留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

慢性氨氮胁迫对史氏鲟幼鱼生长及其肝脏抗氧化、免疫指标的影响

管敏 张德志 唐大明

引用本文:
Citation:

慢性氨氮胁迫对史氏鲟幼鱼生长及其肝脏抗氧化、免疫指标的影响

    作者简介: 管 敏 (1988—),男,硕士,高级工程师,从事长江珍稀特有鱼类物种保护研究。E-mail: guanmin_888@163.com;
    通讯作者: 张德志, zhangdezhi710@163.com
  • 中图分类号: S 968.1

Effects of chronic ammonia stress on growth, antioxidative and immunity indices in liver of juvenile Acipenser schrenckii

    Corresponding author: Dezhi ZHANG, zhangdezhi710@163.com ;
  • CLC number: S 968.1

  • 摘要: 该研究以史氏鲟 (Acipenser schrenckii) 幼鱼为实验对象,在实验室内营造了0.01 mg·L−1 (对照组)、0.50 mg·L−1 (低浓度组)、1.00 mg·L−1 (中浓度组)、2.00 mg·L−1 (中高浓度组) 和4.00 mg·L−1 (高浓度组) 5个氨氮浓度组,对史氏鲟胁迫养殖60 d后取样测定其生长、抗氧化和免疫功能的相关指标,初步揭示史氏鲟幼鱼对慢性氨氮胁迫的生理响应。结果显示,随氨氮浓度升高,史氏鲟幼鱼的增重率 (WGR) 、特定生长率(SGR)、脏体比(VSI)和肝体比(HSI)均显著下降 (P<0.05),但肥满度(CF)无显著变化。在抗氧化指标中,随着氨氮浓度的增加,肝脏超氧化物歧化酶 (SOD) 、过氧化氢酶 (CAT) 、总抗氧化能力 (T-AOC) 活性和谷胱甘肽 (GSH) 含量呈下降趋势,丙二醛 (MDA) 含量呈上升趋势。免疫指标中,肝脏溶菌酶 (LZM) 活性和免疫球蛋白M (IgM) 含量受氨氮胁迫影响显著 (P<0.05)。结果表明,慢性氨氮胁迫显著抑制了史氏鲟幼鱼的生长,降低了鱼体的抗氧化能力和免疫能力。建议在史氏鲟实际养殖过程中,养殖水体中氨氮质量浓度应控制在≤0.5 mg·L−1,以避免其对史氏鲟造成损伤。
  • 图 1  慢性氨氮胁迫对史氏鲟幼鱼抗氧化和免疫指标的影响

    Figure 1.  Effects of chronic ammonia stress on antioxidative and immunity indices of juvenile A. schrenckii

    表 1  慢性氨氮胁迫对史氏鲟幼鱼生长指标的影响

    Table 1.  Effects of chronic ammonia stress on growth indices of juvenile A. schrenckii

    实验组
    Group
    成活率
    SR/%
    增重率
    WGR/%
    特定生长率
    SGR/%·d−1
    脏体比
    VSI/%
    肝体比
    HSI/%
    肥满度
    CF/%
    对照组 Control group 100.00 77.99±4.71a 0.96±0.27a 4.92±0.27a 2.00±0.19a 0.006 5±0.000 2a
    低浓度组 Low concentration group 100.00 58.87±3.56a 0.77±0.27a 4.70±0.27a 1.58±0.20b 0.005 9±0.000 1a
    中浓度组 Medium concentration group 100.00 44.52±4.67b 0.61±0.27b 4.76±0.24a 1.48±0.23b 0.006 3±0.000 1a
    中高浓度组 Sub-high concentration group 100.00 32.41±3.18b 0.47±0.27b 4.57±0.15a 1.42±0.08b 0.006 1±0.000 2a
    高浓度组 High concentration group 100.00 11.35±2.53c 0.18±0.27c 3.89±0.17b 1.31±0.04b 0.005 9±0.000 3a
    注:同列不同上标字母表示显著性 (P<0.05)
    Note: Different superscript letters in the same column indicate significant difference (P<0.05).
    下载: 导出CSV
  • [1] BENLI A K, KÖKSAL G, ÖZKUL A. Sublethal ammonia exposure of Nile tilapia (Oreochromis niloticus L.): effects on gill, liver and kidney histology[J]. Chemosphere, 2008, 72(9): 1355-1358. doi: 10.1016/j.chemosphere.2008.04.037
    [2] 张晓莹. 四种水质因子胁迫下异育银鲫呼吸代谢及血液生理响应[D]. 上海: 上海海洋大学, 2017: 1-61.
    [3] ZHANG W X, SUN S M, GE X P, et al. Acute effects of ammonia exposure on the plasma and haematological parameters and histological structure of the juvenile blunt snout bream, Megalobrama amblycephala, and post-exposure recovery[J]. Aquacult Res, 2018, 49(2): 1008-1019. doi: 10.1111/are.13548
    [4] 王贞杰, 陈四清, 曹栋正, 等. 急性氨氮胁迫对圆斑星鲽(Verasper variegatus)幼鱼鳃和肝组织结构及相关酶活性的影响[J]. 渔业科学进展, 2017, 38(2): 59-69. doi: 10.11758/yykxjz.20151201001
    [5] 刘雨, 丁炜东, 曹哲明, 等. 急性氨氮胁迫对翘嘴鳜幼鱼抗氧化酶活性及炎症反应相关基因表达的影响[J]. 南方农业学报, 2019, 50(8): 1860-1868. doi: 10.3969/j.issn.2095-1191.2019.08.29
    [6] 戚晓舟. 氨氮胁迫对鲫免疫系统及肠道菌群结构的影响[D]. 杨凌: 西北农林科技大学, 2017: 1-58.
    [7] 宋美泽, 黎明, 李健, 等. 急性氨氮暴露对大弹涂鱼炎性反应相关基因表达的影响[J]. 水产学报, 2018, 42(11): 1704-1710.
    [8] ZHANG M, LI M, WANG R, et al. Effects of acute ammonia toxicity on oxidative stress, immune response and apoptosis of juvenile yellow catfish Pelteobagrus fulvidraco and the mitigation of exogenous taurine[J]. Fish Shellfish Immun, 2018, 79: 313-320. doi: 10.1016/j.fsi.2018.05.036
    [9] 肖炜, 李大宇, 徐杨, 等. 慢性氨氮胁迫对吉富罗非鱼幼鱼生长、免疫及代谢的影响[J]. 南方水产科学, 2015, 11(4): 81-87. doi: 10.3969/j.issn.2095-0780.2015.04.012
    [10] 孙大江, 曲秋芝, 马国军, 等. 史氏鲟人工繁殖及养殖技术[M]. 北京: 海洋出版社, 2000: 4-12.
    [11] 刘建魁, 刘立志, 赵文, 等. 非离子氨和氨氮对不同规格史氏鲟幼鱼的急性毒性及安全浓度评价[J]. 大连海洋大学学报, 2014, 29(2): 175-178.
    [12] 杜浩, 危起伟, 刘鉴毅, 等. 苯酚、Cu2+、亚硝酸盐和总氨氮对中华鲟稚鱼的急性毒性[J]. 大连水产学院学报, 2007, 22(2): 118-122.
    [13] 袁丁, 张欣, 马峻峰, 等. 氨氮对西伯利亚鲟的急性毒性试验[J]. 四川农业大学学报, 2014, 32(3): 331-334. doi: 10.3969/j.issn.1000-2650.2014.03.016
    [14] 徐杨, 肖炜, 李大宇, 等. 慢性氨氮胁迫对尼罗罗非鱼幼鱼生长及生理功能的影响[J]. 南方农业学报, 2015, 46(2): 327-331. doi: 10.3969/jissn.2095-1191.2015.2.327
    [15] PAUST L O, FOSS A, IMSLAND A K. Effects of chronic and periodic exposure to ammonia on growth, food conversion efficiency and blood physiology in juvenile Atlantic halibut (Hippoglossus hippoglossus L.)[J]. Aquaculture, 2011, 315(3/4): 400-406.
    [16] PENG R B, WANG P S, LE K X, et al. Acute and chronic effects of ammonia on juvenile cuttlefish, Sepia pharaonis[J]. J World Aquacult Soc, 2017, 48(4): 602-610. doi: 10.1111/jwas.12402
    [17] 李波, 樊启学, 杨凯, 等. 慢性氨氮胁迫对黄颡鱼摄食、生长及血液指标的影响[J]. 应用与环境生物学报, 2011, 17(6): 824-828.
    [18] XIA J G, CAO Z D, PENG J L, et al. The use of spontaneous behavior, swimming performances and metabolic rate to evaluate toxicity of PFOS on topmouth gudgeon Pseudorasbora parva[J]. Acta Ecol Sinica, 2014, 34: 284-289. doi: 10.1016/j.chnaes.2014.07.006
    [19] TONI C, FERREIRA D, KREUTZ L C, et al. Assessment of oxidative stress and metabolic changes in common carp (Cyprinus carpio) acutely exposed to different concentrations of the fungicide tebuconazole[J]. Chemosphere, 2011, 83(4): 579-584. doi: 10.1016/j.chemosphere.2010.12.022
    [20] 黎庆, 龚诗雁, 黎明. 慢性氨氮暴露诱发黄颡鱼幼鱼谷氨酰胺积累、氧化损伤及免疫抑制的研究[J]. 水产学报, 2015, 39(5): 728-734.
    [21] WILSON R W, TAYLOR E W. Transbranchial ammonia gradients and acid-base responses to high external ammonia concentration in rainbow trout (Oncorhynchus mykiss) acclimated to different salinities[J]. J Exp Biol, 1992, 166: 95-112.
    [22] 乔秋实, 徐维娜, 朱浩, 等. 饥饿再投喂对团头鲂生长、体组成及肠道消化酶的影响[J]. 淡水渔业, 2011, 41(2): 63-68. doi: 10.3969/j.issn.1000-6907.2011.02.010
    [23] 洪美玲; 陈立侨; 顾顺樟. 不同温度胁迫方式对中华绒螯蟹免疫化学指标的影响[J]. 应用与环境生物学报, 2007, 13(6): 818-822. doi: 10.3321/j.issn:1006-687x.2007.06.014
    [24] 张春玲, 胡俊峰, 王丕文, 等. 苯并(a)芘对鲫鱼肝脏总抗氧化能力的影响[J]. 环境与健康杂志, 2004, 21(5): 325-326. doi: 10.3969/j.issn.1001-5914.2004.05.022
    [25] 李利红, 袁宏利. 福瑞鲤对氨氮胁迫的生理响应[J]. 淡水渔业, 2017, 47(1): 97-100. doi: 10.3969/j.issn.1000-6907.2017.01.016
    [26] 刘洋. 氨氮对泥鳅成鱼及混合选育F2代的胁迫作用[D]. 苏州: 苏州大学, 2011: 1-62.
    [27] 臧元奇, 田相利, 董双林, 等. 氨氮慢性胁迫对刺参免疫酶活性及热休克蛋白表达的影响[J]. 中国海洋大学学报(自然科学版), 2012, 42(S1): 60-66.
    [28] 李冰, 张木子, 黎明, 等. 急性氨氮毒性对黄颡鱼头肾巨噬细胞抗氧化及炎症相关基因表达的影响[J]. 水产学报, 2018, 42(12): 1889-1895.
    [29] 姜会民. 氨氮胁迫对黄河鲤幼鱼肝胰脏、肾脏抗氧化性的影响[J]. 山东大学学报(理学版), 2012, 47(1): 17-22.
    [30] SUN H J, LU K, MINTER E J, et al. Combined effects of ammonia and microcystin on survival, growth, antioxidant responses, and lipid peroxidation of bighead carp Hypophthalmythys nobilis lavae[J]. J Hazard Mater, 2012, 221(4): 213-219.
    [31] 赵海涛. 氨氮对南方鲶(Silurus meridionalis Chen)幼鱼血液生理、生化及非特异性免疫指标的影响[D]. 重庆: 西南大学, 2006: 1-55.
    [32] QI X Z, XUE M Y, YANG S B, et al. Ammonia exposure alters the expression of immune-related and antioxidant enzymes-related genes and the gut microbial community of crucian carp (Carassius auratus)[J]. Fish Shellfish Immun, 2017, 70: 485-49. doi: 10.1016/j.fsi.2017.09.043
    [33] 王娜, 邵晨, 颉志刚, 等. 低温胁迫下虎纹蛙的生存力及免疫和抗氧化能力[J]. 生态学报, 2012, 32(11): 3538-3545.
    [34] 谢明媚, 彭士明, 张晨捷, 等. 急性温度胁迫对银鲳幼鱼抗氧化和免疫指标的影响[J]. 海洋渔业, 2015, 37(6): 541-549. doi: 10.3969/j.issn.1004-2490.2015.06.009
    [35] 蒋玫, 李磊, 沈新强, 等. 慢性氨氮胁迫对鲻鱼幼鱼组织细胞免疫指标的影响研究[J]. 海洋与湖沼, 2014, 45(3): 529-536. doi: 10.11693/hyhz20130300010
    [36] QIN C J, SHAO T, WANG Y M, et al. Effect of ammonia-N on histology and expression of immunoglobulin M and component C3 in the spleen and head kidney of Pelteobagrus vachellii[J]. Aquacult Rep, 2017, 8: 16-20.
    [37] 陈家长, 臧学磊, 胡庚东, 等. 氨氮胁迫下罗非鱼(GIFT Oreochromis niloticus)机体免疫力的变化及其对海豚链球菌易感性的影响[J]. 生态环境学报, 2011, 20(4): 629-634. doi: 10.3969/j.issn.1674-5906.2011.04.007
    [38] 韩春艳, 郑清梅, 陈桂丹, 等. 氨氮胁迫对奥尼罗非鱼非特异性免疫的影响[J]. 南方水产科学, 2014, 10(3): 47-52. doi: 10.3969/j.issn.2095-0780.2014.03.007
    [39] 芦光宇, 刘国兴, 李佳佳, 等. 氨氮对克氏原螯虾抗氧化功能的影响[J]. 江西农业学报, 2014, 26(2): 129-133. doi: 10.3969/j.issn.1001-8581.2014.02.034
    [40] 任海, 李健, 李吉涛, 等. 急性氨氮胁迫对脊尾白虾(Exopalaemon carinicauda)抗氧化系统酶活力及GPx基因表达的影响[J]. 农业环境科学学报, 2014, 34(4): 647-655. doi: 10.11654/jaes.2014.04.005
  • [1] 王国霞刘群芳黄文庆林佳南黄燕华徐黎明 . 复合酶制剂对黄颡鱼生长性能、血清生化和免疫指标的影响. 南方水产科学, 2013, 9(6): 84-90. doi: 10.3969/j.issn.2095-0780.2013.06.014
    [2] 文国樑林黑着李卓佳陆鑫袁丰华 . 饲料中添加复方中草药对凡纳滨对虾生长、消化酶和免疫相关酶活性的影响. 南方水产科学, 2012, 8(2): 58-63. doi: 10.3969/j.issn.2095-0780.2012.02.009
    [3] 王芸李正段亚飞王珺黄忠林黑着 . 红景天提取物对凡纳滨对虾抗氧化系统及抗低盐度胁迫的影响. 南方水产科学, 2018, 14(1): 9-19. doi: 10.3969/j.issn.2095-0780.2018.01.002
    [4] 张博孟子豪刘宝锁李海梅苏家齐黄桂菊吴开畅喻达辉 . 插核手术损伤对合浦珠母贝抗氧化免疫水平的影响. 南方水产科学, 2017, 13(5): 72-77. doi: 10.3969/j.issn.2095-0780.2017.05.010
    [5] 李雅婷陈明曾帅霖刘永坚田丽霞 . 饲料中添加龙须菜对眼斑拟石首鱼生长、脂肪酸组成、免疫及肠道的影响. 南方水产科学, 2016, 12(1): 85-93. doi: 10.3969/j.issn.2095-0780.2016.01.012
    [6] 张华军李卓佳张家松张晓阳曹煜成文国樑程开敏 . 密度胁迫对凡纳滨对虾稚虾免疫指标及生长的影响. 南方水产科学, 2012, 8(4): 43-48. doi: 10.3969/j.issn.2095-0780.2012.04.007
    [7] 马军侯萍陈燕黄娟华张洪业王珊宁黄海 . 几种海藻多糖抗氧化活性及体外抗脂质过氧化作用的研究. 南方水产科学, 2017, 13(6): 97-104. doi: 10.3969/j.issn.2095-0780.2017.06.012
    [8] 肖炜李大宇徐杨邹芝英祝璟琳韩珏杨弘 . 慢性氨氮胁迫对吉富罗非鱼幼鱼生长、免疫及代谢的影响. 南方水产科学, 2015, 11(4): 81-87. doi: 10.3969/j.issn.2095-0780.2015.04.012
    [9] 彭士明施兆鸿高权新尹飞孙鹏王建钢 . 增加饲料中Vc质量分数对银鲳血清溶菌酶活性及组织抗氧化能力的影响. 南方水产科学, 2013, 9(4): 16-21. doi: 10.3969/j.issn. 2095-0780.2013.04.003
    [10] 王小慧戚勃杨贤庆杨少玲马海霞邓建朝 . 响应面法优化末水坛紫菜蛋白酶解工艺及其酶解液抗氧化活性研究. 南方水产科学, 2019, 15(2): 93-101. doi: 10.12131/20180099
    [11] 黄桂菊喻达辉郭奕惠王小玉 . 大豆异黄酮对鱼类免疫增强作用的初步研究. 南方水产科学, 2005, 1(2): 35-40.
    [12] 张月段亚飞董宏标张家松 . 聚β-羟基丁酸酯对凡纳滨对虾肝胰腺免疫和消化指标的影响. 南方水产科学, 2017, 13(5): 78-84. doi: 10.3969/j.issn.2095-0780.2017.05.011
    [13] 谢一荣吴锐全谢骏叶富良陈刚王广军关胜军 . 维生素C对大口黑鲈生长与非特异性免疫的影响. 南方水产科学, 2006, 2(3): 40-45.
    [14] 袁玉梅石存斌陶家发张德锋孙承文巩华黄志斌赖迎迢 . 罗非鱼无乳链球菌Sip-Pgk融合蛋白乳酸菌口服疫苗制备及其免疫效果的研究. 南方水产科学, 2019, 15(6): 9-18. doi: 10.12131/20190092
    [15] 黄忠林黑着李卓佳郭志勋牛津黄春阳 . 复方中草药投喂策略对凡纳滨对虾生长、消化及非特异性免疫功能的影响. 南方水产科学, 2013, 9(5): 37-43. doi: 10.3969/j.issn.2095-0780.2013.05.007
    [16] 乌兰谢骏王广军余德光胡朝莹牛继峰 . 金属蛋白酶对奥尼罗非鱼生长、消化率及非特异性免疫功能的影响. 南方水产科学, 2007, 3(3): 8-13.
    [17] 杨彬谢恩义曲元凯 . 不同环境因子对莫氏马尾藻幼苗生长和光合色素的影响. 南方水产科学, 2013, 9(4): 39-44. doi: 10.3969/j.issn. 2095-0780.2013.04.006
    [18] 张莹王龙乐钟名其曾权辉刘新红杜虹 . 硼胁迫对龙须菜生长及其生理特征的影响. 南方水产科学, 2014, 10(4): 9-15. doi: 10.3969/j.issn.2095-0780.2014.04.002
    [19] 区又君李加儿艾丽谢菁 . 广东池塘培育条石鲷仔、稚、幼鱼的早期发育和生长. 南方水产科学, 2014, 10(6): 66-71. doi: 10.3969/j.issn.2095-0780.2014.06.009
    [20] 林先智区又君李加儿温久福李活 . 淡水驯化养殖条件下遮目鱼幼鱼的成活、生长及鳃器官的变化. 南方水产科学, 2015, 11(3): 53-58. doi: 10.3969/j.issn.2095-0780.2015.03.009
  • 加载中
图(1)表(1)
计量
  • 文章访问数:  1856
  • HTML全文浏览量:  1073
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-20
  • 录用日期:  2019-11-22
  • 网络出版日期:  2020-01-15
  • 刊出日期:  2020-04-01

慢性氨氮胁迫对史氏鲟幼鱼生长及其肝脏抗氧化、免疫指标的影响

    作者简介:管 敏 (1988—),男,硕士,高级工程师,从事长江珍稀特有鱼类物种保护研究。E-mail: guanmin_888@163.com
    通讯作者: 张德志, zhangdezhi710@163.com
  • 中国长江三峡集团有限公司中华鲟研究所/三峡工程鱼类资源保护湖北省重点实验室,湖北 宜昌 443100

摘要: 该研究以史氏鲟 (Acipenser schrenckii) 幼鱼为实验对象,在实验室内营造了0.01 mg·L−1 (对照组)、0.50 mg·L−1 (低浓度组)、1.00 mg·L−1 (中浓度组)、2.00 mg·L−1 (中高浓度组) 和4.00 mg·L−1 (高浓度组) 5个氨氮浓度组,对史氏鲟胁迫养殖60 d后取样测定其生长、抗氧化和免疫功能的相关指标,初步揭示史氏鲟幼鱼对慢性氨氮胁迫的生理响应。结果显示,随氨氮浓度升高,史氏鲟幼鱼的增重率 (WGR) 、特定生长率(SGR)、脏体比(VSI)和肝体比(HSI)均显著下降 (P<0.05),但肥满度(CF)无显著变化。在抗氧化指标中,随着氨氮浓度的增加,肝脏超氧化物歧化酶 (SOD) 、过氧化氢酶 (CAT) 、总抗氧化能力 (T-AOC) 活性和谷胱甘肽 (GSH) 含量呈下降趋势,丙二醛 (MDA) 含量呈上升趋势。免疫指标中,肝脏溶菌酶 (LZM) 活性和免疫球蛋白M (IgM) 含量受氨氮胁迫影响显著 (P<0.05)。结果表明,慢性氨氮胁迫显著抑制了史氏鲟幼鱼的生长,降低了鱼体的抗氧化能力和免疫能力。建议在史氏鲟实际养殖过程中,养殖水体中氨氮质量浓度应控制在≤0.5 mg·L−1,以避免其对史氏鲟造成损伤。

English Abstract

  • 氨氮是鱼类养殖中非常重要的水质指标,当水体中氨氮浓度超过安全范围后就会对鱼类造成氨氮胁迫。研究表明,氨氮胁迫不仅会影响鱼类的生长、代谢,还会导致鱼体重要组织器官发生病变反应[1],如异育银鲫[2] (Carassius auratus gibelio)、团头鲂[3] (Megalobrama amblycephala) 幼鱼和圆斑星鲽[4] (Verasper variegatus) 幼鱼;还有研究表明,氨氮胁迫会显著抑制鱼体内抗氧化酶相关基因和免疫相关基因的表达,增加炎症细胞因子及细胞凋亡相关基因的表达量[5-8],从而抑制鱼体的抗氧化系统和非特异性免疫系统[4-5],进而导致鱼类死亡。同时,氨氮胁迫易打破养殖系统的平衡性,使养殖水体中的病原微生物迅速繁殖,从而导致养殖鱼类病害频发[9]。由此可见,氨氮胁迫已成为影响鱼类健康养殖的主要因素之一。

    史氏鲟 (Acipenser schrenckii) 俗称七粒浮子,因其具有较高的营养价值和经济价值,已成为我国主要的鲟鱼养殖品种之一[10]。为了实现养殖效益最大化,史氏鲟的人工养殖大多采用高密度集约化养殖方式,该养殖模式存在鱼体集中排泄、残饵溶解和水体交换率低等问题,极易导致水体中氨氮浓度的急剧升高,虽然达不到急性致死浓度,但氨氮浓度长期升高会对史氏鲟造成慢性氨氮胁迫。目前,关于氨氮对鲟鱼的胁迫研究主要集中在急性胁迫研究方面,如刘建魁等[11]、杜浩等[12]和袁丁等[13]分别开展了氨氮对史氏鲟幼鱼、中华鲟 (A. sinensis) 和西伯利亚鲟 (A. baerii) 的急性毒性研究,而关于长时间低浓度氨氮胁迫对史氏鲟生长及其肝脏抗氧化、免疫指标的影响研究尚未见报道。本实验在慢性氨氮胁迫条件下,研究了史氏鲟生长及其肝脏抗氧化、免疫指标的变化情况,旨在初步揭示史氏鲟幼鱼对慢性氨氮胁迫的生理响应,从而为深入研究史氏鲟幼鱼应激反应的机理提供理论依据,为优化史氏鲟的增养殖技术提供参考依据。

    • 实验鱼为中国长江三峡集团有限公司中华鲟研究所2016年全人工繁殖所得的史氏鲟幼鱼。随机挑选规格一致、体质健康的史氏鲟幼鱼162尾,体质量为 (180.00±15.00) g,体长为 (30.50±1.80) cm,并将其暂养于直径3.00 m的养殖池中,暂养水温16.80 ℃、溶解氧质量浓度 (6.00~7.00) mg·L−1、pH 7.30~7.60、氨氮质量浓度0.01 mg·L−1、亚硝氮质量浓度0.005 mg·L−1,每天饱食投喂1次,7 d后开始实验。

    • 在5个直径3.00 m、水深0.60 m的实验池中进行实验,氨氮质量浓度设置为0.01 mg·L−1 (对照组)、0.50 mg·L−1 (低浓度组)、1.00 mg·L−1 (中浓度组)、2.00 mg·L−1 (中高浓度组) 和4.00 mg·L−1 (高浓度组),每个浓度组30尾鱼。在暂养池中,随机挑选150尾史氏鲟幼鱼用于实验,每个实验池30尾;实验开始前,在每个养殖池设3个挡板,将养殖池分隔成A、B、C 3个相同大小的扇形区域,用120 mg·L−1 MS-222将实验鱼麻醉后称质量、测体长,然后在背鳍上注射T型标记,随机转入A、B、C中的任意一个扇形区域中,每个扇形区域共转入10尾鱼,分别记录3个区域中所有鱼的T标代码,并将T标代码与A、B、C扇形区域一一对应;之后将挡板拆除,把30尾实验鱼混养在一个池中进行实验;实验结束时将养殖池再隔成A、B、C 3个同等大小的扇形区域,并根据T标代码,将池中的实验鱼分别置于与其对应的A、B、C区域中,然后在每个区域中进行随机取样。实验期间,水温16.80~21.50 ℃、溶解氧 6.00~7.00 mg·L−1、pH 7.30~7.60、亚硝酸盐低于0.01 mg·L−1。氨氮质量浓度用10 g·L−1的氯化铵 (NH4Cl) 母液进行调配,实验池水每24 h换1次;每天饱食投喂1次,摄食完成后及时清除残饵,并观察记录鱼的摄食及活动状态,实验持续60 d。

    • 用120 mg·L−1的MS-222将实验鱼快速麻醉后解剖,取肝脏组织;用预冷的鱼用生理盐水将肝脏冲洗干净,滤纸吸干水分后将其切成小块,并置于2 mL离心管中,经液氮快速冷冻后,−70 ℃保存待测。

    • 计算成活率 (SR)、增重率 (WGR)、特定生长率 (SGR)、肝体比 (HSI)、肥满度 (CF) 和脏体比 (VSI),计算公式为:

      $ {{\rm{SR}}} {\rm{ }} = {N_{\rm{f}}}/{N_{\rm{i}}} \times 100\% $

      $ {{\rm{WGR}}}{\rm{ }} = {\rm{ }}\left( {{W_t} - {W_0}} \right){\rm{ }}/{W_0} \times 100\% $

      $ {{\rm{SGR}}} {\rm{ }} = {\rm{ }}\left( {{\rm{ln}}{W_t} - {\rm{ln}}{W_0}} \right){\rm{ }}/t \times 100\% $

      $ {{\rm{HSI}}}{\rm{ }} = {W_{\rm{h}}}/{W_{\rm{b}}} \times 100\% $

      ${{\rm{CF}}}{\rm{ }} = {W_{\rm{b}}}/L \times 100\% $

      $ {{\rm{VSI}}} {\rm{ }} = {W_{\rm{e}}}/{W_{\rm{b}}} \times 100\% $

      式中Nf为终末鱼尾数;Ni为初始鱼尾数;Wt为终末体质量 (g);W0为初始体质量 (g);t为实验天数 (d);Wb为每尾鱼体质量 (g);L为每尾鱼体长 (cm);Wh为肝脏质量 (g);We为内脏团质量 (g)。

    • 抗氧化指标包括超氧化物歧化酶 (SOD) 活性、过氧化氢酶 (CAT) 活性、总抗氧化能力 (T-AOC) 活性、谷胱甘肽 (GSH) 含量、丙二醛 (MDA) 含量;免疫指标包括溶菌酶 (LZM) 活性和免疫球蛋白M (lgM) 含量。所有指标的测定采用南京建成生物工程研究所研制的试剂盒,具体方法参见其说明书。

    • 实验数据用SPSS 16.0和Excel 2016软件进行统计分析,利用单因素方差分析 (One-Way ANOVA) 和Duncan's多重比较检验低温胁迫对各项指标影响的显著性,差异的显著性以P<0.05为标准,结果以“平均值±标准差 ($\overline {{X}} \pm {\rm{SD}}$) ”表示。

    • 慢性氨氮胁迫显著降低了史氏鲟幼鱼增重率和特定生长率 (P<0.05),对照组实验鱼的特定生长率分别是低、中、中高和高浓度组的1.32、1.75、2.41和6.87倍(表1);脏体比和肝体比也随氨氮浓度的增加呈逐渐降低的趋势,高浓度组鱼体脏体比和肝体比显著低于对照组 (P<0.05);各组实验鱼的肥满度从大到小依次为对照组、中浓度组、中高浓度组、高浓度组和低浓度组,但各组之间不存在显著差异 (P>0.05);此外,各实验组史氏鲟幼鱼在实验过程中的成活率均为100%。这表明持续60 d的慢性氨氮胁迫未对史氏鲟的存活产生影响,但对其生长产生了显著的抑制作用。

      实验组
      Group
      成活率
      SR/%
      增重率
      WGR/%
      特定生长率
      SGR/%·d−1
      脏体比
      VSI/%
      肝体比
      HSI/%
      肥满度
      CF/%
      对照组 Control group 100.00 77.99±4.71a 0.96±0.27a 4.92±0.27a 2.00±0.19a 0.006 5±0.000 2a
      低浓度组 Low concentration group 100.00 58.87±3.56a 0.77±0.27a 4.70±0.27a 1.58±0.20b 0.005 9±0.000 1a
      中浓度组 Medium concentration group 100.00 44.52±4.67b 0.61±0.27b 4.76±0.24a 1.48±0.23b 0.006 3±0.000 1a
      中高浓度组 Sub-high concentration group 100.00 32.41±3.18b 0.47±0.27b 4.57±0.15a 1.42±0.08b 0.006 1±0.000 2a
      高浓度组 High concentration group 100.00 11.35±2.53c 0.18±0.27c 3.89±0.17b 1.31±0.04b 0.005 9±0.000 3a
      注:同列不同上标字母表示显著性 (P<0.05)
      Note: Different superscript letters in the same column indicate significant difference (P<0.05).

      表 1  慢性氨氮胁迫对史氏鲟幼鱼生长指标的影响

      Table 1.  Effects of chronic ammonia stress on growth indices of juvenile A. schrenckii

    • 在慢性氨氮胁迫条件下,各实验组史氏鲟幼鱼肝脏SOD活性情况见图1-a。随着氨氮浓度的增大,史氏鲟幼鱼肝脏SOD活性呈逐渐降低的趋势;其中中高、高浓度组肝脏SOD活性显著低于低浓度组和对照组 (P<0.05),其他各组之间不存在显著性差异 (P>0.05)。

      图  1  慢性氨氮胁迫对史氏鲟幼鱼抗氧化和免疫指标的影响

      Figure 1.  Effects of chronic ammonia stress on antioxidative and immunity indices of juvenile A. schrenckii

      随着氨氮浓度的升高,各组史氏鲟幼鱼肝脏CAT活性也呈逐渐降低的趋势 (图1-b),高浓度组史氏鲟幼鱼肝脏CAT活性显著低于对照组 (P<0.05),较对照组降低39.95%,而其他各实验组之间无显著差异 (P>0.05)。

      史氏鲟幼鱼肝脏T-AOC活性变化见图1-c。慢性氨氮胁迫显著降低了史氏鲟幼鱼的肝脏T-AOC活性,且氨氮浓度越大,肝脏T-AOC活性下降越明显。低、中、中高和高浓度组肝脏T-AOC活性均显著低于对照组 (P<0.05),较对照组分别下降了20.57%、30.93%、44.57%和74.08%。

      在不同氨氮浓度中,各组实验鱼肝脏GSH含量依次表现为对照组>低浓度组>中浓度组>中高浓度组>高浓度组 (图1-d),其中高、中高、中浓度组肝脏GSH质量摩尔浓度显著低于对照组 (P<0.05),但三组之间差异不显著 (P>0.05),低浓度组和对照组也不存在显著性差异 (P>0.05)。

      史氏鲟幼鱼肝脏MDA质量摩尔浓度在慢性氨氮胁迫条件下的变化情况见图1-e。各处理组实验鱼肝脏MDA质量摩尔浓度由大到小依次为高浓度组、中高浓度组、中浓度组、低浓度组和对照组,其中高浓度组肝脏MDA质量摩尔浓度显著高于低浓度组 (P<0.05);中、中高和高浓度组肝脏MDA质量摩尔浓度显著高于对照组 (P<0.05),较对照组分别升高25.86%、32.89%和47.33%。

      实验结果表明,慢性氨氮胁迫显著降低了史氏鲟幼鱼的肝脏LZM活性 (图1-f)。随着氨氮浓度的升高,史氏鲟幼鱼肝脏LZM活性逐渐降低,其中,中、中高和高浓度组肝脏LZM活性均显著低于对照组 (P<0.05),较对照组分别下降22.22%、27.31%和36.98%;其他各组之间无显著差异 (P>0.05)。

      史氏鲟幼鱼肝脏IgM质量分数变化情况见图1-g。氨氮浓度越高,史氏鲟幼鱼肝脏IgM质量分数越低。中高、高浓度组肝脏IgM质量分数显著低于对照组 (P<0.05),较对照组分别下降23.45%和32.62%;与低浓度组相比,高浓度组肝脏IgM质量分数降低31.07%,两者之间存在显著差异 (P<0.05);其他各组之间无显著差异 (P>0.05)。

    • 氨氮是评估养殖水环境好坏的重要指标。大量研究表明,水体中氨氮浓度的升高会显著抑制水生生物的生长。肖炜等[9]发现吉富罗非鱼 (GIFT Oreochromis niloticus) 幼鱼在不同氨氮浓度的水体中胁迫30 d后,3.25、6.51和13.01 mg·L−1组实验鱼的终末体质量、增质量率和特定生长率均低于空白对照组,且对实验鱼生长的抑制作用随氨氮浓度的增加而显著增强;徐杨[14]也发现尼罗罗非鱼 (O. niloticus) 的增重率和特定生长率随氨氮胁迫浓度的升高而下降;Paust等[15]研究指出,大西洋比目鱼 (Hippoglossus hippoglossus) 在NH3质量浓度为0.12、0.17 mg·L−1的水体中养殖62 d后,鱼体的生长速率会受到显著抑制;Peng等[16]得出慢性氨氮胁迫显著降低了虎斑乌贼 (Sepia pharaonis) 的成活率、生长率和摄食量的结论。本研究也得出了相同的结论,慢性氨氮胁迫虽未造成史氏鲟幼鱼的死亡,却显著降低了史氏鲟幼鱼的增重率、特定生长率、肝体比和脏体比,对鱼体的生长产生了显著的抑制作用。这可能是由于氨氮胁迫会导致史氏鲟幼鱼的摄食率和饲料转化率下降,鱼体内大部分能量用于抵御胁迫产生的应激反应,所以导致鱼体的生长速率下降[17]。张晓莹[2]进一步证实了这一结论,指出氨氮胁迫显著提高了鱼体的标准代谢率 (SMR),降低了最大代谢率 (MMR),缩小了有氧代谢范围 (AS),表明鱼体在氨氮胁迫下,鱼体的有氧代谢能力下降,导致游泳能力下降,逃逸、捕食及繁殖等行为均受到限制,鱼体用于修复自身机能并维持基本生理功能所需的能量增加,而可提供的有氧代谢总能量降低,所以鱼体用于生长的能量大大减少了。Xia等[18]、Toni等[19]也得出类似的结论。但黎庆等[20]研究发现,在总氨氮质量浓度为5.65~5.80 mg·L−1的水体中养殖56 d对黄颡鱼 (Pelteobagrus fulvidraco) 的终末体质量、增质量和饵料系数无显著影响,这可能与鱼的种类、规格、抗逆性强弱及氨氮胁迫程度有关。

    • 鱼类长期处于氨氮胁迫中,机体内源性氨的排泄被阻断,外源性氨经鳃和皮肤进入体内并大量积累,产生大量氧自由基 (ROS),从而对鱼体造成损伤[21]。抗氧化酶系统可以催化消除生物体内过多的ROS,是生物体内抗氧化防御体系的重要组成部分,而SOD和CAT则是抗氧化防御体系中非常重要的功能酶[22],两者相互关联,可联合清除活性氧自由基,其活性的下降标志着机体清除活性氧自由基的能力下降[23]。T-AOC是衡量机体抗氧化系统功能的综合性指标,它与鱼体的健康程度密切相关[24]。研究发现经过30 d的氨氮胁迫,3.49、6.99、13.97和27.94 mg·L−1组尼罗罗非鱼的肝脏谷丙转氨酶 (GPT) 和SOD活性均显著下降[14],6.51、13.01 mg·L−1组吉富罗非鱼的血清SOD活性均显著低于对照组[9];黄颡鱼在总氨氮为5.65~5.80 mg·L−1中胁迫56 d后,其SOD、CAT和谷胱甘肽过氧化物酶 (GSH-PX) 显著低于对照组[20],这与本研究所得结论基本一致。本研究中,慢性氨氮胁迫显著降低了史氏鲟幼鱼肝脏SOD、CAT、T-AOC活性,且与氨氮浓度呈显著的负相关性 (P<0.05),这说明持续60 d的慢性氨氮胁迫对史氏鲟幼鱼的肝脏抗氧化酶指标产生了显著的抑制作用,且氨氮浓度越高,抑制作用越明显。在李利红和袁宏利[25] 对福瑞鲤 (Cyprinus carpio)、刘洋[26] 对泥鳅 (Misgurnus anguillicaudatus)、臧元奇等[27]对刺参 (Apostichopus japonicus) 的慢性氨氮胁迫研究中也得出了类似结论,其原因可能是氨氮胁迫降低了鱼体抗氧化相关基因的表达量,抗氧化酶的合成量大大减少,从而降低了抗氧化酶的活性[28]。然而,姜会民[29]、Sun等[30]研究得出不同结论,他们认为抗氧化酶活性随胁迫时间增加呈先升高后下降的趋势;赵海涛[31]研究发现南方鲶 (Silurus meridionalis) 幼鱼SOD活性在低浓度氨氮胁迫时先升高后下降,而在高浓度氨氮胁迫时显著持续下降。这主要是由于鱼体在低氨氮条件下产生了毒物兴奋效应[29],低浓度氨氮胁迫显著增加了免疫相关基因和抗氧化酶相关基因的表达,而高浓度氨氮胁迫显著抑制了免疫相关基因和抗氧化酶相关基因的表达[32]

      GSH是一种低分子活性氧自由基清除剂,是清除ROS非常重要的非酶抗氧化物质[33];而MDA是ROS与脂质发生过氧化反应的产物,它可以反映细胞受活性氧自由基攻击的程度,从而间接反映机体抗氧化能力的强弱及组织细胞受损伤的严重程度[34]。王贞杰等[4]发现圆斑星鲽幼鱼在氨氮处理96 h后,其肝脏MDA含量显著高于对照组,且MDA含量与氨氮浓度呈正相关 (P<0.05);蒋玫等[35]也发现随着氨氮浓度的升高,鲻鱼 (Mugil cephalus) 肝脏、鳃丝的MDA含量逐渐升高,MDA含量与氨氮浓度呈正相关。本研究中,慢性氨氮胁迫显著降低了史氏鲟幼鱼肝脏的GSH含量,而使MDA含量显著增加,这进一步表明持续60 d的慢性氨氮胁迫显著降低了史氏鲟幼鱼的抗氧化能力,加剧了组织细胞膜脂质过氧化程度,使得醛酮类物质在鱼体内不断积累。

      溶菌酶 (LZM) 和免疫球蛋白M (IgM) 是鱼体非常重要的免疫因子,前者可以破坏革兰氏阳性菌细胞壁中的肽聚糖,从而瓦解细菌细胞;后者具有强大的抗感染作用[34]。Zhang等[3]研究发现氨氮胁迫显著降低了黄颡鱼的LZM活性和总免疫球蛋白含量;Qin等[36]报道了氨氮胁迫不仅降低了瓦氏黄颡鱼 (P. vachellii) 血清LZM活性和补体C3的含量,还抑制了脾脏、头肾中补体C3和IgM的表达;陈家长等[37]、韩春燕等[38]发现氨氮胁迫显著降低了罗非鱼 (Oreochromis niloticus)、奥尼罗非鱼 (Oreochromis niloticus × O. areus) 的血清溶菌酶的活性;芦光宇等[39]、任海等[40]也发现,长时间的氨氮胁迫会使克氏原螯虾 (Procambarus clarkii) 和脊尾白虾 (Exopalaemon carinicauda) 的免疫酶活性降低;这些研究结果与本实验结果基本一致。本研究中,随着氨氮胁迫浓度的增大,史氏鲟幼鱼肝脏LZM活性及IgM含量均表现为逐渐降低的趋势。这表明慢性氨氮胁迫降低了鱼体LZM活性及IgM的合成,抑制了鱼体的免疫功能,降低了鱼体的免疫力,其原因主要与氨氮胁迫抑制了鱼体LZM、IgM等免疫相关基因的表达有关[32, 36]

    • 本研究发现,持续60 d的慢性氨氮胁迫导致史氏鲟幼鱼的特定生长率和增重率显著下降,肝脏SOD、CAT、T-AOC、LZM活性及GSH、IgM含量显著下降,MDA含量显著升高,这表明慢性氨氮胁迫对史氏鲟幼鱼的生长、抗氧化能力和免疫能力产生了显著的不利影响。当氨氮质量浓度为0.5 mg·L−1时,史氏鲟幼鱼肝脏SOD、CAT、T-AOC、LZM活性及MDA、IgM含量等指标与对照组相比均未出现显著性变化;而当氨氮质量浓度>0.5 mg·L−1时,肝脏T-AOC、LZM活性及GSH、MDA含量等指标显著低于对照组,这表明当氨氮质量浓度≤0.5 mg·L−1时,氨氮胁迫对史氏鲟幼鱼肝脏抗氧化、免疫指标基本无实质性的影响,但当氨氮质量浓度>0.5 mg·L−1时,氨氮胁迫已对史氏鲟幼鱼的肝脏抗氧化、免疫指标造成了显著的不利影响。因此,在史氏鲟的日常养殖过程中,养殖水体中氨氮质量浓度应至少≤0.5 mg·L−1,以避免其对史氏鲟造成损伤。

参考文献 (40)

目录

    /

    返回文章
    返回