[1]

宋利明. 渔具测试[M]. 北京: 中国农业出版社, 2017: 85-88.

[2] 官文江, 朱江峰, 高峰.  印度洋长鳍金枪鱼资源评估的影响因素分析[J]. 中国水产科学, 2018, 25(5): 1102-1114.
[3] 官文江, 朱江峰, 田思泉.  应用贝叶斯生物量动态模型评估印度洋黄鳍金枪鱼资源[J]. 中国水产科学, 2018, 25(3): 621-631.
[4] SANTOS R C, SILVA-COSTA A, SANT'ANA R A, et al.  Improved line weighting reduces seabird bycatch without affecting fish catch in the Brazilian pelagic longline fishery[J]. Aquat Conserv, 2019, 29(3): 442-449.   doi: 10.1002/aqc.3002
[5]

TASKER M. Educational and training material for use in reducing seabird by catch[C]//Indian Ocean Tuna Commission, Victoria, Seychelles. 2nd Session of The Working Party on Environment and Bycatch. IOTC-2006-WPBy-INF05, 2006:1-2.

[6]

邵化斌. 海洋动物保护的国际管理机制研究[D]. 上海: 上海海洋大学, 2018: 1-4.

[7]

庄之栋. 大西洋金枪鱼延绳钓重要兼捕种类的生物学研究[D]. 上海: 上海海洋大学, 2011: 1-8.

[8] 姜润林, 戴小杰, 许柳雄.  热带大西洋金枪鱼延绳钓兼捕鲨鱼种类组成和渔获率及其与表温的关系[J]. 海洋渔业, 2009, 31(4): 389-394.   doi: 10.3969/j.issn.1004-2490.2009.04.008
[9] 杨胜龙, 张忭忭, 唐宝军, 等.  基于GAM模型分析水温垂直结构对热带大西洋大眼金枪鱼渔获率的影响[J]. 中国水产科学, 2017, 24(4): 875-883.
[10]

周成. 东太平洋公海长鳍金枪鱼延绳钓渔获特征的研究[C]//中国水产学会, 四川省水产学会. 2016年中国水产学会学术年会论文摘要集, 2016: 438-439.

[11] BEVERLY S, CURRAN D, MUSYL M, et al.  Effects of eliminating shallow hooks from tuna longline sets on target and non-target species in the Hawaii-based pelagic tuna fishery[J]. Fish Res, 2009, 96(2/3): 281-288.
[12] 刘勇, 程家骅.  渔业多鱼种综合开捕网目尺寸和捕捞努力量管理目标确定方法探讨[J]. 渔业科学进展, 2015, 36(6): 1-7.   doi: 10.11758/yykxjz.20150601
[13] 许友伟, 戴小杰, 陈作志.  大西洋延绳钓渔获物常见种类的生态风险评估[J]. 上海海洋大学学报, 2015, 24(3): 441-448.
[14]

曹道梅. 金枪鱼延绳钓渔具动力学模拟[D]. 上海: 上海海洋大学, 2011: 16-28.

[15] BOGGS C H.  Depth, capture time, and hooked longevity of longline caught pelagic fish[J]. Fish Bull, 1992, 90(4): 642-658.
[16] MIZUNO K, OKAZAKI M, NAKANO H, et al.  Estimation of underwater shape of tuna longline by using micro-BTs[J]. Bull Nat Res Ins Far Seas Fish, 1997, 34(1): 1-24.
[17] MIZUNO K, OKAZAKI M, MIYABE N.  Fluctuation of longline shortening rate and its effect on underwater longline shape[J]. Bull Nat Res Ins Far Seas Fish, 1998, 35(1): 155-164.
[18] MIYAMOTO Y, UCHIDA K, ORII R, et al.  Three-dimensional underwater shape measurement of tuna longline using ultrasonic positioning system and ORBCOMM buoy[J]. Fish Sci, 2006, 72(1): 63-68.   doi: 10.1111/j.1444-2906.2006.01117.x
[19] 宋利明, 高攀峰.  马尔代夫海域延绳钓渔场大眼金枪鱼的钓获水层、水温和盐度[J]. 水产学报, 2006, 30(3): 335-340.
[20] BACH P, GAERTNER D, MENKES C, et al.  Effects of the gear deployment strategy and current shear on pelagic longline shoaling[J]. Fish Res, 2009, 95(1): 55-64.   doi: 10.1016/j.fishres.2008.07.009
[21] 张艳波, 戴小杰, 朱江峰, 等.  东南太平洋金枪鱼延绳钓主要渔获种类垂直分布[J]. 应用生态学报, 2015, 26(3): 912-918.
[22]

沈智宾. 金枪鱼延绳钓渔具作业过程数值模拟[D]. 上海: 上海海洋大学, 2016: 11-14.

[23] 李杰, 晏磊, 杨炳忠, 等.  罩网兼作金枪鱼延绳钓的钓钩深度与渔获水层分析[J]. 海洋渔业, 2018, 40(6): 660-669.   doi: 10.3969/j.issn.1004-2490.2018.06.003
[24] BIGELOW K A, HAMPTON J, MIYABE N.  Application of a habitat-based model to estimate effective longline fishing effort and relative abundance of Pacific bigeye tuna (Thunnus obesus)[J]. Fish Oceanogr, 2002, 11(3): 143-155.   doi: 10.1046/j.1365-2419.2002.00196.x
[25] 吴因文, 吴殷书.  悬链线和抛物线理论在金枪鱼延绳钓渔业中的应用[J]. 海洋渔业, 2005, 27(1): 1-9.   doi: 10.3969/j.issn.1004-2490.2005.01.001
[26] LEE C W, LEE J H, CHA B J, et al.  Physical modeling for underwater flexible systems dynamic simulation[J]. Ocean Eng, 2005, 32(3/4): 331-347.
[27] BIGELOW K, MUSYL M K, POISSON F, et al.  Pelagic longline gear depth and shoaling[J]. Fish Res, 2006, 77(2): 173-183.   doi: 10.1016/j.fishres.2005.10.010
[28] 马家志, 虞聪达, 郑基, 等.  北大西洋公海金枪鱼延绳钓渔具渔法及其性能调查研究[J]. 浙江海洋学院学报(自然科学版), 2015, 34(3): 287-292.
[29] 栾松鹤, 戴小杰, 田思泉, 等.  中西太平洋金枪鱼延绳钓主要渔获物垂直结构的初步研究[J]. 海洋渔业, 2015, 37(6): 501-509.   doi: 10.3969/j.issn.1004-2490.2015.06.003
[30] 冯波, 龚超, 钟子超, 等.  南海金枪鱼延绳钓作业参数优化[J]. 渔业现代化, 2018, 45(4): 64-69.   doi: 10.3969/j.issn.1007-9580.2018.04.010
[31] 刘莉莉, 周成, 虞聪达, 等.  钓钩深度和浸泡时间对东太平洋公海长鳍金枪鱼延绳钓渔获性能的影响研究[J]. 中国海洋大学学报(自然科学版), 2018, 48(1): 40-48.
[32] WAN R, HU F, TOKAI T, et al.  A method for analyzing the static response of submerged rope systems based on a finite element method[J]. Fish Sci, 2002, 68(1): 65-70.   doi: 10.1046/j.1444-2906.2002.00390.x
[33] 万荣, 宋协法, 唐衍力, 等.  渔具模型空间形状的计测方法[J]. 水产学报, 2004, 28(4): 443-449.
[34] LEE J H, LEE C W, CHA B J.  Dynamic simulation of tuna longline gear using numerical methods[J]. Fish Sci, 2005, 71(6): 1287-1294.   doi: 10.1111/j.1444-2906.2005.01095.x
[35] 张新峰, 胡夫祥, 许柳雄, 等.  网渔具计算机数值模拟的研究进展[J]. 海洋渔业, 2015, 37(3): 277-287.   doi: 10.3969/j.issn.1004-2490.2015.03.011
[36]

WAN R, CUI J H, SONG X F, et al. A numerical model for predicting the fishing operation status of tuna longlines[J]. 水产学报, 2005, 29(2): 238-245.

[37]

周际. 印度洋金枪鱼延绳钓钓钩深度模型[D]. 上海: 上海海洋大学, 2008: 1-93.

[38] BALASH C, COLBOURNE B, BOSE N, et al.  Aquaculture net drag force and added mass[J]. Aquacult Eng, 2009, 41(1): 14-21.   doi: 10.1016/j.aquaeng.2009.04.003
[39] 宋利明, 张智, 袁军亭, 等.  基于最小势能原理的延绳钓渔具作业状态数值模拟[J]. 中国水产科学, 2011, 18(5): 1170-1178.
[40] 宋利明, 张智, 袁军亭, 等.  基于有限元分析的漂流延绳钓渔具作业状态数值模拟[J]. 海洋与湖沼, 2011, 42(2): 256-261.   doi: 10.11693/hyhz201102014014
[41]

ZHANG X F, CAO D M, SONG L M, et al. Application of whole-implicit algorithm and virtual neural lattice in pelagic longline modeling[C]//IEEE. 9th International Conference on Fuzzy Systems and Knowledge Discovery, Sichuan, China, 2012: 2603-2606.

[42] CAO D M, SONG L M, LI J, et al.  Determining the drag coeffcient of a cylinder perpendicular to waterflow by numerical simulation and field measurement[J]. Ocean Eng, 2014, 85(1): 93-99.
[43] SONG L M, LI J, XU W Y, et al.  The dynamic simulation of the pelagic longline deployment[J]. Fish Res, 2015, 167(1): 280-292.
[44] SONG L M, QI Y K, LI J, et al.  Dynamic simulation of pelagic longline retrieval[J]. J Ocean Univ China, 2019, 18(2): 455-466.   doi: 10.1007/s11802-019-3990-7
[45] TRIANTAFYLLOU M S, HOWELL C T.  Dynamic response of cables under negative tension: an ill-posed problem[J]. J Sound Vib, 1994, 173(4): 433-447.   doi: 10.1006/jsvi.1994.1239
[46] FROST G, COSTELLO M.  Improved deployment characteristics of a tether-connected munition system[J]. J Guid Control Dyn, 2001, 24(3): 547-554.   doi: 10.2514/2.4745