANDALL C J, JORDÁN-GARZA A G, van WOESIK R. Ciliates associated with signs of disease on two Caribbean corals[J]. Coral Reefs, 2015, 34(1): 243-247. doi:  10.1007/s00338-014-1212-8
    [3] CLEMENS E, BRANDT M E. Multiple mechanisms of transmission of the Caribbean coral disease white plague[J]. Coral Reefs, 2015, 34(4): 1179-1188. doi:  10.1007/s00338-015-1327-6
    [4] POLLOCK F J, KREDIET C J, GARREN M, et al. Visualization of coral host-pathogen interactions using a stable GFP-labeled Vibrio coralliilyticus strain[J]. Coral Reefs, 2015, 34(2): 655-662. doi:  10.1007/s00338-015-1273-3
    [5] JACQUEMOT L, BETTAREL Y, MONJOL J, et al. Therapeutic potential of a new jumbo phage that infects Vibrio coralliilyticus, a widespread coral pathogen[J]. Front Microbiol, 2018, 9: 2501. doi:  10.3389/fmicb.2018.02501
    [6] 杨思悦, 符亚楠, 龙昊, 等. 珊瑚病原菌株 XSBZ03 和XSBZ14 双重 PCR 检测方法的建立[J]. 微生物学报, 2019, 59(7): 1266-1274.
    [7] WEBER L, DEFORCE E, APPRILL A. Optimization of DNA extraction for advancing coral microbiota investigations[J]. Microbiome, 2017, 5(1): 18. doi:  10.1186/s40168-017-0229-y
    [8] CHIMETTO TONON LA, THOMPSON J R, MOREIRA A P B, et al. Quantitative detection of active vibrios associated with white plague disease in Mussismilia braziliensis corals[J]. Front Microbiol, 2017, 8: 2272. doi:  10.3389/fmicb.2017.02272
    [9] HUGHES T P, ANDERSON K D, CONNOLLY S R, et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene[J]. Science, 2018, 359(6371): 80-83. doi:  10.1126/science.aan8048
    [10] HOEGH-GULDBERG O. Reviving the ocean economy: the case for action-2015[R]. Gland, Switzerland: WWF International, 2015.
    [11] DIVYA S, THINESH T, KIRAN G S, et al. Emergence of a multi host biofilm forming opportunistic pathogen Staphylococcus sciuri D26 in coral Favites abdita[J]. Microb Pathog, 2018, 120: 204-212. doi:  10.1016/j.micpath.2018.04.037
    [12] SATO Y, CIVIELLO M, BELL S C, et al. Integrated approach to understanding the onset and pathogenesis of black band disease in corals[J]. Environ Microbiol, 2016, 18(3): 752-765. doi:  10.1111/1462-2920.13122
    [13] ROSENBERG E, BARASH Y. Microbial diseases of corals[M]//Oceans and health: pathogens in the marine environment. Springer US, 2005: 415-430.
    [14] 朱志雄, 周永灿, 柯韶文, 等. 西沙群岛造礁石珊瑚主要疾病调查与初步研究[J]. 海洋学报 (中文版), 2012, 34(6): 195-204.
    [15] 杨思悦, 龙昊, 章翔, 等. 珊瑚病原微生物鉴定及其分子诊断技术进展[J]. 微生物学通报, 2020, 47(2): 623-633.
    [16] BEURMANN S, USHIJIMA B, VIDEAU P, et al. Pseudoalteromonas piratica strain OCN003 is a coral pathogen that causes a switch from chronic to acute Montipora white syndrome in Montipora capitata[J]. PLoS One, 2017, 12(11): e0188319. doi:  10.1371/journal.pone.0188319
    [17] LI S, YU K F. Recent development in coral reef bleaching research[J]. Acta Ecologica Sinica, 2007, 27(5): 2059-2069.
    [18] ZHANG Q M, YU K F, SHI Q, et al. A review of monitoring conservation and management of global coral reefs[J]. J Trop Oceanogra, 2006, 25(2): 71-78.
    [19] 袁吉贵, 刘丽, 张艳苹. 珊瑚白化及温度相关基因的研究进展[J]. 基因组学与应用生物学, 2018, 37(9): 3810-3816.
    [20] BOURNE D G, MORROW K M, WEBSTER N S. Insights into the coral microbiome: underpinning the health and resilience of reef ecosystems[J]. Annu Rev Microbiol, 2016, 70: 317-340. doi:  10.1146/annurev-micro-102215-095440
    [21] GARREN M, SON K, TOUT J, et al. Temperature-induced behavioral switches in a bacterial coral pathogen[J]. ISME J, 2016, 10(6): 1363-1372. doi:  10.1038/ismej.2015.216
    [22] 张燕燕, 曲来叶, 陈利顶. Biolog Eco PlateTM实验信息提取方法改进[J]. 微生物学通报, 2009, 36(7): 1083-1091.
    [23] 曾晨爔, 林茂, 李忠琴, 等. 暹罗鳄食道结节病病原彭氏变形杆菌的分离与鉴定[J]. 微生物学通报, 2019, 46(7): 1629-1635.
    [24] LIU W J, ZHENF Y, KWOK L Y, et al. High-throughput sequencing for the detection of the bacterial and fungal diversity in Mongolian naturally fermented cow's milk in Russia[J]. BMC Microbiol, 2015, 15(1): 385.
    [25] 黄敏, 王荣霞, 王永波, 等. 珊瑚的室内循环海水生态养殖模式的构建[J]. 热带生物学报, 2019, 10(1): 22-27.
    [26] ANTHONY K R N. Coral suspension feeding on fine particulate matter[J]. Exp Mar Biol Ecol, 1999, 232: 85-106. doi:  10.1016/S0022-0981(98)00099-9
    [27] 陈燕, 李成才, 晁飞飞, 等. 环境因子对造礁石珊瑚白化影响的研究进展及思考[J]. 黑龙江科技信息, 2016(2): 129-130.
    [28] TOUT J, SIBONI N, MESSER L F, et al. Increased seawater temperature increases the abundance and alters the structure of natural Vibrio populations associated with the coral Pocillopora damicornis[J]. Front Microbiol, 2015, 6: 432.
    [29] BRADLEY A W, TRAVIS E L, KRISTINE L S. The extent of coral bleaching, disease and mortality for data-deficient reefs in Eleuthera, The Bahamas after the 2014–2017 global bleaching event[J]. Coral Reefs, 2019, 38(4): 831-836. doi:  10.1007/s00338-019-01798-5
    [30] KVENNEFORS E C, SAMPAYO E, KERR C, et al. Regulation of bacterial communities through antimicrobial activity by the coral holobiont[J]. Microb Ecol, 2012, 63(3): 605-618. doi:  10.1007/s00248-011-9946-0
    [31] ZHANG Y, SUN J, MU H W, et al. Molecular pathology of skeletal growth anomalies in the brain coral Platygyra carnosa: a meta-transcriptomic analysis[J]. Mar Pollut Bull, 2017, 124(2): 660-667. doi:  10.1016/j.marpolbul.2017.03.047
    [32] 王凤青, 孙玉增, 任利华, 等. 海水养殖中水产动物主要致病弧菌研究进展[J]. 中国渔业质量与标准, 2018, 8(2): 49-56. doi:  10.3969/j.issn.2095-1833.2018.02.007
    [33] LANGE I D, PERRY C T. Bleaching impacts on carbonate production in the Chagos Archipelago: influence of functional coral groups on carbonate budget trajectories[J]. Coral Reefs, 2019, 38(4): 619-624. doi:  10.1007/s00338-019-01784-x
    [34] 焦彦凯, 严小军, 李小兵. 溶藻细菌及溶藻化合物研究进展[J]. 工业微生物, 2018, 48(4): 56-62. doi:  10.3969/j.issn.1001-6678.2018.04.010
    [35] 梅冰, 陆翔, 王丽娜, 等. 溶藻弧菌的毒力因子与相关基因的研究进展[J]. 辽宁农业科学, 2015(5): 58-60. doi:  10.3969/j.issn.1002-1728.2015.05.014
    [36] ZUO Y F, ZHAO L M, XU X J, et al. Mechanisms underlying the virulence regulation of new Vibrio alginolyticus ncRNA Vvrr1 with a comparative proteomic analysis[J]. Emerg Microbes Infect, 2019, 8(1): 1604-1618. doi:  10.1080/22221751.2019.1687261
    [37] CERVINO J M, THOMPSON F L, GOMEZ-GIL B, et al. The Vibrio core group induces yellow band disease in Caribbean and Indo-Pacific reef-building corals[J]. J Appl Microbiol, 2008, 105(5): 1658-1671. doi:  10.1111/j.1365-2672.2008.03871.x
    [38] JACOBS SLIFKA K M, NEWTON A E, MAHON B E. Vibrio alginolyticus infections in the USA, 1988–2012[J]. Epidemiol Infect, 2017, 145(7): 1491-1499. doi:  10.1017/S0950268817000140
    [39] HUANG X, CHEN C, REN C, et al. Identification and characterization of a locus putatively involved in colanic acid biosynthesis in Vibrio alginolyticus ZJ-51[J]. Biofouling, 2018, 34(1): 1-14. doi:  10.1080/08927014.2017.1400020
    [40] KUSHMARO A, LOYA Y, FINE M, et al. Bacterial infection and coral bleaching[J]. Nature, 1996, 380(6573): 396.
    [41] KUSHMARO A, ROSENBERG E, FINE M, et al. Bleaching of the coral Oculina patagonica by Vibrio AK-1[J]. Mar Ecol Prog Ser, 1997, 147: 159-165. doi:  10.3354/meps147159
    [42] SADOK K, ELISABETTA S, MATTEO S, et al. Presence of pathogenic Vibrio parahaemolyticus in waters and seafood from the Tunisian Sea[J]. World J Microbiol Biotechnol, 2013(29): 1341-1348.
    [43] BEN-HAIM Y, THOMPSON F L, THOMPSON C C, et al. Vibrio coralliilyticus sp. nov., a temperature-dependent pathogen of the coral Pocillopora damicornis[J]. Int J Sys Evol Microbiol, 2003, 53(1): 309-315. doi:  10.1099/ijs.0.02402-0
    [44] LUNA G M, BENJAMIN L, CLAUDIA G, et al. Vibrio haveyi as a causative agent of the White Syndrome in the tropical stony corals[J]. Environ Microbiol Rep, 2010, 2(1): 120-127.
    [45] XIE Z Y, KE S W, HU C Q, et al. First characterization of bacterial pathogen, Vibrio alginolyticus, for Porites andrewsi white syndrome in the South China Sea[J]. PLoS One, 2013, 8(9): e75425. doi:  10.1371/journal.pone.0075425
    [46] 写腊月, 胡琳琳, 房文红, 等. 海水养殖源弧菌耐药性调查与分析[J]. 海洋渔业, 2011, 33(4): 442-446. doi:  10.3969/j.issn.1004-2490.2011.04.012
    [47] 周诗慧, 吴志豪, 廖嘉明, 等. 斜阳岛珊瑚礁区海泥可培养细菌的分离鉴定及其ECP抑菌作用[J]. 基因组学与应用生物学, 2018, 37(11): 1-18.
    [48] EFRONY R, ATAD L, ROSENBERG E. Phage therapy of coral white plague disease: properties of phage BA3[J]. Curr Microbiol, 2009, 58(2): 139-145. doi:  10.1007/s00284-008-9290-x
    [49] EAKIN C M, SWEATMAN H P A, BRAINARD R E. The 2014–2017 global-scale coral bleaching event: insights and impacts[J]. Coral Reefs, 2019, 38(4): 539-545. doi:  10.1007/s00338-019-01844-2
  • [1] 郑天伦王国良金珊黄家庆何中央林如意 . 养殖大黄鱼溃疡病的病原菌及其防治药物研究. 南方水产科学,
    [2] 邓益琴陈偿苏友禄程长洪马红玲郭志勋冯娟 . 溶藻弧菌ZJ-T小RNA srvg17985缺失突变株的构建及该小RNA功能的初步分析. 南方水产科学, doi: 10.12131/20180127
    [3] 姚雪梅王珺王思周平 . 人工培养牟氏角毛藻对弧菌抑制效果研究. 南方水产科学,
    [4] 杨求华葛辉方旅平林琪何丽斌周宸 . 池塘养殖刺参病原菌塔式弧菌的分离与鉴定. 南方水产科学, doi: 10.3969/j.issn.2095-0780.2014.04.008
    [5] 黄梓荣陈作志 . 佳蓬列岛造礁石珊瑚的群落结构研究. 南方水产科学,
    [6] 孙典荣林昭进邱永松王雪辉 . 西沙群岛重要珊瑚礁海域鱼类区系. 南方水产科学,
    [7] 史赟荣李永振卢伟华孙冬芳 . 东沙群岛珊瑚礁海域鱼类物种分类多样性研究. 南方水产科学, doi: 10.3969/j.issn.1673-2227.2009.02.002
    [8] 舒黎明陈国宝李永振 . 南沙群岛珊瑚礁区7种鲈总科鱼类鳞片年轮特征. 南方水产科学,
    [9] 陈国宝李永振 . 南海主要珊瑚礁科鱼类的组成与分布. 南方水产科学,
    [10] 王江勇孙秀秀王瑞旋苏友禄 . 杂色鲍肌肉萎缩症病原菌的分离鉴定及系统发育分析. 南方水产科学, doi: 10.3969/j.issn.1673-2227.2010.05.004
    [11] 辜良斌徐力文冯娟苏友禄刘广峰郭志勋 . 豹纹鳃棘鲈尾部溃烂症病原菌的鉴定与药敏试验. 南方水产科学, doi: 10.3969/j.issn.2095-0780.2015.04.011
    [12] 王瑞旋耿玉静冯娟王江勇 . 杂色鲍哈维弧菌耐药质粒的鉴定和分析. 南方水产科学, doi: 10.3969/j.issn.2095-0780.2012.02.001
    [13] 郗建云曹煜成李卓佳文国樑徐武杰郑奇宏李振成许云娜 . 溶藻菌A2对4种微藻的溶藻效果分析. 南方水产科学, doi: 10.3969/j.issn.2095-0780.2016.05.005
    [14] 陈成耿毅汪开毓余泽辉陈德芳欧阳萍黄小丽李亚军唐俊辉 . 拟态弧菌感染黄颡鱼的动态病理损伤及病原分布研究. 南方水产科学, doi: 10.3969/j.issn.2095-0780.2017.01.002
    [15] 杨顶田单秀娟刘素敏叶海彬杨超宇徐超董俊德 . 三亚湾近10年pH的时空变化特征及对珊瑚礁石影响分析. 南方水产科学, doi: 10.3969/j.issn.2095-0780.2013.01.001
    [16] 王丽花曹煜成李卓佳 . 溶藻细菌控藻作用及其在对虾养殖池塘的应用前景. 南方水产科学, doi: 10.3969/j.issn.2095-0780.2012.04.012
    [17] 刘平怀杨勋郝宗娣张森张玲 . 产油微藻的分离鉴定及营养方式对其油脂积累的影响. 南方水产科学, doi: 10.3969/j.issn.2095-0780.2013.04.005
    [18] 蒋魁徐力文苏友禄王雨郭志勋许海东高芳冯娟 . 2012年~2014年南海海水养殖鱼类病原菌哈维弧菌分离株的耐药性分析. 南方水产科学, doi: 10.3969/j.issn.2095-0780.2016.06.013
    [19] 常亚青赵冲胡方圆宋坚冷晓飞廖修锦罗嘉刘明泰张伟杰 . 福建沿海试养中间球海胆的初步研究. 南方水产科学, doi: 10.12131/20190156
    [20] 黄洪辉韩贝贝张书飞吴风霞 . 海洋溶藻菌的研究进展. 南方水产科学, doi: 10.12131/20190040
  • 加载中
计量
  • 文章访问数:  275
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-18
  • 录用日期:  2020-04-06
  • 网络出版日期:  2020-04-28

中间轴孔珊瑚白化病病原菌的分离与鉴定

    作者简介:郑婷怡 (1996—),女,硕士研究生,研究方向为水生动植物疫病防控。E-mail: occoty@foxmail.com
    通讯作者: 林茂, linmao@jmu.edu.cn
  • 1. 集美大学水产学院/厦门市渔用药物工程技术研究中心,福建 厦门 361021
  • 2. 农业农村部东海海水健康养殖重点实验室,福建 厦门 361021

摘要: 人工繁育的中间轴孔珊瑚 (Acropora intermedia) 出现白化病症状,且白化范围呈蔓延趋势,严重的甚至出现死亡。为探明此次养殖中间轴孔珊瑚白化病的病因,对患病珊瑚进行了病原学研究。从患病珊瑚基部病灶部位分离得到一株优势菌株JU-V039,该菌株经Biolog生理生化分析和16S rRNA基因发育进化树分析,鉴定为溶藻弧菌 (Vibrio alginolyticus)。再经人工回接感染,证实溶藻弧菌是引起此次珊瑚白化病的致病原。药物敏感实验显示,该菌株对13种检测抗菌药物的耐药率为15.4%,其中对利福平、复方新诺明、链霉素、红霉素、左氧氟沙星、头孢噻肟、卡那霉素、四环素、萘啶酸和氯霉素10种实验药物表现敏感 (S);对青霉素G和氨苄西林耐药 (R);对多粘菌素B则表现中介 (I)。溶藻弧菌与此次养殖中间轴孔珊瑚白化病的发生有直接关系,研究结果有助于进一步了解珊瑚白化病的致病机理,并给出科学有效的疾病控制方案。

English Abstract

参考文献 (49)

返回顶部

目录

    /

    返回文章
    返回