[1] DUARTE C M, MIDDELBURG J J, CARACO N. Major role of marine vegetation on the oceanic carbon cycle[J]. Biogeosciences, 2005, 2(1): 1-8. doi:  10.5194/bg-2-1-2005
[2] HECK K L, HAYS G, ORTH R J. Critical evaluation of the nursery role hypothesis for seagrass meadows[J]. Mar Ecol Prog, 2003, 253: 123-136. doi:  10.3354/meps253123
[3] STEWART J R, GAST R J, FUJIOKA R S, et al. The coastal environment and human health: microbial indicators, pathogens, sentinels and reservoirs[J]. Environ Health-Glob, 2008, 7(Sup 2): S3.
[4] LAMB J B, van de WATER, JEROEN A J M, et al. Seagrass ecosystems reduce exposure to bacterial pathogens of humans, fishes, and invertebrates[J]. Science, 2017, 355(6326): 731-733. doi:  10.1126/science.aal1956
[5] ARUMUGAM R, ANANTHARAMAN P. Antibacterial potential of three seagrasses against human pathogens[J]. Asian Pac J Trop Med, 2010(11): 890-893.
[6] DUARTE C M. Reviews and syntheses: hidden forests, the role of vegetated coastal habitats in the ocean carbon budget[J]. Biogeosciences, 2017, 14(2): 301-310. doi:  10.5194/bg-14-301-2017
[7] COUPLAND G T, WALKER D D I. High metabolic rates in beach cast communities[J]. Ecosystems, 2007, 10(8): 1341-1350. doi:  10.1007/s10021-007-9102-3
[8] PATIL R, EYASEKARAN G J, SHANMUGAM S A. Control of bacterial pathogens, associated with fish diseases, by antagonistic marine actinomycetes isolated from marine sediments[J]. Ind J Geo-Mar Sci, 2011, 30(4): 324-267. doi:  10.1006/jmsc.2001.1116
[9] ZHU H Y, LI X W, ZHENG X Y. Sediment composition influences spatial variation in the abundance of human pathogen indicator bacteria within an estuarine environment[J]. Biomed Res Int, 2017: 2796054.
[10] SHENG H, ZHOU P, ZHANG Y, et al. Loss of labile organic carbon from subsoil due to land-use changes in subtropical China[J]. Soil Biol Biochem, 2015, 88: 148-157. doi:  10.1016/j.soilbio.2015.05.015
[11] ROLL B M, FUJIOKA R S. Sources of faecal indicator bacteria in a brackish, tropical stream and their impact on recreational water quality[J]. Water Sci Technol, 1997, 35(11/12): 179-186.
[12] FUJIOKA R, SIAN-DENTON C, BORJA M, et al. Soil: the environmental source of Escherichia coli and Enterococci in Guam's streams[J]. J Appl Microbiol, 2010, 85(S1): 83-89.
[13] WAYCOTT M, DUARTE C M, CARRUTHERS T J B, et al. Accelerating loss of seagrasses across the globe threatens coastal ecosystems[J]. Proc Natl Acad Sci USA, 2009, 106(30): 12377-12381. doi:  10.1073/pnas.0905620106
[14] 周立柱, 杨顶田, 尹小青. 海南新村港和黎安港非点源污染负荷估算[J]. 生态科学, 2018, 37(3): 11-20.
[15] ZHANG X, ZHAO C, YU S, et al. Rhizosphere microbial community structure are selected by habitats but not plant species in two  tropical  seagrass  beds[J].  Fronit  Mocrobiol,  2020, 11. doi: 10.3389/fmicb.2020.00161.
[16] MARTIN M. Cutadapt removes adapter sequences from high-throughput sequencing reads[J]. Embnet J, 2011, 17(1): 10-12. doi:  10.14806/ej.17.1.200
[17] KNIGHT R. UCHIME improves sensitivity and speed of chimera detection[J]. Bioinformatics, 2011, 27(16): 2194-2200. doi:  10.1093/bioinformatics/btr381
[18] EDGAR R C. UPARSE: highly accurate OTU sequences from microbial amplicon reads[J]. Nat Methods, 2013, 10(10): 996-998. doi:  10.1038/nmeth.2604
[19] CHRISTIAN Q, ELMAR P, PELIN Y, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools[J]. Nucleic Acids Res, 2013, 41(D1): D590-D596.
[20] UCHIYAMA H. Distribution of Vibrio species isolated from aquatic environments with TCBS agar[J]. Environ Health Prev, 2000, 4(4): 199-204. doi:  10.1007/BF02931258
[21] EMBERGER O, PAVLOVÃ M. Suitability of Slanetz-Bartley esculine sodium azide media for determination of Enterococci[J]. Epidemiol Mikrobi Im, 1971, 20(5): 262-269.
[22] ANDERSON M J, GORLEY R N, CLARKE K R. PERMANOVA for PRIMER: guide to software and statistical methods[M]. Plymouth, UK: PRIMER-E Ltd., 2008: 105-121.
[23] COLLADO L, INZA I, GUARRO J, et al. Presence of Arcobacter spp. in environmental waters correlates with high levels of fecal pollution[J]. Environ Microbiol, 2008, 10(6): 1635-1640. doi:  10.1111/j.1462-2920.2007.01555.x
[24] HAAGSMA J. Pathogenic anaerobic bacteria and the environment[J]. Rev Sci Tech, 1991, 10(3): 749-764. doi:  10.20506/rst.10.3.569
[25] JANDA J M. Current perspectives on the epidemiology and pathogenesis of clinically significant Vibrio spp.[J]. Clin Microbiol Rev, 1988, 1(3): 245-267. doi:  10.1128/CMR.1.3.245
[26] DAVID P P, AURELIE L, GHISLAINE M, et al. The complete genome sequence of the fish pathogen Tenacibaculum maritimum provides insights into virulence mechanisms[J]. Front Microbiol, 2017, 8: 1542. doi: 10.3389/fmicb.2017.01542.
[27] CHISTOSERDOV A Y, GUBBALA S L, SMOLOWITZ R, et al. A microbiological assessment of epizootic shell disease in the American lobster indicates its strictly dermal etiology[M]. Boston: Boston University of Massachusetts, 2005: 12-20.
[28] DIEDRICH L K, MANBY C L. Haemophilus species as a urinary tract pathogen[J]. Lab Med, 2017, 48(1): e1-e3. doi:  10.1093/labmed/lmw063
[29] RIVAS A J, VENCES A, HUSMANN M, et al. The Photobacterium damselae subsp. damselae major virulence factors Dly, HlyApl and HlyAch are secreted via the type II secretion system[J]. Infect Immun, 2015, 83(4): 1246-1256. doi:  10.1128/IAI.02608-14
[30] WEBSTER N S. Sponge disease: a global threat?[J]. Environ Microbiol, 2007, 9(6): 1363-1375. doi:  10.1111/j.1462-2920.2007.01303.x
[31] WATRAL V, KENT M L. Pathogenesis of Mycobacterium spp. in zebrafish (Danio rerio) from research facilities[J]. Comp Biochem Physiol C, 2007, 145(1): 55-60. doi:  10.1016/j.cbpc.2006.06.004
[32] DALSGAARD I. Virulence mechanisms in Cytophaga psychrophila and other Cytophaga-like bacteria pathogenic for fish[J]. Ann Rev Fish Dis, 1993, 3: 127-144. doi:  10.1016/0959-8030(93)90032-7
[33] STEVENS D A, HAMILTON J R, JOHNSON N, et al. Halomonas, a newly recognized human pathogen causing infections and contamination in a dialysis center three new species[J]. Medicine, 2009, 88(4): 244-249. doi:  10.1097/MD.0b013e3181aede29
[34] FARKAS J. Filamentous Flavobacterium sp. isolated from fish with gill diseases in cold water[J]. Aquaculture, 1985, 44(1): 1-10. doi:  10.1016/0044-8486(85)90037-7
[35] JOHNSON D I. Legionella spp. [M]. New York: Springer International Publishing AG, 2018:279-287
[36] MAUEL M J, SOTO E, MORALIS J A, et al. A Piscirickettsiosis-like syndrome in cultured nile tilapia in Latin America with Francisella spp. as the pathogenic agent[J]. J Aquat Anim Health, 2007, 19(1): 27-34. doi:  10.1577/H06-025.1
[37] VALDIVIA-ARENAS M A. Bloodstream infections due to Micrococcus spp and intravenous epoprostenol[J]. Infect Cont Hosp Ep, 2009, 30(12): 1237-1237.
[38] BOWMAN J P. The Genus, Psychrobacter[M]. New York: Springer, 2006: 920-930.
[39] LIU S, JIANG Z, DENG Y, et al. Effects of nutrient loading on sediment bacterial and pathogen communities within seagrass meadows[J]. Microbiol Open, 2018, 7(5): e00600. doi:  10.1002/mbo3.600
[40] GHADERPOUR A, NASORI K N M, CHEW L L, et al. Detection of multiple potentially pathogenic bacteria in Matang mangrove estuaries, Malaysia[J]. Mar Pollut Bull, 2014, 83(1): 324-330. doi:  10.1016/j.marpolbul.2014.04.029
[41] PERKINS T L, KATIE C, BAAS J H, et al. Sediment composition influences spatial variation in the abundance of human pathogen indicator bacteria within an estuarine environment[J]. PLoS One, 2014, 9(11): e112951. doi:  10.1371/journal.pone.0112951
[42] AGAWIN N S R, DUARTE C M. Evidence of direct particle trapping by a tropical seagrass meadow[J]. Estuar Coast, 2002, 25(6): 1205-1209. doi:  10.1007/BF02692217
[43] MAUGERI T L, CARBONE M, FERA M T, et al. Distribution of potentially pathogenic bacteria as free living and plankton associated in a marine coastal zone[J]. J Appl Microbiol, 2004, 97(2): 354-361. doi:  10.1111/j.1365-2672.2004.02303.x
[44] BAFFONE W, PIANETTI A, BRUSCOLINI F, et al. Occurrence and expression of virulence-related properties of Vibrio species isolated from widely consumed seafood products[J]. Int J Food Microbiol, 2000, 54(1/2): 9-18.
[45] JOANN M B, DAVID A T, BRANT W T. Seagrasses and eutrophication[J]. J Exp Mar Biol Ecol, 2007, 50(1/2): 46-72.
[46] ALLISON L S, JESSICA K C W, SUSANNE E C. Regional-scale effects of eutrophication on ecosystem structure and services of seagrass beds[J]. Limnol Oceanogr, 2012, 57(5): 1389-1402. doi:  10.4319/lo.2012.57.5.1389
[47] MICHAEL J S, JOHN C B, MAGGY M N, et al. Algae as reservoirs for coral pathogens[J]. PLoS One, 2013, 8(7): e69717. doi:  10.1371/journal.pone.0069717
[48] EGIDIUS E. Vibriosis: pathogenicity and pathology. A review[J]. Aquaculture, 1987, 67(1/2): 15-28.
[49] 杨青, 俞云松, 倪语星, 等. 2009年中国CHINET肠球菌属细菌耐药性监测[J]. 中国感染与化疗杂志, 2010, 10(6): 421-425.
[50] FISHER K, PHILLIPS C. The ecology, epidemiology and virulence of Enterococcus[J]. Microbiology, 2009, 155(6): 1749-1757. doi:  10.1099/mic.0.026385-0
[51] YASUYOSHI I K E. Pathogenicity of Enterococci[J]. Nihon Saikingaku Zasshi, 2017, 72(2): 189-211. doi:  10.3412/jsb.72.189
[52] HSIEH J L, FRIES J S, NOBLE R T. Vibrio and phytoplankton dynamics during the summer of 2004 in a eutrophying estuary[J]. Ecol Appl, 2007, 17(5): S102-S109.
[53] 吴建平, 蔡创华, 周毅频, 等. 大亚湾网箱养殖水体弧菌种类组成及变化[J]. 湛江海洋大学学报, 2006, 26(4): 46-52.
[54] AUSTIN B. Vibrios as causal agents of zoonoses[J]. Vet Microbiol, 2010, 140(3/4): 310-317.
[55] REILLY G D, REILLY C A, SMITH E G, et al. Vibrio alginolyticus-associated wound infection acquired in British waters, Guernsey, July 2011[J]. Euro Surveill, 2011, 16(42): 321-326.
[56] LIU S, JIANG Z, ZHANG J, et al. Effect of nutrient enrichment on the source and composition of sediment organic carbon in tropical seagrass beds in the South China Sea[J]. Mar Pollut Bull, 2016, 110(1): 274-280. doi:  10.1016/j.marpolbul.2016.06.054
[57] JOHNSON P T J, CARPENTER S R. Influence of eutrophication on disease in aquatic ecosystems: patterns, processes, and predictions. Infectious disease ecology: the effects of ecosystems on disease and of disease on ecosystems[M]. Princeton: Princeton University Press, 2010: 71-99.
[58] GLADSTONE-GALLAGHER R V, HUGHES R W, DOUGLAS E J, et al. Biomass-dependent seagrass resilience to sediment eutrophication[J]. J Exp Mar Biol Ecol, 2008, 501: 54-64. doi:  10.1016/j.jembe.2018.01.002
[59] GACIA E, DUARTE C M, MARBÀ N, et al. Sediment deposition and production in SE-Asia seagrass meadows[J]. Estuar Coast Shelf S, 2003, 56(5/6): 909-919.
[60] MARBÀ N, ARIAS-ORTIZ A, MASQUÉ P, et al. Impact of seagrass loss and subsequent revegetation on carbon sequestration and stocks[J]. J Ecol, 2015, 103(2): 296-302. doi:  10.1111/1365-2745.12370