[1] 李富祥, 王鹏飞, 闫路路, 等.  花鲈irak4基因cDNA的克隆与表达分析[J]. 南方水产科学, 2018, 14(5): 70-79.
[2] TURNBAUGH P J, BACKHED F, FULTON L, et al.  Marked alterations in the distal gut microbiome linked to diet-induced obesity[J]. Cell Host Microbe, 2008, 3(4): 213-223.   doi: 10.1016/j.chom.2008.02.015
[3] YANG L, LIU S, DING J, et al.  Gut microbiota co-microevolution with selection for host humoral immunity[J]. Front Microbiol, 2017, 8: 1243-.   doi: 10.3389/fmicb.2017.01243
[4] JIA W, LI H, ZHAO L, et al.  Gut microbiota: a potential new territory for drug targeting[J]. Nat Rev Drug Discov, 2008, 7(2): 123-129.   doi: 10.1038/nrd2505
[5] SAMPSON T R, MAZMANIAN S K.  Control of brain development, function, and behavior by the microbiome[J]. Cell Host Microb, 2015, 17(5): 565-576.   doi: 10.1016/j.chom.2015.04.011
[6] 张家松, 段亚飞, 张真真, 等.  对虾肠道微生物菌群的研究进展[J]. 南方水产科学, 2015, 11(6): 114-119.   doi: 10.3969/j.issn.2095-0780.2015.06.016
[7]

GIVENS C E. A fish tale: comparison of the gut microbiome of 15 fish species and the influence of diet and temperature on its composition[D]. Athens: University of Georgia, 2012: 14-35.

[8] SULLAM K E, ESSINGER S D, LOZUPONE C A, et al.  Environmental and ecological factors that shape the gut bacterial communities of fish: a meta-analysis[J]. Mol Ecol, 2012, 21(13): 3363-3378.   doi: 10.1111/j.1365-294X.2012.05552.x
[9]

戚晓舟. 氨氮胁迫对鲫免疫系统及肠道菌群结构的影响[D]. 杨陵: 西北农林科技大学, 2017: 23-40.

[10] SHINGLES A, MCKENZIE D J, CLAIREAUX G, et al.  Reflex cardioventilatory responses to hypoxia in the flathead gray mullet (Mugil cephalus) and their behavioral modulation by perceived threat of predation and water turbidity[J]. Physiol Biochem Zool, 2005, 78(5): 744-755.   doi: 10.1086/432143
[11] REES B B, MATUTE L A.  Repeatable interindividual variation in hypoxia tolerance in the gulf killifish, Fundulus grandis[J]. Physiol Biochem Zool, 2018, 91(5): 1046-1056.   doi: 10.1086/699596
[12]

吴鑫杰. 低氧对团头鲂细胞凋亡及抗氧化酶活性的影响[D]. 武汉: 华中农业大学, 2015: 10-20.

[13] 吴小峰, 赵庆新.  关于草鱼肠炎微生态调节的研究[J]. 微生物学杂志, 2003, 23(4): 23-24.   doi: 10.3969/j.issn.1005-7021.2003.04.008
[14] KORMAS K A, MEZITI A, MENTE E, et al.  Dietary differences are reflected on the gut prokaryotic community structure of wild and commercially reared sea bream (Sparus aurata)[J]. Microbiologyopen, 2014, 3(5): 718-728.   doi: 10.1002/mbo3.2014.3.issue-5
[15] 李建柱, 侯杰, 张鹏飞, 等.  鱼菜共生模式中不同鱼类肠道微生物群落结构的比较[J]. 南方水产科学, 2016, 12(6): 42-50.   doi: 10.3969/j.issn.2095-0780.2016.06.006
[16] RAY A K, GHOSH K, RINGO E.  Enzyme-producing bacteria isolated from fish gut: a review[J]. Aquacult Nutr, 2012, 18(5): 465-492.   doi: 10.1111/anu.2012.18.issue-5
[17] SWANK G M, DEITCH E A.  Role of the gut in multiple organ failure: bacterial translocation and permeability changes[J]. World J Surg, 1996, 20(4): 411-417.   doi: 10.1007/s002689900065
[18] Van DOAN H, DOOLGINDACHBAPORN S, SUKSRI A.  Effects of low molecular weight agar and Lactobacillus plantarum on growth performance, immunity, and disease resistance of basa fish (Pangasius bocourti, Sauvage 1880)[J]. Fish Shellfish Immun, 2014, 41(2): 340-345.   doi: 10.1016/j.fsi.2014.09.015
[19] LOPETUSO L R, PETITO V, GRAZIANI C, et al.  Gut microbiota in health, diverticular disease, irritable bowel syndrome, and inflammatory bowel diseases: time for microbial marker of gastrointestinal disorders?[J]. Digest Dis, 2018, 36(1): 56-65.   doi: 10.1159/000477205
[20] HALE V L, JERALDO P, CHEN J, et al.  Distinct microbes, metabolites, and ecologies define the microbiome in deficient and proficient mismatch repair colorectal cancers[J]. BioRxiv, 2018, : 346510-.
[21] REVECO F E, ØVERLAND M, ROMARHEIM O H, et al.  Intestinal bacterial community structure differs between healthy and inflamed intestines in Atlantic salmon (Salmo salar L.)[J]. Aquaculture, 2014, 420(1): 262-269.
[22]

潘艳艳. 饥饿及恢复喂食对鲈鱼肠道菌群多样性的影响[D]. 宁波: 宁波大学, 2015: 22-35.

[23] DUAN Y, LIU Q, WANG Y, et al.  Impairment of the intestine barrier function in Litopenaeus vannamei exposed to ammonia and nitrite stress[J]. Fish Shellfish Immun, 2018, 78: 279-288.   doi: 10.1016/j.fsi.2018.04.050
[24] BATES J M, MITTGE E, KUHLMAN J, et al.  Distinct signals from the microbiota promote different aspects of zebrafish gut differentiation[J]. Dev Biol, 2006, 297(2): 374-386.   doi: 10.1016/j.ydbio.2006.05.006
[25] 郁维娜, 戴文芳, 陶震, 等.  健康与患病凡纳滨对虾肠道菌群结构及功能差异研究[J]. 水产学报, 2018, 42(3): 399-409.
[26]

刘敏. 应用PCR-DGGE技术分析长江口低氧区和黄海冷水团的细菌群落组成[D]. 青岛: 中国科学院海洋研究所, 2007: 27-44.

[27] SAKATA T, SUGITA H, MITSUOKA T, et al.  Characteristics of obligate anaerobic bacteria in the intestines of freshwater fish[J]. Bull Jpn Soc Sci Fish, 1981, 47(3): 421-427.   doi: 10.2331/suisan.47.421
[28] 杨坤杰, 王欣, 熊金波, 等.  健康和患病凡纳滨对虾幼虾消化道菌群结构的比较[J]. 水产学报, 2016, 40(11): 1765-1773.
[29] LARSEN A M, MOHAMMED H H, ARIAS C R.  Characterization of the gut microbiota of three commercially valuable warmwater fish species[J]. J Appl Microbiol, 2014, 116(6): 1396-1404.   doi: 10.1111/jam.2014.116.issue-6
[30] RINGØ E, ZHOU Z, VECINO J L G, et al.  Effect of dietary components on the gut microbiota of aquatic animals. A never-ending story?[J]. Aquacult Nutr, 2016, 22(2): 219-282.   doi: 10.1111/anu.2016.22.issue-2
[31] RAMIREZ R F, DIXON B A.  Enzyme production by obligate intestinal anaerobic bacteria isolated from oscars (Astronotus ocellatus), angelfish (Pterophyllum scalare) and southern flounder (Paralichthys lethostigma)[J]. Aquaculture, 2003, 227(1/2/3/4): 417-426.
[32] 徐鈜绣, 姜丽晶, 李少能, 等.  南大西洋深海热液区可培养硫氧化微生物多样性及其硫氧化特性[J]. 微生物学报, 2016, 56(1): 88-100.