留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

斑节对虾CFSH基因的克隆及其多功能性探究

庄明鸽 江世贵 周发林 黄建华 杨其彬 姜松 杨丽诗

引用本文:
Citation:

斑节对虾CFSH基因的克隆及其多功能性探究

    作者简介: 庄明鸽 (1995—),女,硕士研究生,研究方向为遗传育种。E-mail: zmg630359811@163.com;
    通讯作者: 杨丽诗, yangls2016@163.com
  • 中图分类号: S 917.4

Molecular cloning and multifunction exploration of CFSH gene in Penaeus monodon

    Corresponding author: Lishi YANG, yangls2016@163.com
  • CLC number: S 917.4

  • 摘要: 该研究通过RACE (Rapid-amplification of cDNA ends) 法克隆并获得斑节对虾 (Penaeus monodon) 甲壳动物雌性激素 (Crustacean female sex hormone, CFSH) 基因PmCFSH的开放阅读框(ORF)及3'非编码区(UTR),预测编码214 氨基酸(aa)的蛋白,其含有信号肽和1个与免疫应答相关的白介素17E (IL-17E) 结构域。qRT-PCR结果显示,PmCFSH基因在各个组织中均有表达,其中在腹神经组织中的表达量最高;从受精卵时期到仔虾期的表达量呈逐渐上升趋势,其中在仔虾期表达量最高;在卵巢发育Ⅱ—Ⅳ期,随卵巢发育成熟表达量逐渐升高;革兰氏阴性菌和阳性菌均能上调PmCFSH基因的表达量,其中鳃组织PmCFSH在哈维氏弧菌 (Vibrio harveyi) 感染后第3小时和金黄色葡萄球菌 (Staphylococcus aureus) 刺激后第12小时达到表达高峰;而肝胰腺PmCFSH在哈维氏弧菌感染后第3小时和金黄色葡萄球菌刺激后第48小时达到表达高峰。研究表明,PmCFSH基因不仅参与幼体发育以及性腺成熟的调控,对细菌的应激也具有免疫应答响应,体现了激素的“多功能性”现象。
  • 图 1  PmCFSH cDNA序列及其氨基酸序列

    Figure 1.  Nucleotide and deduced amino acid sequences of PmCFSH

    图 2  PmCFSH和凡纳滨对虾uncharacterized protein LOC113812164、日本囊对虾CFSH氨基酸序列多重比对

    Figure 2.  Multiple sequence alignment on PmCFSH amino acid sequences with uncharacterized protein LOC113812164 of L. vannamei and CHSH amino acid of M. japonicus

    图 3  PmCFSH系统进化树

    Figure 3.  Phylogenetic analysis of PmCFSH

    图 4  SOPMA软件对PmCFSH蛋白质二级结构的分析结果

    Figure 4.  Secondary structure of PmCFSH protein analyzed by SOPMA

    图 5  CFSH结构域分布以及三维结构预测图

    Figure 5.  PmCFSH domain distribution and three-dimensional structure prediction diagrams

    图 6  PmCFSH在各组织中的表达

    Figure 6.  Expression of PmCFSH in different tissues

    图 7  PmCFSH在发育各期的表达情况

    Figure 7.  Expression of PmCFSH during embryonic development

    图 8  PmCFSH 基因在卵巢不同时期中的表达情况

    Figure 8.  Expression of PmCFSH at different ovarian developmental stages

    图 9  肝胰腺 (a) 与鳃组织 (b) 中PmCFSH基因受革兰氏菌刺激后的表达情况

    Figure 9.  mRNA expression levels of PmCFSH in hepatopancreas (a) and gill (b) after being challenged with different kinds of Gram bacteria

    表 1  实验所用引物及其序列

    Table 1.  Primers and sequences used in this study

    引物名称
    Primer's name
    引物序列
    Primer's sequence
    PmCFSH 3'RACE1 5'CGCTGACCGCTGCTGTGAAATC3'
    PmCFSH 3'RACE2 5'CGGGCTGTGGCGAGTCCATTTA3'
    PmCFSH 5'RACE1 5'CCGACAAGTGCGAAGCCTCAGC3'
    PmCFSH 5'RACE2 5'AGTGTGAGCCGCCGCATACACAC3'
    CFSH-qF 5'CGATCTTGACGCTGAAGGAAAA3'
    CFSH-qR 5'TCGTGCCGACTAAACCAATAAA3'
    EF-1α-F 5'AAGCCAGGTATGGTTGTCAACTTT3'
    EF-1α-R 5'CGTGGTGCATCTCCACAGACT3'
    下载: 导出CSV
  • [1] 许成团, 方良智. 非洲斑节对虾健康养殖技术[J]. 海洋与渔业, 2016(6): 58-60.
    [2] OKUMURA T. Perspectives on hormonal manipulation of shrimp reproduction[J]. Jpn Agr Res Q, 2004, 38(1): 49-54. doi:  10.6090/jarq.38.49
    [3] 江世贵. 斑节对虾种虾繁育技术[M]. 北京: 海洋出版社, 2013: 21-32.
    [4] ZMORA N, CHUNG J S. A novel hormone is required for the development of reproductive phenotypes in adult female crabs[J]. Endocrinology, 2014, 155(1): 230-239. doi:  10.1210/en.2013-1603
    [5] VENTURA T, CUMMINS S F, FITZGIBBON Q, et al. Analysis of the central nervous system transcriptome of the eastern rock lobster Sagmariasus verreauxi reveals its putative neuropeptidome[J]. PLoS One, 2014, 9(5): e97323. doi:  10.1371/journal.pone.0097323
    [6] LIU A, LIU J, LIU F, et al. Crustacean female sex hormone from the mud crab Scylla paramamosain is highly expressed in prepubertal males and inhibits the development of androgenic gland[J]. Front Physiol, 2018, 924(9): 1-11.
    [7] VEENSTRA J A. The power of next-generation sequencing as illustrated by the neuropeptidome of the crayfish Procambarus clarkii[J]. Gen Comp Endocr, 2015, 224(1): 84-95.
    [8] THONGBUAKAEW T, SUWANSA-ARD S, SRETARUGSA P, et al. Identification and characterization of a crustacean female sex hormone in the giant freshwater prawn, Macrobrachium rosenbergii[J]. Aquaculture, 2019, 507: 56-68. doi:  10.1016/j.aquaculture.2019.04.002
    [9] KOTAKA S, OHIRA T. cDNA cloning and in situ localization of a crustacean female sex hormone-like molecule in the kuruma prawn Marsupenaeus japonicus[J]. Fish Sci, 2018, 84(1): 53-60. doi:  10.1007/s12562-017-1152-7
    [10] SIGURDARDOTTIR S, ZAPADKA T E, LINDSTROM S I, et al. Diabetes-mediated IL-17A enhances retinal inflammation, oxidative stress, and vascular permeability[J]. Cell Immunol, 2019, 341: 103921.
    [11] LI S H, LI F H, WANG B, et al. Cloning and expression profiles of two isoforms of a CHH-like gene specifically expressed in male Chinese shrimp, Fenneropenaeus chinensis[J]. Gen Comp Endocr, 2010, 167(2): 308-316. doi:  10.1016/j.ygcen.2010.03.028
    [12] LACOMBE C, GREVE P, MARTIN G. Overview on the sub-grouping of the crustacean hyperglycemic hormone family[J]. Neuropeptides, 1999, 33(1): 71-80. doi:  10.1054/npep.1999.0016
    [13] 黄建华, 周发林, 马之明, 等. 南海北部斑节对虾卵巢发育的形态及组织学观察[J]. 热带海洋学报, 2006, 25(3): 47-52. doi:  10.3969/j.issn.1009-5470.2006.03.009
    [14] QIN Y, JIANG S, HUANG J, et al. C-type lectin response to bacterial infection and ammonia nitrogen stress in tiger shrimp (Penaeus monodon)[J]. Fish Shellfish Immunol, 2019, 90: 188-198.
    [15] 丁阳阳, 江世贵, 李运东, 等. 斑节对虾Pellino基因的克隆及其在不同胁迫条件下的表达分析[J]. 南方水产科学, 2019, 15(3): 87-96. doi:  10.12131/20180216
    [16] BULAJ G. Formation of disulfide bonds in proteins and peptides[J]. Biotechnol Adv, 2005, 23(1): 87-92. doi:  10.1016/j.biotechadv.2004.09.002
    [17] PIERCE J G, PARSONS T F A. Glycoprotein hormones: structure and function[J]. Annu Rev Biochem, 1981, 50(1): 465-495. doi:  10.1146/annurev.bi.50.070181.002341
    [18] SKINNER D C, ALBERTSON A J, NAVRATIL A, et al. Effects of gonadotrophin-releasing hormone outside the hypothalamic-pituitary-reproductive axis[J]. J Neuroendocrinol, 2009, 21(4): 282-292. doi:  10.1111/j.1365-2826.2009.01842.x
    [19] XU S L, WANG D L, JIA C Y, et al. Effects of Vibrio alginolyticus infection on immune-related enzyme activities and ultrastructure of Charybdis japonica gills[J]. Aquaculture, 2013, 396/397/398/399(1): 82-88.
    [20] DU J, ZHU H, LIU P, et al. Immune responses and gene expression in hepatopancreas from Macrobrachium rosenbergii challenged by a novel pathogen spiroplasma MR-1008[J]. Fish Shellfish Immun, 2013, 34(1): 315-323. doi:  10.1016/j.fsi.2012.11.009
    [21] SHABGAH A G, FATTAHI E, SHAHNEH F Z. Interleukin-17 in human inflammatory diseases[J]. Adv Dermatol Allergol, 2014, 31(4): 256-261.
    [22] 周光炎. 免疫学原理[M]. 3版. 北京: 科学出版社, 2013: 217-218, 281-286.
    [23] KUMAR P, MONIN L, CASTILLO P, et al. Intestinal interleukin-17 receptor signaling mediates reciprocal control of the gut microbiota and autoimmune inflammation[J]. Immunity, 2016, 44(3): 659-671. doi:  10.1016/j.immuni.2016.02.007
    [24] WU S Z, HUANG X D, LI Q, et al. Interleukin-17 in pearl oyster (Pinctada fucata): molecular cloning and functional characterization[J]. Fish Shellfish Immun, 2013, 34(5): 1050-1056. doi:  10.1016/j.fsi.2013.01.005
    [25] JEONG Y H, PARK J S, KIM D H, et al. Anti-inflammatory mechanism of lonchocarpine in LPS- or poly (I:C)-induced neuroinflammation[J]. Pharmacol Res, 2017, 119: 431-442. doi:  10.1016/j.phrs.2017.02.027
    [26] LI C, CHEN Y, WENG S, et al. Presence of tube isoforms in Litopenaeus vannamei suggests various regulatory patterns of signal transduction in invertebrate NF-κB pathway[J]. DCI, 2014, 42(2): 174-185.
    [27] 张健, 张志峰, 邵明瑜. 中国明对虾脑发生和分化的细胞学观察[J]. 中国水产科学, 2007, 14(1): 15-22. doi:  10.3321/j.issn:1005-8737.2007.01.003
    [28] 谢松, 李理想, 陈宏健, 等. 中国明对虾卵黄蛋白原基因启动子克隆与分析[J]. 河北大学学报(自然科学版), 2013, 33(2): 175-180.
    [29] 韩萍, 杨丽诗, 吴松, 等. 促性腺激素释放激素及多巴胺拮抗物地欧酮对斑节对虾卵巢组织发育的影响[J]. 南方水产科学, 2015, 11(2): 50-56.
    [30] TSUTSUI N, KOTAKA S, OHIRA T, et al. Characterization of distinct ovarian isoform of crustacean female sex hormone in the kuruma prawn, Marsupenaeus japonicus[J]. Comp Biochem Physiol A, 2018, 217: 7-16. doi:  10.1016/j.cbpa.2017.12.009
  • [1] 陈梓聪陈丕茂袁华荣冯雪佟飞张皓铭 . 斑节对虾幼虾力竭运动后呼吸代谢变化研究. 南方水产科学, 2020, 16(4): 75-83. doi: 10.12131/20200017
    [2] 黄智康江世贵周发林黄建华杨其彬姜松李运东杨丽诗 . 基于InDel标记的斑节对虾早期性别鉴定方法的建立. 南方水产科学, 2020, 16(3): 113-118. doi: 10.12131/20190222
    [3] 张瑞祺赵金良郝月月宋银都 . 鳜颅部侧线系统的胚后发育. 南方水产科学, 2020, 16(6): 58-67. doi: 10.12131/20200067
    [4] 刘栋梁黄建华周发林杨其彬姜松杨丽诗朱彩艳江世贵 . 维生素E和裂壶藻对斑节对虾精荚再生的协同作用. 南方水产科学, 2018, 14(1): 20-26. doi: 10.3969/j.issn.2095-0780.2018.01.003
    [5] 孟德龙申奔龙白万强薛宝宝沈和定 . 缢蛏热休克转录因子1 (HSF1) 基因克隆、组织表达及功能. 南方水产科学, 2020, 16(5): 115-122. doi: 10.12131/20190164
    [6] 范嗣刚周代志刘宝锁邓正华郭奕惠喻达辉 . 合浦珠母贝BMP7b基因的克隆与表达分析. 南方水产科学, 2018, 14(1): 121-126. doi: 10.3969/j.issn.2095-0780.2018.01.016
    [7] 葛婉仪雷丽娜蒋昕彧李霞孙兆盛王伟高谦 . 花鲈b2m基因cDNA的克隆及表达分析. 南方水产科学, 2020, 16(6): 48-57. doi: 10.12131/20200031
    [8] 袁满王鹏飞闫路路赵超范嗣刚陈祥邱丽华 . 花鲈垂体和下丘脑中生物钟基因在3种光周期下的表达节律分析. 南方水产科学, 2020, 16(6): 39-47. doi: 10.12131/20200113
    [9] 黄小林杨育凯李涛虞为黄忠林黑着舒琥 . 池塘养殖黄斑篮子鱼初次性成熟性腺发育研究. 南方水产科学, 2020, 16(5): 99-107. doi: 10.12131/20200051
    [10] 牛莹月区又君蓝军南温久福李加儿李俊伟周慧 . 人工培育四指马鲅鳃组织结构及其早期发育. 南方水产科学, 2020, 16(5): 108-114. doi: 10.12131/20200028
    [11] 彭敏韩耀全王大鹏施军吴伟军李育森雷建军何安尤 . 基于线粒体Cytb基因序列的西江流域广西境内卷口鱼遗传多样性分析. 南方水产科学, 2020, 16(5): 10-18. doi: 10.12131/20200041
    [12] 高小蝉郭明瑜霍志鹏 . 大菱鲆呼肠孤病毒(SMReV) VP5蛋白的原核表达及分析. 南方水产科学, 2018, 14(1): 43-49. doi: 10.3969/j.issn.2095-0780.2018.01.006
    [13] 马丽吴金英高凇泽孙彩云李文笙 . 海豚链球菌simApgmA真核表达质粒对尼罗罗非鱼免疫保护的研究. 南方水产科学, 2020, 16(3): 38-46. doi: 10.12131/20190163
    [14] 陈建林苏泽杰鲁义善徐亮张红莲夏立群 . 鰑鱼诺卡氏菌HYD基因的克隆及亚细胞定位研究. 南方水产科学, 2018, 14(1): 35-42. doi: 10.3969/j.issn.2095-0780.2018.01.005
    [15] 张亚秋邓益琴冯娟毛灿胡建美苏友禄 . 哈维弧菌vhh基因缺失株的构建及其相关生物学特性研究. 南方水产科学, 2020, 16(2): 43-53. doi: 10.12131/20190211
    [16] 魏磊朱书琴刘伟赵金良钱叶周吴超钱德 . 鳜回交子代与亲本子代间体型和体斑特征比较. 南方水产科学, 2020, 16(2): 1-7. doi: 10.12131/20190219
    [17] 韦存于鹏于明超单洪伟 . 对虾养殖体系中细菌群体感应抑制菌株的筛选及其特性初步研究. 南方水产科学, 2018, 14(1): 27-34. doi: 10.3969/j.issn.2095-0780.2018.01.004
    [18] 邓益琴刘松林冯娟江志坚 . 我国热带典型海草床潜在致病菌群落结构及其毒力基因丰度的空间特征. 南方水产科学, 2020, 16(5): 1-9. doi: 10.12131/20200068
    [19] 荣婧仇超颖胡晓杨贤庆李来好 . 鸢乌贼肌原纤维蛋白糖基化产物功能特性研究. 南方水产科学, 2018, 14(1): 68-76. doi: 10.3969/j.issn.2095-0780.2018.01.009
    [20] 王芸李正段亚飞王珺黄忠林黑着 . 红景天提取物对凡纳滨对虾抗氧化系统及抗低盐度胁迫的影响. 南方水产科学, 2018, 14(1): 9-19. doi: 10.3969/j.issn.2095-0780.2018.01.002
  • 加载中
图(9)表(1)
计量
  • 文章访问数:  209
  • HTML全文浏览量:  60
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-28
  • 录用日期:  2020-03-28
  • 网络出版日期:  2020-09-28
  • 刊出日期:  2020-08-05

斑节对虾CFSH基因的克隆及其多功能性探究

    作者简介:庄明鸽 (1995—),女,硕士研究生,研究方向为遗传育种。E-mail: zmg630359811@163.com
    通讯作者: 杨丽诗, yangls2016@163.com
  • 1. 上海海洋大学水产与生命学院,上海 201306
  • 2. 中国水产科学研究院南海水产研究所热带水产研究开发中心,海南 三亚 572018
  • 3. 中国水产科学研究院南海水产研究所/农业农村部南海渔业资源开发利用重点实验室,广东 广州 510300
  • 4. 中国水产科学研究院南海水产研究所深圳试验基地,广东 深圳 518121

摘要: 该研究通过RACE (Rapid-amplification of cDNA ends) 法克隆并获得斑节对虾 (Penaeus monodon) 甲壳动物雌性激素 (Crustacean female sex hormone, CFSH) 基因PmCFSH的开放阅读框(ORF)及3'非编码区(UTR),预测编码214 氨基酸(aa)的蛋白,其含有信号肽和1个与免疫应答相关的白介素17E (IL-17E) 结构域。qRT-PCR结果显示,PmCFSH基因在各个组织中均有表达,其中在腹神经组织中的表达量最高;从受精卵时期到仔虾期的表达量呈逐渐上升趋势,其中在仔虾期表达量最高;在卵巢发育Ⅱ—Ⅳ期,随卵巢发育成熟表达量逐渐升高;革兰氏阴性菌和阳性菌均能上调PmCFSH基因的表达量,其中鳃组织PmCFSH在哈维氏弧菌 (Vibrio harveyi) 感染后第3小时和金黄色葡萄球菌 (Staphylococcus aureus) 刺激后第12小时达到表达高峰;而肝胰腺PmCFSH在哈维氏弧菌感染后第3小时和金黄色葡萄球菌刺激后第48小时达到表达高峰。研究表明,PmCFSH基因不仅参与幼体发育以及性腺成熟的调控,对细菌的应激也具有免疫应答响应,体现了激素的“多功能性”现象。

English Abstract

  • 斑节对虾 (Penaeus monodon) 俗称草虾、虎虾,是我国海水养殖的重要经济品种[1]。目前,斑节对虾亲虾的全人工养殖技术已取得突破和巨大进展,但在繁育过程中,传统剪眼柄的促熟方式常造成一定的死亡。因此,寻找诱导性腺成熟的新方法、研究性腺发育相关调控激素至关重要[2]。甲壳动物的性腺发育和成熟不仅受到激素的调节,还受多种神经递质的影响和调控[3]。然而目前关于与哺乳动物类似的、直接作用于性腺器官的性激素研究较少。最近,在甲壳动物中发现了一种与哺乳动物卵泡刺激激素 (Follicle-stimulating homne, FSH) 类似的激素,命名为甲壳动物雌性激素 (Crustacean female sex hormone, CFSH),并被认为与甲壳动物卵巢发育调控相关[4-5]

    CFSH最初由Zmora和Chung[4]于2014年在蓝蟹 (Callinectes sapidus) 中发现,随后被鉴定为在雌虾生殖过程中起重要作用的眼柄神经节激素。目前在拟穴青蟹 (Scylla paramamosain)[6]、克氏原螯虾 (Procambarus clarkii) 及凡纳滨对虾 (Litopenaeus vannamei)[7]等甲壳动物中检测到2~4种CFSH同种型或不同亚型。大多数研究都集中于CFSH在雌性中发挥的作用,但最新研究可以看出,部分甲壳动物CFSH的表达不仅仅局限于在雌性的眼柄神经和卵巢中。在罗氏沼虾(Macrobrachium rosenbergii)中,CFSH基因在各个组织均有表达,且雌雄个体中均可检测到[8]。对拟穴青蟹的研究也发现类似的结论[6]。可见该基因可能并非是雌性特有。关于拟穴青蟹的研究发现,CFSH可以通过影响促雄性腺 (Androgenic gland, AG) 的表达而影响雄性性腺的分化[4]。通过RNA干扰CFSH基因的表达会造成蓝蟹生殖孔的缩小,还会导致其刚毛变短,影响生长状况和护幼行为[4]。已知的大多数甲壳类动物,如罗氏沼虾[8]和拟穴青蟹[6]等的CFSH均包含有白介素17 (IL-17)结构域。而IL-17是在免疫过程中非常重要的促炎因子[10],因此推测CFSH基因并不仅在生殖中起作用,而且是与甲壳动物高血糖激素 (Crustacean hyperglycemic hormone, CHH) 家族基因一样存在多功能性现象,除与性腺发育有关外,还能参与机体生长、免疫调节等多种生理过程[11-12]。目前,已有关于蓝蟹[4]、罗氏沼虾[8]和日本囊对虾(Marsupenaeus japonicus)[9]等多种甲壳动物CFSH基因克隆和功能性的相关研究,但未见有关斑节对虾的报道。

    在笔者实验室的高通量转录组测序结果基础上,本研究克隆获得了斑节对虾CFSH基因的开放阅读框(ORF)及3'非编码区(UTR),解析了该序列的基本特征,评估其在不同组织和发育阶段的表达差异,探索其在卵巢不同时期以及细菌刺激条件下的表达规律,以期为探究甲壳类动物CFSH的多功能性提供参考。

    • 实验用斑节对虾由中国水产科学研究院南海水产研究所深圳试验基地提供。在循环水池中暂养3 d后使用。选取健康的斑节对虾雌、雄各3尾进行解剖,分别取眼柄神经、脑神经、胸神经、肝胰腺、鳃、肌肉、肠、胃、淋巴和卵巢等组织,用于组织cDNA模板的制备。

      RNA提取试剂盒购自Magen公司;逆转录试剂盒 (PeimeScript II 1st Strand cDNA Synthesis Kit) 和荧光定量试剂盒 (TB Green) 均购自TaKaRa公司。

    • 使用Magen RNA提取试剂盒提取得到斑节对虾各组织的总RNA,经超微分光光度计NanoDrop 2000测定浓度与纯度,经1.2%琼脂糖凝胶电泳检测条带的完整性。之后用于制作RACE模板的样品按照PrimeScript II 1st Strand cDNA Synthesis Kit (TaKaRa) 试剂盒合成cDNA第一条链。各组织分别取1 μg总RNA用做荧光定量PCR的样品,按照PrimeScript RT reagent Kit With gDNA Eraser试剂盒进行反转录。所得cDNA经EF-1α引物 (表1) 检测后于–20 ℃保存备用。

      引物名称
      Primer's name
      引物序列
      Primer's sequence
      PmCFSH 3'RACE1 5'CGCTGACCGCTGCTGTGAAATC3'
      PmCFSH 3'RACE2 5'CGGGCTGTGGCGAGTCCATTTA3'
      PmCFSH 5'RACE1 5'CCGACAAGTGCGAAGCCTCAGC3'
      PmCFSH 5'RACE2 5'AGTGTGAGCCGCCGCATACACAC3'
      CFSH-qF 5'CGATCTTGACGCTGAAGGAAAA3'
      CFSH-qR 5'TCGTGCCGACTAAACCAATAAA3'
      EF-1α-F 5'AAGCCAGGTATGGTTGTCAACTTT3'
      EF-1α-R 5'CGTGGTGCATCTCCACAGACT3'

      表 1  实验所用引物及其序列

      Table 1.  Primers and sequences used in this study

    • 根据笔者实验室构建的斑节对虾性腺转录组文库 (未发表) 筛选获得EST序列 (序列编号Cluster-24692.0_1),经BLAST显示为CFSH相似片段,使用Primer 5.0软件设计验证该片段的引物,通过RACE (Rapid-amplification of cDNA ends) 技术用3'与5'RACE引物 (表1) 扩增获得斑节对虾CFSH基因的ORF及3'UTR。

    • 生物信息学分析序列同源性比对用BLAST软件 (http://blast.ncbi.nlm.nih.gov/Blast.cgi) 进行;用NCBI中的ORF finder (http://www.ncbi.nlm.nih.gov/gorf/gorf.html) 进行开放阅读框 (Open reading frame, ORF) 确定及序列翻译;使用Compute pI/Mw tool (http://www.expasy.org/tools/pi_tool.html) 推测蛋白的等电点和分子质量;利用NetNGlyc1.0 Server (http://www.cbs.dtu.dk/services/NetNGlyc/) 查找糖基化位点,NetPhos3.1 Server (http://www.cbs.dtu.dk/services/NetPhos/) 查找磷酸化位点;采用SignalP 5.0 Server (http://www.cbs.dtu.dk/services/SignalP/) 寻找信号肽;采用WoLF PSORT (https://wolfpsort.hgc.jp/) 进行细胞内定位预测;用MEGA 7.0软件中的Neighbor-Joining (NJ) 法构建系统进化树。使用pfam进行蛋白质结构域预测 (http://pfam.xfam.org/)。使用SOPMA (https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_sopma.html) 进行蛋白质二级结构预测。采用SWISS-MODEL (https://swissmodel.expasy.org/) 进行三维结构构建。

    • PmCFSH的全长为基础,设计荧光定量的特异性引物 (表1),以EF-1α为内参基因,以双蒸水代替模板作阴性对照,选取健康的斑节对虾雌、雄各3尾进行解剖取样,提取不同组织的总RNA,以不同组织cDNA作为模板,按照TB Green说明书进行荧光定量PCR检测,每个样品和内参均设置3个重复。荧光定量PCR条件采用相对ΔCT法 (2–ΔΔCT法) 分析CFSH基因在各组织中的相对表达量。

    • 根据江世贵[3]的描述,采集斑节对虾早期不同发育阶段的样品,包括受精卵期,无节幼体期,溞状幼体Ⅰ、Ⅱ、Ⅲ期,糠虾Ⅰ、Ⅱ、Ⅲ期及幼虾期。其中无节幼体发育期需11 h,溞状幼体发育期需5 d、糠虾期需4 d,幼虾期则需4个月[3]。每个取样点取整虾 (取3 组平行样品) 保存在RNA later中以供制作模板使用。

    • 根据黄建华等[13]的描述,采集斑节对虾卵巢发育3个不同时期的样品,包括核染色质期 (Ⅱ期)、周边核仁期 (Ⅲ期) 和卵黄囊期 (Ⅳ期),取3组平行样品保存于RNA later中以供制作模板使用。

    • 实验中所用的鳗弧菌 (Vibrio anguillarum)、哈维氏弧菌 (V. harveyi) 和金黄葡萄球菌 (Staphylococcus aureus) 均由中国水产科学研究院南海水产研究所渔业生物病害防治研究室惠赠。3种细菌分别从复苏平板上挑取单克隆置于LB液体培养基中,30 ℃、220 r·min−1培养12 h,次日取1/10菌液进行扩大培养3 h,6 000 ×g离心5 min,再用PBS重悬洗涤3次,最后用PBS重悬浓度至1×108 CFU·mL−1备用。

      参考Qin等[14]、丁阳阳等[15]的细菌刺激实验,对实验组分别注射已稀释备用浓度为1×108 CFU∙mL−1的金黄葡萄球菌液100 μL、哈维氏弧菌液和鳗弧菌液,对照组注射100 μL PBS。对每只实验虾的第二腹节肌肉处注射菌液,分别在注射第0、第3、第6、第12、第24、第48 小时采集肝胰腺和鳃组织,保存于RNA later中,用于后期提取RNA制备cDNA模板,测定CFSH的相对表达量。

    • 使用SPSS 23.0软件对定量结果进行单因素方差分析 (One-Way ANOVA),结果以“平均值±标准差 ($\overline X \pm {\rm{SD}} $)”表示。分析差异显著性 (Turkey),P<0.05为差异显著,P<0.01为差异极显著。若组间存在差异,则用Turkey方法进行多重比较分析。

    • 在笔者实验室获得的斑节对虾性腺转录组文库中获得CFSH的同源序列Cluster-24692.0,通过5'RACE得到该基因的cDNA。PmCFSH (GenBank 登录号 MT219891) 含有包括645 bp的ORF和 531 bp的3'UTR,共1 176 bp,存在典型的加尾信号序列AATAAA,推测编码1个214 氨基酸(aa)的蛋白,分子质量为23.9 kD,理论等电点为7.68。不稳定系数为46.91,分类为不稳定蛋白。溶脂数为88.04。总平均疏水指数为−0.155。不含糖基化位点,含有5个磷酸化位点,分别为T35、S45、S87、S159、S201。Signa1IP 显示斑节对虾CFSH基因含有29 aa的信号肽序列 (1 aa—29 aa),WoLF PSORT分析其为分泌型蛋白 (图1)。

      图  1  PmCFSH cDNA序列及其氨基酸序列

      Figure 1.  Nucleotide and deduced amino acid sequences of PmCFSH

    • 多重序列比对显示,PmCFSH的蛋白质序列与日本囊对虾CFSH蛋白和凡纳滨对虾uncharacterized protein LOC113812164同源性较强,其中与日本囊对虾的相似度为58.11%,而与凡纳滨对虾的相似度高达93.33% (图2)。

      图  2  PmCFSH和凡纳滨对虾uncharacterized protein LOC113812164、日本囊对虾CFSH氨基酸序列多重比对

      Figure 2.  Multiple sequence alignment on PmCFSH amino acid sequences with uncharacterized protein LOC113812164 of L. vannamei and CHSH amino acid of M. japonicus

      搜集了甲壳动物13条CFSH氨基酸序列构建了系统进化树 (图3)。进化树整体分为CFSH1和CFSH2两大分支。PmCFSH与日本囊对虾MjaCFSH1,罗氏沼虾MroCFSH1a、MroCFSH1b,凡纳滨对虾LvaCFSH1a、LvaCFSH1b,克氏原螯虾PclCFSH1,蓝蟹CsaCFSH1聚为一支,PmCFSH与该分支亲缘关系最近,而与MroCFSH2b、CmaCFSH2b、MroCFSH2a、PclCFSH2b、PclCFSH2a、CmaCFSH2a分为两大支,因此笔者分析认为PmCFSH为CFSH1型。

      图  3  PmCFSH系统进化树

      Figure 3.  Phylogenetic analysis of PmCFSH

    • 通过SOPMA软件对PmCFSH的氨基酸序列的二级结构进行预测,结果显示其有98个α-螺旋,占45.79 %;11个β-转角,占5.14 %;79个无规则卷曲,占36.92 %;26个延伸链,占12.15 % (图4)。Pfam在线预测表明PmCFSH具有IL-17结构域,位于127 aa—197 aa (图5-a)。三维结构分析表明,PmCFSH与日本囊对虾MjaCFSH1的三维结构较为接近 (图5-b图5-c),但PmCFSH的C端较长,并伴随少量α-螺旋。两者与人FSH的三维结构类同 (图5-d),即可能存在非典型的2个亚基。

      图  4  SOPMA软件对PmCFSH蛋白质二级结构的分析结果

      Figure 4.  Secondary structure of PmCFSH protein analyzed by SOPMA

      图  5  CFSH结构域分布以及三维结构预测图

      Figure 5.  PmCFSH domain distribution and three-dimensional structure prediction diagrams

    • EF-1α为内参基因,通过qPCR检测PmCFSH 在各组织中的表达状况 (图6)。PmCFSH在胸神经和淋巴组织中表达量最高,在肌肉、鳃、脑、胃组织中表达量中等,在心脏、眼柄神经、精巢、肝胰腺、卵巢中表达量低。其中在胸神经中表达量分别是卵巢的41.84倍和肝胰腺的44.32倍。

      图  6  PmCFSH在各组织中的表达

      Figure 6.  Expression of PmCFSH in different tissues

    • 检测了包括受精卵、无节幼体期、溞状幼体期、糠虾期和幼虾期在内的不同幼体发育过程中PmCFSH的表达规律 (图7)。结果显示,PmCFSH在受精卵期表达量较低,但在无节幼体期显著升高11.24倍,随即下降,但溞状幼体期、糠虾期Ⅰ到Ⅲ期的表达量均有显著上升趋势,其中溞状幼体Ⅰ、Ⅱ期表达量较低,与受精卵期相近。随着发育进程的推进,PmCFSH的表达量在溞状幼体Ⅲ、糠虾Ⅰ期逐渐升高,至糠虾Ⅱ、Ⅲ期时显著升高,约为受精卵时期的8.77~10.55倍,最后在仔虾期达到高峰,为受精卵期的24.04倍。

      图  7  PmCFSH在发育各期的表达情况

      Figure 7.  Expression of PmCFSH during embryonic development

    • 以卵巢发育Ⅱ期、Ⅲ期、Ⅳ期的组织为模板,检测PmCFSH在卵巢发育早期和后期的表达情况 (图8)。该基因在核染色质期 (Ⅱ期) 表达量最低,在周边核仁期 (Ⅲ期) 和卵黄囊期 (Ⅳ期) 表达量均比Ⅱ期高,且呈逐渐升高的趋势,分别为Ⅱ期的1.31和2.83倍。

      图  8  PmCFSH 基因在卵巢不同时期中的表达情况

      Figure 8.  Expression of PmCFSH at different ovarian developmental stages

    • 为探究PmCFSH是否在免疫中发挥功能,研究了3种病原菌刺激作用下CFSH的表达模式。结果显示,在肝胰腺中,PmCFSH的表达量变化与鳃组织相比较为平缓,其中受金黄色葡萄球菌刺激下,第48小时的表达量最高,为第0小时的2.22倍 (图9-a)。而在鳃组织中,PmCFSH受哈维氏弧菌和金黄色葡萄球菌刺激后均出现表达量上调的现象。其中哈维氏弧菌刺激后,在第3小时表达量最高,为第0小时的8.56倍 (图9-b)。随后降低。受金黄色葡萄球菌刺激后在第12小时表达量最高,为第0小时的14.16倍 (图9-b)。

      图  9  肝胰腺 (a) 与鳃组织 (b) 中PmCFSH基因受革兰氏菌刺激后的表达情况

      Figure 9.  mRNA expression levels of PmCFSH in hepatopancreas (a) and gill (b) after being challenged with different kinds of Gram bacteria

    • PmCFSH基因符合内分泌激素的特征。Zmora和Chung[4]发现蓝蟹、拟穴青蟹的CFSH在合成后并不会长时间在窦腺中储存,而是分泌在轴突道中,这表明CFSH有分泌型激素的特质。生物信息学分析也表明,PmCFSH属于分泌型蛋白,含有1~29 aa的信号肽序列。在序列特征上,斑节对虾CFSH与凡纳滨对虾uncharacterized protein LOC113812164、日本囊对虾CFSH相似,均含有高度保守的IL-17结构域;在糖基化位点数量上,斑节对虾不含有N-糖基化位点,但部分甲壳动物如日本囊对虾CFSH1,罗氏沼虾CFSH1a有1个糖基化位点,青蟹CFSH1有2个N-糖基化位点。N-糖基化位点对于FSH和促黄体生成素 (Luteinizing hormone, LH) 异源二聚体的形成、蛋白质折叠和特异性受体结合等功能上有着重要的意义[16],因此提示PmCFSH在功能上可能有异于其他甲壳类动物的种属特异性;在进化上,显示PmCFSH的氨基酸序列与罗氏沼虾MroCFSH 1a、1b及日本囊对虾CFSH1均具有较近的亲缘关系,因此它们在功能上具有一定相似性。三维结构分析显示斑节对虾CFSH与FSH结构上有所类似,可能存在类似于α、β亚基的2个非典型亚基,α、β亚基在立体结构变化并结合在一起时具有激素生物学活性和免疫活性[16],提示PmCFSH的2个非典型亚基可能具有相似的机制。

    • 在不同的甲壳动物中,CFSH在不同组织中的表达具有一定的种间差异。PmCFSH 在各组织中均显示出一定的表达量,其中在胸神经中表达量最高,在脑神经和眼柄神经中也具有较高的表达量,表明PmCFSH可能主要通过神经系统进行合成和分泌。在蓝蟹中,发现CFSH仅存在于眼柄神经节的细胞中,并在雌性生殖中起重要作用[4];此外,CFSH还在克氏原螯虾[7]、红鳌螯虾 (Cherax quadricarinatus)[17]的眼柄、中枢神经系统和触角腺等组织中被检测到。除在神经组织中表达外,PmCFSH 在卵巢和精巢中均有微量表达,这与日本囊对虾CFSH在组织中的表达情况类似[9]。而在罗氏沼虾中,CFSH基因不仅存在于眼柄神经和卵巢中,在其他组织中也有表达[8]。由此可见,神经系统很可能是合成和分泌CFSH激素的主要器官。斑节对虾甲壳动物雌性激素可能与促性腺激素释放激素 (Gonadotropin-releasing hormone, GnRH) 等内分泌激素一样存在自分泌和旁分泌途径[18]。即斑节对虾可通过神经系统合成和分泌CFSH,作用于其他靶器官和性腺,实现对个体生长、发育及免疫功能的的调控。

      此外,斑节对虾在淋巴组织和鳃中的表达量较高。淋巴组织是斑节对虾重要的免疫器官,肝胰腺和鳃已被证实也是斑节对虾合成免疫防御分子的主要场所和免疫应答的主要组织[19-20]。而3种病原菌刺激后的结果也显示,肝胰腺和鳃组织的PmCFSH在病原菌感染或刺激后呈上调表达的趋势。因此推测PmCFSH可能具有多功能性,不仅具有生殖调控的功能,在斑节对虾先天免疫中也起到一定作用,其含有的IL-17E结构域可能是在先天免疫过程中发挥作用的主要结构。在脊椎动物中,IL-17家族因子由活化的记忆T细胞产生,可介导过敏性炎症和寄生虫感染[21-23]。在合浦珠母贝 (Pinctada fucata)[24]、罗氏沼虾[8]等动物中均发现有IL-17的存在。在无脊椎动物中,Toll样受体 (TLR) / NF-κB信号通路在先天免疫系统中可对不同病原体的入侵起到关键作用[25]。研究表明,合浦珠母贝PfIL-17含有的IL-17结构域,可参与对细菌成分LPS和病毒成分poly (I:C) 的应答,并激活NF-κB信号通路发挥作用[26]。本研究中,在受到革兰氏阳性菌金黄色葡萄球菌刺激后,PmCFSH在肝胰腺、鳃组织中均被激活。斑节对虾在受到革兰氏阴性菌和阳性菌刺激后,鳃组织中PmCFSH分别在第3和第12小时达到峰值,随后显著降低。而在肝胰腺中的表达量则呈现波动趋势。因此推测PmCFSH可能受到IL-17结构域的调节,参与斑节对虾先天免疫过程,但其是否通过NF-κB类似转导机制发挥作用有待后续进一步的研究。

    • 对中国明对虾 (Fenneropenaeus chinensis) 脑神经细胞组织观察发现,脑神经节从无节幼体期开始发育,在糠虾期形成神经体细胞群,到仔虾期时初步形成脑部结构[27]。在罗氏沼虾中,用处于4个性腺发育期的中枢神经系统组织和卵巢组织做定量分析,结果显示罗氏沼虾4个CFSH基因在中枢神经系统中的表达量要远高于卵巢组织[8]。本研究中,PmCFSH在不同发育阶段均有表达,且显示溞状幼体期以后,CFSH基因随着发育过程的推进表达量呈上升趋势,并在仔虾期达到高峰。结合组织分布结果来看,PmCFSH在胸神经和脑神经中均有很高的表达量,提示其可能参与神经系统的某些调控功能。

      卵巢发育时期的结果显示,PmCFSH在卵巢发育Ⅱ到Ⅳ期,随卵巢的发育成熟表达量逐渐上调。在前期表达量较低,进入卵黄囊期Ⅳ后,表达显著上调。卵黄蛋白原 (Vitellogenin, Vg) 对于对虾的生长和抗菌免疫过程有着重要的作用[28]。在卵巢发育周期中,斑节对虾Vg随着卵巢发育的成熟,表达量呈现逐渐上升的趋势[29]。在日本囊对虾中,CFSH和Vg在卵黄性卵巢中的表达量均高于卵原性卵巢,且具有相似的表达水平。原位杂交和免疫组化实验显示,CFSH随着卵黄的积累水平增加[30]。因此笔者推测PmCFSH作用可能与其他甲壳动物的CFSH类似,即可以促进卵黄的形成和积累,调控卵母细胞的发育和成熟,但与Vg的关系还需进一步研究。

      综上所述,本研究获得了斑节对虾CFSH基因的全长序列,对其基因结构进行了生物信息学分析,探讨了PmCFSH在斑节对虾不同组织、胚胎发育时期、卵巢发育时期以及细菌刺激过程的表达模式。结果表明PmCFSH在斑节对虾细菌刺激后有免疫响应,且在胚胎发育时期和卵巢发育时期发挥重要功能。研究结果为进一步探究PmCFSH在斑节对虾性腺调控中的作用机制,以及内分泌激素的多功能性相关研究提供了参考资料。

参考文献 (30)

目录

    /

    返回文章
    返回