[1] 江诚, 谢俊, 陈海峰.  葡萄糖转运蛋白的转运机制研究[J]. 基因组学与应用生物学, 2015, 34(7): 1372-1377.
[2] ULDRY M, THORENS B.  The SLC2 family of facilitated hexose and polyol transporters[J]. Pflugers Arch, 2004, 447(5): 480-489.   doi: 10.1007/s00424-003-1085-0
[3] AUGUSTIN R.  The protein family of glucose transport facilitators: it's not only about glucose after all[J]. IUBMB Life, 2010, 62(5): 315-333.
[4] 王尔孚, 李昕, 贾春松, 等.  低氧预适应上调大鼠海马神经元和星形胶质细胞在急性缺氧时的葡萄糖转运蛋白的活性和基因表达[J]. 基础医学与临床, 2009, 29(12): 1273-1276.
[5] 邱萤, 黄桂菊, 刘宝锁, 等.  企鹅珍珠贝GLUT1基因全长cDNA克隆及其对葡萄糖的表达响应[J]. 南方水产科学, 2016, 12(5): 81-89.   doi: 10.3969/j.issn.2095-0780.2016.05.010
[6]

任鸣春. 军曹鱼和虹鳟糖类营养生理研究[D]. 青岛: 中国海洋大学, 2012: 115-135.

[7] BALMACEDA-AGUILERA C, MARTOS-SITCHA J A, MANCERA J.  Cloning and expression pattern of facilitative glucose transporter 1 (GLUT1) in gilthead sea bream Sparus aurata in response to salinity acclimation[J]. Comp Biochem Physiol A, 2012, 163(1): 38-46.   doi: 10.1016/j.cbpa.2012.04.026
[8] MARTINEZ-QUINTANA J A, PEREGRINO-URIARTE A B, GOLLAS-GALVÁN S, et al.  The glucose transporter 1-GLUT1-from the white shrimp Litopenaeus vannamei is up-regulated during hypoxia[J]. Mol Biol Rep, 2014, 41(12): 7885-7898.   doi: 10.1007/s11033-014-3682-8
[9] WANG X D, LI E C, CHEN K, et al.  Response of facilitative glucose transporter 1 to salinity stress and dietary carbohydrate nutrition in white shrimp Litopenaeus vannamei[J]. Aquacult Nutr, 2017, 23(1): 90-100.   doi: 10.1111/anu.2017.23.issue-1
[10] LI R X, LIU H Y, DONG X H, et al.  Molecular characterization and expression analysis of glucose transporter 1 and hepatic glycolytic enzymes activities from herbivorous fish Ctenopharyngodon idellus in respond to a glucose load after the adaptation to dietary carbohydrate levels[J]. Aquaculture, 2018, 492: 290-299.   doi: 10.1016/j.aquaculture.2018.04.028
[11] LIU H Y, DONG X H, CHI S Y, et al.  Molecular cloning of glucose transporter 1 in grouper Epinephelus coioides and effects of an acute hyperglycemia stress on its expression and glucose tolerance[J]. Fish Physiol Biochem, 2017, 43(1): 103-114.   doi: 10.1007/s10695-016-0271-x
[12] 杨其彬, 叶乐, 温为庚, 等.  盐度对斑节对虾蜕壳、存活、生长和饲料转化率的影响[J]. 南方水产, 2008, 4(1): 16-21.   doi: 10.3969/j.issn.2095-0780.2008.01.003
[13] 滕继林, 肖军.  葡萄糖转运蛋白1的研究进展[J]. 生物学教学, 2015, 40(6): 2-3.
[14]

江世贵, 杨丛海, 周发林, 等. 斑节对虾种虾繁育技术[M]. 北京: 海洋出版社, 2013: 80-81.

[15] YANG L, LI X, JIANG S, et al.  Characterization of Argonaute2 gene from black tiger shrimp (Penaeus monodon) and its responses to immune challenges[J]. Fish Shellfish Immunol, 2014, 36(1): 261-269.   doi: 10.1016/j.fsi.2013.11.010
[16] 吴勉之, 杨丽诗, 周发林, 等.  斑节对虾2种高血糖激素家族基因的基因组序列分析和表达研究[J]. 南方水产科学, 2018, 14(4): 27-36.   doi: 10.3969/j.issn.2095-0780.2018.04.004
[17]

邱萤. 企鹅珍珠贝葡萄糖转运蛋白1同源异构型基因的克隆及对葡萄糖应激的表达响应分析[D]. 上海: 上海海洋大学, 2016: 41-46.

[18] HALL J R, MACCORMACK T J, BARRY C A, et al.  Sequence and expression of a constitutive, facilitated glucose transporter (GLUT1) in Atlantic cod Gadus morhua[J]. J Exp Biol, 2004, 207(26): 4697-4706.   doi: 10.1242/jeb.01346
[19] MORRIS S.  Neuroendocrine regulation of osmoregulation and the evolution of air-breathing in decapod crustaceans[J]. J Exp Biol, 2001, 204(5): 979-989.
[20] VINAGRE A S, da SILVA R S M.  Effects of fasting and refeeding on metabolic processes in the crab Chasmagnathus granulata (Dana, 1851)[J]. Can J Zool, 2002, 80(8): 1413-1421.   doi: 10.1139/z02-122
[21] WANG X D, LI E C, XU Z X, et al.  Molecular response of carbohydrate metabolism to dietary carbohydrate and acute low salinity stress in Pacific white shrimp Litopenaeus vannamei[J]. Turkish J Fish Aquat Sci, 2017, 17(1): 153-169.
[22] SÁNCHEZ-PAZ A, GARCÍA-CARREÑO F, HERNÁNDEZ-LÓPEZ J, et al.  Effect of short-term starvation on hepatopancreas and plasma energy reserves of the Pacific white shrimp (Litopenaeus vannamei)[J]. J Exp Mar Bio Ecol, 2007, 340(2): 184-193.   doi: 10.1016/j.jembe.2006.09.006
[23] OLIVEIRA G T, da SILVA R S M.  Hepatopancreas gluconeogenesis during hyposmotic stress in crabs Chasmagnathus granulata maintained on high-protein or carbohydrate-rich diets[J]. Comp Biochem Physiol B, 2000, 127(3): 375-381.   doi: 10.1016/S0305-0491(00)00274-1
[24] ROSAS C, CUZON G, GAXIOLA G, et al.  Metabolism and growth of juveniles of Litopenaeus vannamei: effect of salinity and dietary carbohydrate levels[J]. J Exp Mar Bio Ecol, 2001, 259(1): 1-22.   doi: 10.1016/S0022-0981(01)00222-2
[25] CARMONA R, GARCÍA-GALLEGO M, SANZ A, et al.  Chloride cells and pavement cells in gill epithelia of Acipenser naccarii: ultrastructural modifications in seawater-acclimated specimens[J]. J Fish Biol, 2004, 64(2): 553-566.   doi: 10.1111/jfb.2004.64.issue-2
[26] 王晓杰, 张秀梅, 姜明.  盐度胁迫对许氏平鲉鳃、头肾、脾脏超微结构的影响[J]. 中国海洋大学学报(自然科学版), 2006, (S1): 85-90.
[27] 王艳, 胡先成.  不同盐度下鲈鱼稚鱼鳃的显微结构观察[J]. 海洋科学, 2009, 33(12): 138-142.
[28] 张硕, 董双林.  饵料和盐度对中国对虾幼虾能量收支的影响[J]. 大连水产学院学报, 2002, 17(3): 227-233.   doi: 10.3969/j.issn.1000-9957.2002.03.009
[29] YE L, JIANG S G, ZHU X M, et al.  Effects of salinity on growth and energy budget of juvenile Penaeus monodon[J]. Aquaculture, 2009, 290(1/2): 140-144.
[30] YIN S J, ZHANG L M, ZHANG L L, et al.  Metabolic responses and arginine kinase expression of juvenile cuttlefish (Sepia pharaonis) under salinity stress[J]. Int J Biol Macromol, 2018, 113: 881-888.   doi: 10.1016/j.ijbiomac.2018.03.036